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Dynamic polarizabilities for the low-lying states of Ca+
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The dynamic polarizabilities of the 4s, 3d , and 4p states of Ca+, are calculated using a relativistic structure
model. The wavelengths at which the Stark shifts between different pairs of transitions are zero are computed.
Experimental determination of the magic wavelengths can be used to estimate the ratio of the f3dJ →4pJ ′ and
f4s1/2→4pJ ′ oscillator strengths. This could prove valuable in developing better atomic structure models and, in
particular, lead to improved values of the polarizabilities needed in the evaluation of the blackbody radiation shift
of the Ca+ ion.
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I. INTRODUCTION

The dynamic polarizability of an atom or ion gives a
measure of the energy shift of the atom or ion when immersed
in an electromagnetic field [1–3]. For any given state, one can
write

�E = − 1
2αd (ω)F 2, (1)

where αd (ω) is the polarizability of the quantum state at
frequency ω, and F is a measure of the strength of the ac
electromagnetic field. The value of the dynamic polarizability
in the ω → 0 limit is the static dipole polarizability.

The magic wavelength for a transition is the wavelength
for which the ac Stark shift of the transition energy is zero
[4–7]. The identification of magic wavelengths and their use
in making optical lattices has resulted in the development of
optical lattice clocks which have the potential to exceed the
performance characteristics of the existing standard for time,
namely the cesium microwave clock [8–12].

However, the experimental determination of magic wave-
lengths also provides valuable information to constrain the
atomic structure models that are used to estimate the impact
of Stark shifts on the performance of atomic and ion clocks
[13,14]. A parameter related to the magic wavelength is the
tune-out wavelength. The tune-out wavelengths for an atomic
state are the wavelengths at which the polarizability for that
state goes to zero [15–17]. It should be noted that most atomic
states have a number of tune-out wavelengths just like most
atomic transitions have a variety of magic wavelengths.

The advantage of magic and tune-out wavelength mea-
surements are that they are effectively null experiments.
They measure the frequencies at which polarizability related
quantities are equal to zero. Therefore, they do not rely on a
precise determination of the strength of a static electric field or
the intensity of a laser field. This makes it possible to determine
the magic wavelengths to a high degree of precision [9,18–22].

There have been a number of theoretical studies of the
properties of the low-lying Ca+ ion [23–29] by three different
research groups. One of these groups [24] used a nonrelativistic
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approach while the other two groups used explicitly relativistic
formulations [26–29]. One of the singular features about the
relativistic calculations are significant differences between
predictions of the properties of spin-orbit doublets. The
relativistic all-order many-body perturbation theory method
predicts relatively small nongeometric differences between the
line strengths of the 3dJ and 4pJ spin-orbit doublets [23,29].
The relativistic coupled cluster approach typically gives much
larger differences [26]. One of the secondary aims of the
present work is to shed light on these differences.

The present paper reports calculations of the dynamic
polarizabilities of the five lowest states of Ca+. The Hamil-
tonian used is a fully relativistic version of a semiempirical
fixed core potential that has been successfully applied to the
description of many one- and two-electron atoms [30–33].
While there are many differences in the technical detail, the
underlying philosophy and the effective Hamiltonian for the
valence electron are essentially the same once the relativistic
modifications are taken into account. Magic wavelengths for
the 4s → 3d3/2,5/2 and 4s → 4p1/2,3/2 transitions are given.
The dynamic polarizability of the ground Ca+(4s) state is
dominated by the 4s → 4pJ transitions and its accuracy is
largely dependent on the accuracy of the transition matrix
elements connecting the 4s and 4pJ states. The description of
transitions involving the Ca+(3d) state is complicated by the
effect that the 3d electron has on the core electrons. The 3d

orbitals have the smallest 〈r〉 expectation values of any of the
valence electrons and this does distort the wave functions for
the outermost core electrons [34,35]. One consequence of this
is greater uncertainty in the calculation of transition matrix
elements involving the 3dJ states [27,29,35]

All results reported in this paper are given in atomic
units with the exception of the lifetimes, which are given
in seconds. The value adopted for the speed of light is
c = 137.035 999 074(44) a.u.

