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Bound-state energies of lithium in magnetic fields using Hylleraas basis functions
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The variational method in Hylleraas coordinates is applied to calculate the 1s22s0, 1s22p−1, and 1s23d−2 states
of the lithium atom in magnetic fields with field strength up to 2 × 109 G. The computational method is based
on multiple basis sets that are optimized for all nonlinear parameters for a given field strength. The oscillator
strengths are also investigated for some transitions in magnetic fields.
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I. INTRODUCTION

Astrophysicists have been adopting spectral characteristics
to measure abundances of cosmic light elements that can be
used to diagnose the primordial abundances produced in the
standard theory of Big Bang nucleosynthesis (BBN). The
spectral data of light elements from theoretical calculations
in a field-free space, such as hydrogen, helium, lithium, etc.,
cannot be used to analyze the spectral data of experimental
observations in the universe, because of the existence of strong
magnetic fields on the surfaces of white dwarf (106–109 G)
and neutron stars (1011–1013 G) [1]. A large number of
theoretical calculations of spectral data in strong magnetic
fields are needed for astrophysical observations. Recently,
a novel chemical bonding mechanism has been found in
investigating the behavior and properties of diatomics in a
strong magnetic field [2], which may further stimulate the
study of light elements under extreme conditions.

In the past three decades, many detailed theoretical data
have been successfully applied to the studies on the observed
spectra of white dwarf stars [3–13]. The atomic hydrogen in
an arbitrary magnetic field has been investigated in detail by
Rösner et al. [3] and the results are in agreement with the
observed data [4]. For two-electron atoms in magnetic fields,
theoretical calculations have also been performed and the
results are also in agreement with astronomical data [12–14].
The next simple atom is the three-electron atomic lithium that
has an open and a closed shell and can be considered as a pro-
totype for other alkali-metal atoms. However, astrophysicists
have been plagued with the lithium problem that the predicted
primordial 7Li abundance is four times that measured in the
atmospheres of galactic halo stars [15]. Theoretical calculation
of lithium in strong magnetic fields has received more and
more attention. It should be pointed out that, in the past
several years, significant progress has been made on precision
calculations of low-lying states of lithium under the field-free
condition [16–20].
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Early theoretical studies on lithium in a magnetic field
include the Hartree-Fock (HF) approach [21] without consid-
ering the electron-electron correlations. Later, some research
groups [22–25] applied the same method to calculate different
states of lithium in strong magnetic fields. In [26] an approach
called the modified freezing full-core method was used, where
the electron-electron correlation effect was partially taken into
account by the two-electron core. Although this method is
computationally simple and effective for computing some
properties of lithium in magnetic fields, it is less precise.
Then Guan and Li [27] improved this method by introducing
the full-core-plus-correlation (FCPC) method, where the inner
core is described by a single predetermined wave function and
the correlation between the inner core and the outer electron is
described by a configuration-interaction wave function. Wang
and Qiao [28] also studied the problem of lithium in magnetic
fields using the FCPC method in cylindrical coordinates, where
the range of magnetic field strength is extended up to β = 50
(β denotes the magnetic field strength in two atomic units,
i.e., β = B/B0, where B0 = 4.7011 × 105 T. Al-Hujaj and
Schmelcher [29] also extended their method from two-electron
systems to lithium in magnetic fields and calculated the total
energies and one-electron ionization energies for the ground
and several excited states of symmetries 20+, 2( −1)+, 4( −1)+,
4( −1)−, 2( −2)+, 4( −2)+, and 4( −3)+.

In 1995, Yan and Drake [30] obtained the high-precision
variational energy eigenvalues for the 1s22s 2S, 1s22p 2P , and
1s23d 2D states of lithium using multiple basis sets in Hylleraas
coordinates without a magnetic field. These calculations have
then been improved constantly [16,17]. It is evident that the
variational method in Hylleraas coordinates is so far the most
accurate one for solving three-electron bound-state eigenvalue
problems. In the present work, we use the Hylleraas basis sets
to calculate variationally the energy eigenvalues of lithium
in the presence of a magnetic field. The energy levels of
the 1s22s0, 1s22p−1, and 1s23d−2 states are obtained and
compared with other methods [27–29]. The dipole oscillator
strengths are also computed.