II. FORMULATION AND ENERGIES

A. Solution of the Dirac-Fock equation for closed shell
atomic system

The calculation methodology is as follows. The first step
involves a Dirac-Fock (DF) calculation of the Ca2+ ground
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state. The DF calculation begins with the equation⎛
⎝ N∑

i

HD(r i) +
N∑

i<j

1

rij

⎞
⎠ ψ(r) = Eψ(r), (2)

where HD is the single-electron Dirac Hamiltonian

HD(r i) = cα · p + c2(β − 1) + V (ri), (3)

where c is the speed of light, p is the momentum operator, and
α and β are the Dirac matrices [36].

The orbitals of the DF wave function, ψ(r), can be written
as

ψ(r) = 1

r

(
gnκ (r)�κm(r̂)

ifnκ (r)�−κm(r̂)

)
, (4)

where gnκ (r) and fnκ (r) are the large and small components,
respectively, �κm(r̂) and �−κm(r̂) correspond to the angular
components. The radial Dirac equation for an orbital can be
expressed schematically as(

V (r) + VDF(r) −c
(

d
dr

− κ
r

)
c
(

d
dr

+ κ
r

) −2c2 + V (r) + VDF(r)

) (
gnκ (r)
fnκ (r)

)

= ε

(
gnκ (r)
fnκ (r)

)
, (5)

where VDF is called the DF potential and V (r) is the interaction
potential between the electron and the nucleus. A Fermi
nuclear distribution approximation is usually adopted for
many-electron atomic systems.

The single-particle orbitals are written as linear combi-
nations of analytic basis functions and so the method of
Roothaan [37,38] is used to recast the DF equations into a
set of matrix equations. The functions chosen are B-splines
with Notre Dame boundary conditions [39]. The large and
small components are expanded in terms of a B-spline basis
of k order defined on the finite cavity [0,Rmax],

gnκ (r) =
N∑

i=1

C
g,n

i Bi,k(r), (6)

fnκ (r) =
N∑

i=1

C
f,n

i Bi,k(r). (7)

The finite cavity is set as a knots sequence, {ti}, satisfying
an exponential distribution [40,41]. The specifics of the grid
were that Rmax = 60a0 and 50 B-splines of order k = 7 were
used to represent the single-particle states. Using the Galerkin
method and MIT-bag-model boundary conditions [39], the DF
equations were solved by iteration until self-consistency was
achieved. The single-electron orbital (Koopmans) energies of
the closed shell Ca2+ ion agreed with those computed with the
GRASP92 program [42] to better than 10−5 a.u.

B. Polarization potential

The effective potential of the valence electron with the core
is then written

Vcore = Vdir(r) + Vexc(r) + Vpol(r). (8)

The direct and exchange interactions of the valence electron
with the DF core were calculated exactly. The 
-dependent

TABLE I. Theoretical and experimental energy levels (in Hartree)
for some of the low-lying states of Ca+. The energies are given relative
to the energy of the Ca2+ core. The experimental data were taken from
the NIST tabulation [43].

Level DF DFCP Experiment [43]

4s1/2 −0.416 631 5 −0.436 277 7 −0.436 277 6
3d3/2 −0.330 869 5 −0.374 083 4 −0.374 082 7
3d5/2 −0.330 759 7 −0.373 807 4 −0.373 806 2
4p1/2 −0.309 998 6 −0.321 496 6 −0.321 496 6
4p3/2 −0.309 088 9 −0.320 481 8 −0.320 481 0
5s1/2 −0.193 315 8 −0.198 348 6 −0.198 587 6
4d3/2 −0.168 738 3 −0.175 153 6 −0.177 298 9
4d5/2 −0.168 664 1 −0.175 062 2 −0.177 211 4
5p1/2 −0.156 765 6 −0.160 317 8 −0.160 468 8
5p3/2 −0.156 432 9 −0.160 061 2 −0.160 112 3

polarization potential, Vpol, was semiempirical in nature with
the functional form

Vpol(r) = −
∑

j

αcoreg
2

j (r)

2r4
|
j 〉〈
j |. (9)

The coefficient, αcore is the static dipole polarizability of
the core and g2


j (r) = 1 − exp
(−r6/ρ6


,j

)
is a cutoff function

designed to make the polarization potential finite at the
origin. The static dipole polarizability core was set to αcore =
3.26 a.u. [29]. The cutoff parameters, ρ
,j , were tuned to
reproduce the binding energies of the ns ground state and
the npJ , ndJ excited states. Values of the cutoff parameters
are ρ0,1/2 = 1.7419a0, ρ1,1/2 = 1.6389a0, ρ1,1/2 = 1.6354a0,
ρ2,3/2 = 1.8472a0, and ρ2,3/2 = 1.8489a0. The cutoff param-
eters for 
 � 3 were set to a common value of 1.897a0. Table I
gives the calculated B-spline and experimental energies
coming from [43]. The calculations with the core-polarization
potential are identified as the Dirac-Fock plus core polarization
(DFCP) model. Differences between DFCP and experimental
energies mostly occur in the fourth digit after the decimal
point.