This paper is organized as follows. In Sec. II, we present
the lithium Hamiltonian for the case of infinite nuclear mass
and the dipole oscillator strength in the length gauge. The
structure of the Hylleraas variational basis set is also presented.
In Sec. III the results of our calculations are displayed. A
summary is given in Sec. IV.
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II. THEORY AND METHOD

A. Wave function of lithium

In the limit of infinite nuclear mass, the nonrelativistic
Hamiltonian of lithium in a magnetic field pointing in the z

direction can be written as (atomic units are used throughout)
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3∑

i=1

(
−1

2
∇2

i − Z

ri

)
+

3∑
i>j

1

rij

+
3∑

i=1

[
1

3
β2r2

i −2

3

√
π

5
β2r2

i Y20 (θi,φi)

]
+ β (Lz + 2Sz) ,

(1)

where Z = 3 denotes the number of nuclear charges, Y20(θi,φi)
is the spherical harmonics, and Lz and Sz represent the z

components of the total orbital angular momentum L and the
total spin angular momentum S, respectively. It is clear that
(H ,Lz,S2,Sz,�̂,�̂z) mutually commute so that they can share
common eigenvectors, where �̂ is the parity operator for the
(x,y,z) → (−x, − y, − z) operation, and �̂z is the z parity
operator for the (x,y,z) → (x,y, − z) operation.

Upper bounds to energies of lithium in magnetic fields are
calculated using the Rayleigh-Ritz variational method. In our
calculations, the trial wave function is a linear combination of
the following Hylleraas basis functions:

� = A[φ(r1,r2,r3)], (2)

where
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is the vector-coupled product of spherical harmonics for
the three electrons to form a state of total angular mo-
ment L and the z component ML, which is also an
eigenstate of �̂ and �̂z with the corresponding eigenval-
ues � = (−1)l1+l2+l3 and �z = (−1)l1+l2+l3+ML = �(−1)ML ,
respectively; this is because �̂Ylm (r̂) = (−1)lYlm (r̂) and
�̂zYlm (r̂) = (−1)l−mYlm (r̂). In magnetic fields a lithium

energy eigenvalue may be designated by the notation 1s2nl�ML
,

where 1s2nl2S+1L� is the corresponding zero field energy
term. Notice that �z is known when both � and ML are
given. It should be pointed out that due to the existence of
Y20(θi,φi) in the Hamiltonian, one has [H,L2] �= 0; thus L is
no longer a good quantum number when β �= 0. In Eq. (3),
ω1, ω2, and ω3 are nonlinear variational parameters that are
optimized by Newton’s method [30] for a given strength of the
magnetic field. According to the above, a basis set should
contain [(l1,l2) l12,l3] L with all possible L. A basis set is
generated by including all non-negative integer powers of ri

and rij in the radial part such that

j1 + j2 + j3 + j12 + j23 + j31 � 
, (5)

where 
 is an integer. In our calculations, the basis set is
divided into sectors with different L and each such sector has
its own nonlinear parameters ω1, ω2 and ω3, as well as its
own size-controlling parameter 
. Meanwhile, to avoid a near
linear dependence and numerical instability, we drop terms
with j1 > j2 for l1 = l2 and ω1 ≈ ω2 and drop terms with
j1 = j2 for j23 > j31 [30]. Convergence in energy is studied by
increasing 
 progressively. Also in Eq. (3) χ1 is the common
eigenstate of (S2,Sz) with the corresponding eigenvalues S =
1/2 and MS = −1/2:

χ1 = α (1) β (2) β (3) − β (1) α (2) β(3). (6)

Finally

A = (1) − (12) − (13) − (23) + (123) + (132) (7)

is the three-electron antisymmetrizer.

B. Dipole transition in magnetic field

The dipole transition matrix element between initial state
|i〉 and final state |f 〉 is

P σ
f i = 〈f |

3∑
n=1

rnC
(1)
σ (r̂n) |i〉 , (8)

where C(1)
σ (r̂n) = √

4π/3Y1σ (r̂n). In the length gauge the
corresponding oscillator strength is

f
(σ )
f i = 2(Ef − Ei)

∣∣∣∣∣〈f |
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2

. (9)

TABLE I. Energy convergence of the 1s22s0, 1s22p−1, and 1s23d−2 states at β = 0.009, as the size of the basis set N is enlarged. All
energies are given in atomic units.