One of the interesting aspects of Table I concerns the
spin-orbit splitting of the 4pJ and 5pJ states. The polarization
potential parameters ρ1,1/2 and ρ1,3/2 were tuned to give the
correct spin-orbit splitting of the 4pJ states. Making this
choice resulted in the spin-orbit splittings for the 5pJ states
also being very close to experimental values.

III. TRANSITION MATRIX ELEMENTS AND
ASSOCIATED QUANTITIES

A. Reduced matrix elements

The dipole matrix elements were computed with a modified
transition operator [30,44,45], e.g.,

rC1 = rC1 − [1 − exp(−r6/ρ6)]1/2 αcorerC1

r3
. (10)

The cutoff parameter, ρ used in Eq. (10) was set to ρ =
(ρ
a,ja

+ ρ
b,jb
)/2 where a,b refer to the initial and final states

of the transition.
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TABLE II. Comparison of the electric dipole (E1), electric
quadrupole (E2) reduced matrix elements of several interested states
of the Ca+ ion.

Transition DFCP MBPT-SD RCC

Dipole
4s1/2−4p1/2 2.879 2.898(13) [29] 2.88(1) [26]
4s1/2−4p3/2 4.073 4.099(18) [29] 4.03(1) [26]
4s1/2−5p1/2 0.089
4s1/2−5p3/2 0.109
3d3/2−4p1/2 2.500 2.464(16) [29] 2.40(2) [26]
3d3/2−4p3/2 1.116 1.100(6) [29] 1.09(1) [26]
3d5/2−4p3/2 3.356 3.306(18) [29] 3.22(4) [26]
3d3/2−5p1/2 0.091
3d3/2−5p3/2 0.044
3d5/2−5p3/2 0.131
3d3/2−4f5/2 1.964 1.927(52) [29]
3d5/2−4f5/2 0.526 0.516(6) [29]
3d5/2−4f7/2 2.354 2.309(29) [29]
4p1/2−5s1/2 2.081 2.073(11) [29]
4p1/2−3d3/2 4.205 4.28(3) [29]
4p3/2−4d3/2 1.894 1.93(1) [29]
4p3/2−4d5/2 5.675 5.78(3) [29]

Quadrupole
4s1/2−3d3/2 8.120 7.939(37) [23] 7.973 [54]

8.12(5) [55]
4s1/2−3d5/2 9.964 9.740(47) [23] 9.979 [54]

9.97(6) [55]

The static quadrupole polarizability of the Ca2+ core is
needed for the calculation of the lifetimes of the 3dJ states. It
was set αq,core = 6.936 a.u. [46].

There have been a number of previous calculations of
reduced matrix elements and polarizabilities for the low-lying
states of Ca+. The semiempirical configuration interaction plus
core polarization (CICP) can be regarded as a nonrelativistic
predecessor of the present calculation [24,30]. Another method
used is the relativistic all-order single-double method where
all single and double excitations of the DF wave function
are included to all orders of many-body perturbation theory
(MBPT-SD) [27,29,47]. There have also been calculations
using the relativistic coupled cluster (RCC) method [26].
The RCC and MBPT-SD approaches have many common
features [48–50]. Atomic parameters computed using the RCC
approach have on a number of occasions had significant
differences with independent calculations [29,51–53].

The reduced matrix elements between the various low-lying
states are the dominant contributor to the polarizabilities of
the 4s, 3d, and 4p levels. These are given in Table II and
compared with the results from other recent calculations. The
ratio of line strengths for spin-orbit doublets is also interesting
to tabulate since they can reveal the extent to which dynamical
effects (as opposed to geometric effects caused by the different
angular momenta) are affecting the matrix elements. Some line
strength ratios are given in Table III.

The variation among the DFCP, MBPT-SD, and RCC
matrix elements listed in Table III does not exceed 5%. The
DFCP matrix elements are usually closer to the MBPT-SD
calculations than the RCC matrix elements. A better indication

TABLE III. Comparison of the line strengths ratios for transitions
involving various spin-orbit doublets. The notation 4s1/2−4p3/2:1/2

means the line strength ratio defined by dividing 4p3/2 line strength
by the 4p1/2 line strength.

Transition DFCP MBPT-SD RCC

4s1/2−4p3/2:1/2 2.0014 2.001 [29] 1.958(17) [26]
4s1/2−5p3/2:1/2 1.4990
3d3/2−4p3/2:1/2 5.0182 5.02 [29] 4.85(12) [26]
4p3/2−3d5/2:3/2 9.043 9.04 [29] 8.73(27) [26]
4s1/2−3d5/2:3/2 1.5057 1.5052 [29] 1.5665 [54]

1.5075 [55]
4p3/2−4d5/2:3/2 5.0181
4p3/2−4d5/2 9.021

of the differences between the DFCP, MBPT-SD and RCC
calculations is gained by examination of the line strength ratios
listed in Table III. The DFCP line strength ratios are within
1% of the values that would be expected simply due to the
angular momentum factors alone. The ratios are in very good
agreement with the MBPT-SD ratios. It should be noted, that
the line strength ratios for the resonant transition of potassium
have been measured to be very close to 2.0 [17] and DFCP and
MBPT-SD calculations also predict line strength ratios very
close to 2.0 [17,56].

By way of contrast, RCC matrix element ratios exhibit
about 4% differences from the geometric ratios. One would
expect the RCC matrix element ratios to be much closer to the
MBPT-SD ratio given the close formal similarities between
the RCC and MBPT-SD approaches. The RCC matrix element
ratios listed in Table III also show significant differences from
the geometric ratio for the 4s → 3dJ transitions. The DFCP
and MBPT-SD ratios lie within 1% of the geometric ratios.
It should be noted that a similar situation exists for the 5s −
4d5/2:3/2 line strength ratios of Sr+ with RCC calculations
exhibiting much larger differences due to nongeometric effects
than other calculations [57]. The feature common to the DFCP
and MBPT-SD methods is that they use large B-spline basis
sets and calculated quantities are expected to be independent
of basis set effects. One possible cause for the different RCC
matrix element ratios lies in the Gaussian basis set used to
represent virtual excitations in the RCC calculation. This point
will be addressed later where polarizabilities are discussed.

TABLE IV. Lifetime of the 3d3/2 and 3d5/2 levels of Ca+ (in s).
The 3d3/2 : 3d5/2 lifetime ratio is also given.

Source τ3d3/2 τ3d5/2 Ratio

DFCP 1.143(1)(s) 1.114(1) 1.0260
MBPT-SD [29] 1.196(1)(s) 1.165(11) 1.0266
RCC [26] 1.185(7) 1.110(9) 1.0675
MCHF [34] 1.160 1.140 1.0175
Experiment [23] 1.176(11) 1.168(7) 1.007(15)
Experiment [58] 1.17(5) 1.09(5) 1.073(90)
Experiment [59] 1.064(17)
Experiment [60] 1.111(46) 0.994(38) 1.118(80)
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TABLE V. Lifetimes (in ns) of the 4p 1
2

and 4p 3
2

states. The
4p 1

2
: 4p 3

2
lifetime ratio is also given. The quantity R gives the

fraction of the total decay rate arising from the indicated transition.

MBPT-SD RCC
Level DFCP [29] [26] Expt.

4p 1
2
(ns) 6.94(1) 6.88(6) 6.931 7.098(20) [66]

7.07(7) [67]
4p 3

2
(ns) 6.75(1) 6.69(6) 6.881 6.926(19) [66]

6.87(6) [67]
6.72(2) [68]
6.61(30) [69]

R(4p 1
2
−4s 1

2
) 0.9324 0.9374(74)

R(4p 1
2
−3d 3

2
) 0.0676 0.0626(5)

R(4p 3
2
−4s 1

2
) 0.9313 0.9340 0.9350(62) 0.9347(3) [70]

R(4p 3
2
−3d 3

2
) 0.0069 0.006 67 0.006 66(4) 0.006 61(4) [70]

R(4p 3
2
−3d 5

2
) 0.0617 0.0593 0.0583(4) 0.0587(2) [70]

Ratio 1.0281 1.0284 1.0073 1.025(3) [66]
1.029(14) [67]

B. Lifetimes

The two most important lifetimes for the Ca+ clock [61–65]
are the lifetimes of the 3dJ and 4pJ levels. The 3dJ states decay
to the ground state in an electric quadrupole transition with
lifetime of about 1.1 s [23]. The 4pJ states experience electric
dipole transitions to both the 3dJ and 4s states. Table IV gives
the lifetimes of the 3dJ states while Table V gives the lifetimes
of the 4pJ states. All DFCP lifetimes were computed using
experimental energy differences.