N E(1s22s0) N E(1s22p−1) N E(1s23d−2)

105 −7.484 983 92 112 −7.424 492 30 107 −7.329 624 88
258 −7.486 545 47 286 −7.426 908 97 268 −7.357 459 07
562 −7.486 564 32 646 −7.427 243 28 596 −7.358 477 16
1124 −7.486 565 93 1208 −7.427 264 10 1088 −7.358 499 21
2093 −7.486 566 21 2176 −7.427 265 29 1920 −7.358 501 24
2578 −7.486 566 51 2721 −7.427 265 38 2184 −7.358 501 68
Extrap. −7.486 566 8(3) −7.427 265 6(3) −7.358 501 8(2)
Ref. [27] −7.486 301 8 −7.426 897 7 −7.358 242 1
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TABLE II. Energy convergence with respect to the total angular momentum L for the 1s22s0, 1s22p−1, and 1s23d−2 states at β = 0.009
and β = 0.27. NL is the number of terms for given L, and EL is the corresponding contribution to the energy.

NL − EL − EL NL − EL − EL NL − EL − EL

L 1s22s0 β = 0.009 β = 0.27 L 1s22p−1 β = 0.009 β = 0.27 L 1s23d−2 β = 0.009 β = 0.27

0 1670 7.477 545 49 6.273 076 63 1 2337 7.409 217 06 6.950 376 56 2 1841 7.329 032 54 6.275 738 19
2 768 0.000 021 02 0.898 123 95 3 240 0.000 048 31 0.148 924 74 4 168 0.002 468 21 0.405 765 86
4 100 1.244 × 10−10 0.071 191 77 5 120 2.9447 × 10−9 0.006 803 56 6 84 0.000 000 91 0.039 355 95
6 18 1.9362 × 10−15 0.006 841 51 7 18 5.99 × 10−13 0.000 390 01 8 84 3.6623 × 10−10 0.002 981 50
8 18 6.25068 × 10−20 0.000 719 08 9 6 1.7 × 10−17 0.000 003 58 10 7 1.635 × 10−13 0.000 002 84
10 4 2.96 × 10−24 0.000 061 94
β(ML + 2MS) 0.009 0.27 0.018 0.54 0.027 0.81
Total 2578 7.486 566 51 7.520 014 91 2721 7.427 265 38 7.646 491 58 2184 7.358 501 68 7.533 844 35

TABLE III. Comparison of the energies for the 1s22s0, 1s22p−1, and 1s23d−2 states in the field regime β � 0.5.

1s22s0 1s22p−1 1s23d−2

β Present Others Present Others Present Others

0.0000 −7.478 060 323 −7.477 795 7a − 7.410 156 524 −7.409 790 7a −7.335 523 537 −7.335 263 8a

−7.477 766b −7.407 126b −7.332 617b

−7.476 336 0c −7.408 803 7c −7.334 763 6c

0.0005 −7.478 558 8(1) −7.478 032b −7.411 153 9(2) −7.408 174b −7.336 500 7(2) −7.334 097b

0.0009 −7.478 955 5(2) −7.478 690 7a −7.411 947 5(1) −7.411 581 6a −7.338 189 4(1) −7.337 920 0a

−7.477 230 3c −7.410 594 6c −7.337 419 7c

0.0045 −7.482 436 7(2) −7.482 171 9a −7.418 932 1(2) −7.418 565 6a −7.348 185 6(1) −7.347 695 1a

−7.480 677 0c −7.417 576 7c −7.347 191 2c

0.005 −7.482 907 6(1) −7.482 888 −7.419 879 5(1) −7.416 994b −7.348 823 7(1) −7.346 296b

0.009 −7.486 566 8(3) −7.486 301 8a −7.427 265 6(2) −7.426 897 7a −7.358 501 7(1) −7.358 242 1a

0.01 −7.487 451 9(2) −7.490 983b −7.429 059 0(1) −7.427 571 7c −7.360 448 1(2) −7.359 815 6c

−7.485 639 8c

0.015 −7.491 669 8(1) −7.491 432 6a −7.437 723 9(1) −7.437 353 3a −7.370 339 1(1) −7.370 157 9
0.02 −7.495 655 0(1) −7.495 390 1a −7.445 913 9(2) −7.445 539 8a −7.379 006 0(1) −7.378 755 4a

−7.493 900 0c −7.444 479 0c −7.378 232 7c

0.025 −7.499 335 5(1) −7.502 724b −7.453 671 9(2) −7.451 086b −7.386 700 0(1) −7.383 648b

0.027 −7.500 732 9(1) −7.500 467 8a −7.456 663 8(2) −7.456 283 9a −7.389 588 9(2) −7.389 355 9a

0.04 −7.508 846 7(3) −7.508 581 0a −7.474 761 7(2) −7.474 368 4a −7.406 261 4(1) −7.406 010 2a

0.05 −7.514 047 8(4) −7.513 781 7a −7.487 339 6(3) −7.486 934 3a −7.417 236 9(2) −7.416 978 0a

−7.517 154b −7.484 773b −7.414 207b

−7.512 210 2c −7.485 838 2c −7.416 424 4c

0.063 −7.519 633 (1) −7.519 371 8a −7.502 305 4(4) −7.501 882 9a −7.429 822 8(2) −7.429 562 6a

0.09 −7.527 736 (2) −7.527 504 9a −7.529 578 3(2) −7.529 117 5a −7.451 761 9(1) −7.451 505 4a

0.1 −7.529 807 (1) −7.533 495b −7.538 654 8(4) −7.536 032b −7.458 823 8(1) −7.455 585b

−7.527 837 6c −7.536 692 5c −7.457 783 3c

0.12 −7.532 562 (2) −7.532 294 9a −7.555 491 7(1) −7.554 985 1a −7.471 637 6(5) −7.471 386 9a

0.15 −7.534 029 (1) −7.533 767 8a −7.578 049 9(1) −7.577 498 9a −7.488 222 9(1)
0.2 −7.531 188 7(2) −7.530 963 2a −7.610 130 7(2) −7.609 509 5a −7.510 607 6(2) −7.510 411 1a

0.23 −7.527 185 (1) −7.526 979 1a −7.626 759 9(1) −7.626 102 5a −7.521 571 8(3)
0.25 −7.523 918 (6) −7.523 594 6a −7.636 927 4(3) −7.636 248 3a −7.528 018 7(1) −7.524 481b

−7.528 055b −7.634 547b −7.5263 592c

−7.521 612 7c −7.634 124 5c

0.27 −7.520 016 (1) −7.519 726 2a −7.646 491 6(1) −7.645 730a −7.533 850 (1) −7.533 749 6a

0.3 −7.513 400 (2) −7.513 158 0a −7.659 533 (3) −7.658 809a −7.541 506 (3) −7.541 488 4a

0.35 −7.500 958 (7) −7.500 583 6a −7.678 598 (3) −7.677 857a −7.551 717 (2)
0.45 −7.471 460 (2) −7.471 052 7a −7.707 760 (1) −7.707 054a

0.5 −7.454 284 (1) −7.458 550b −7.718 357 (4) −7.716 679b −7.566 400 (1) −7.562 892b

−7.452 904 6c −7.715 194 4c −7.564 296 9c

aReference [27].
bReference [29].
cReference [28].
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The final state |f 〉 and the initial state |i〉 must obey the
selection rule σ = MLf

− MLi
. In this work, we investigate

the absorption strengths for the 1s22s0-1s22p−1 and 1s22p−1-
1s23d−2 transitions in lithium as a function of the magnetic
field strength.

III. RESULTS AND DISCUSSION

In our calculations, the nonrelativistic energies of lithium
under field-free conditions are −7.478 060 32 for the
1s22s2S state, −7.410 156 52 for the 1s22p2P state, and
−7.335 523 53 for the 1s23d2D state. Comparing to the results
in [26–29], our calculations have significantly improved their
values. However, the most accurate results are those obtained
by Wang et al. [20] using large-scale Hylleraas basis sets.
Such a large-scale calculation seems to be difficult to apply
to the case when the magnetic field is present, because more
extra angular configurations are needed as the total angular
momentum L is not conserved. Nevertheless, Table I shows a
convergence study for the 1s22s0, 1s22p−1, and 1s23d−2 states
with β = 0.009, as the size of the basis set is enlarged progres-
sively, along with the extrapolated values with the uncertainties
attached in the brackets. The extrapolation is estimated based
on the pattern of successive differences between two adjacent
calculations. One can see that a convergence of about seven
significant digits has been reached with the size of the basis set
up to ∼2500. Comparing to [27], our results are more accurate
than theirs by at least three orders of magnitude. Table II
further lists the convergence study of these energies against
the total angular momentum L for the cases of β = 0.009 and
0.27. For the weak magnetic field of β = 0.009, the main
contribution comes from the configurations L = 0 for the
1s22s0 state, L = 1 for the 1s22p−1 state, and L = 2 for the
1s23d−2 state, respectively. As L increases the corresponding
contributions decrease rapidly. In the stronger magnetic field of
β = 0.27 more angular configurations are required in order to
achieve a full convergence; this is because the system becomes
more deviated from the spherical symmetry of the field-free
situation. In all our calculations, we only consider the angular
momentum configurations of parity (−1)L; the contributions
from the configurations of parity (−1)L+1 are negligibly small;
see [27] for a discussion.

Table III presents a more comprehensive listing for the
energies of the 1s22s0, 1s22p−1, and 1s23d−2 states, together
with a comparison with some recent results [27–29]. It can
be seen that our calculations have significantly improved
the previous results in this field regime. It is seen, however,
that the energies of 1s22s0 from [29] appear abnormally low
compared to the results of [27,28] and to this work. It should
be pointed out that, as β increases beyond 0.5, the cylindrical
symmetry becomes more and more dominant, causing slower
convergence in energy. It is thus preferable to use cylindrical
coordinates in the basis set [31], instead of Hylleraas ones. A
similar situation appears in the calculation of helium energy
levels in magnetic fields using Hylleraas coordinates [31,32].

After we have obtained the wave functions of the lithium
in magnetic fields, we can study the dipole oscillator strength
between states permitted by the selection rules. In Fig. 1, we
plot the dipole oscillator strengths for the 1s22s0−1s22p−1 and

FIG. 1. Oscillator strengths for the 1s22s0−1s22p−1 (curves E
and B) and 1s22p−1−1s23d−2 (curves G and C) transitions of lithium
as a function of the magnetic field strength.

1s22p−1−1s23d−2 transitions as a function of β. As a com-
parison, we also plot the corresponding oscillator strengths in
Ref. [27]. Our data also show that in the regime of β � 0.09 the
1s22s0−1s22p−1 oscillator strength decreases monotonically
with increasing β. As β is near 0.09, the oscillator strength is
close to zero; this is because the corresponding energy values
of the 1s22s0 state and the 1s22p−1 state are near degenerate.
In the regime of 0.09 � β � 0.12, our calculated values are
higher than the results in Ref. [27]. For the 1s22p−1−1s23d−2

oscillator strength, our results are in good agreement with
Ref. [27]. Figure 2 shows the difference in oscillator strength
between our present calculations and those from [27], against
the magnetic field strength.

IV. SUMMARY

By using the Hylleraas coordinates in variational basis
sets, we have calculated the energy levels of the 1s22s0,
1s22p−1, and 1s23d−2 states of lithium in magnetic fields.
Our results have greatly improved the previous calculations
for these states in the regime of β � 0.5. It should be

FIG. 2.  denotes the difference in oscillator strength between
our calculations and those from Ref. [27], as a function of the
magnetic field strength.
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mentioned that our approach can similarly be applied to other
low-lying excited states of lithium. It has been suggested,
however, that for larger value of β, cylindrical coordinates
are preferred due to the switch over from spherical-dominated
symmetry to cylindrical-dominated symmetry. We have also
investigated the dipole oscillator strengths and compared
with the results of [27], where some improvement has been
obtained.
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