The most recent experiment for the 3dJ lifetimes give a
ratio of 1.007 ± 0.015 s for the 3d3/2 and 3d5/2 states. This
suggests that the 4s → 3dJ matrix element ratios should be
close to the values expected from angular momentum coupling

considerations. Older experiments [58,60] give ratios further
from unity, but in these cases the uncertainties are much larger.

The lifetimes of the 4pJ states depend on two transitions,
these are the 4s−4pJ and 3dJ ′−4pJ transitions, with the
4s−4pJ transition being the most important. The lifetimes and
branching ratios for the 4pJ states are given in Table V. It is not
possible to reconcile the theoretical and experimental lifetimes
at the 1% level. The two most recent experiments [66,67]
gave lifetimes that are 2% larger than the DFCP lifetimes and
3% larger than the MBPT-SD lifetimes. Older Hanle effect
experiments [68,69] gave lifetimes closer to the MBPT-SD
and DFCP lifetimes.

Measurements of the branching ratios of the 4p3/2 state
yield a picture where the MBPT-SD calculations largely agree
with experiment while the DFCP tends to overestimate the
contributions of the decays to the 3dJ levels. Another area of
partial agreement between theory and experiment occurs for
the 4p1/2 : 4p3/2 lifetime ratio. The DFCP, MBPT-SD, and
experimental ratios range from 1.025 to 1.030, with the RCC
calculation again providing an outlier at 1.0073.

IV. POLARIZABILITIES

A. Static polarizabilities

The static dipole and quadrupole polarizabilities are calcu-
lated by the usual sum rule

α(
) =
∑

i

f
(
)
gi

ε2
gi

, (11)

where the f
(
)
gi are the absorption oscillator strengths and εgi

is the excitation energy of the transition. Static dipole polariz-
abilities for the 4s, 4pJ , and 3dJ states are listed in Table VI.
All polarizabilities were computed using experimental energy
differences.

TABLE VI. Dipole and quadrupole polarizabilities (in a.u.) for low-lying states of the Ca+ ion. Nonrelativistic quadrupole polarizabilities
are not given for states with 
 > 0. The RCC-STO results are those from Ref. [26] that used a Slater-type orbital basis to represent virtual
excitations.

α
(0)
1 α

(t)
1 α2

State DFCP Others DFCP Others DFCP Others

4s1/2 75.28 76.1(5) MBPT-SD [29] 882.43 871(4) MBPT-SD [29]
75.49 CICP [24] 875.1 CICP [24]
73.0(1.5) RCC [26] 712.9(24) RCC [71]
75.3(4) f -sums [72] 906(5) RCC [55]
74.3 RCC-STO [26]

4p1/2 −2.774 −0.75(70) MBPT-SD [29] 7.466[4]
−2.032 CICP [24]

4p3/2 −0.931 1.02(64) MBPT-SD [29] 10.12 10.31(28) MBPT-SD [29] −3.571[4]
−2.032 CICP [24] 10.47 CICP [24]

3d3/2 32.99 32.0(3) MBPT-SD [29] −17.88 −17.43(23) MBPT-SD [29] 4928
32.73 CICP [24] −17.64 CICP [24]
28.5(1.0) RCC [26] −15.87 RCC [26]
31.6 RCC-STO [26] −17.7 RCC-STO [26]

3d5/2 32.81 31.8(3) MBPT-SD [29] −25.16 −24.51(29) MBPT-SD [29] −3304 −3706(75) RCC [55]
32.73 CICP [24] −25.20 CICP [24]
29.5(1.0) RCC [26] −22.49(5) RCC [26]
32.5 RCC-STO [26] −25.5 RCC-STO [26]
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TABLE VII. The contributions of individual transitions to the polarizabilities of the 4s1/2 and 4p1/2 states at the magic wavelengths. The
numbers in parentheses are uncertainties in the last digits of the energy or wavelength calculated by introducing 2% uncertainties into the most
important matrix elements.

ω (a.u.) 0 0.065 956 1(11 247) 0.115 298 1(4) 0.123 809 1(303)
λ (nm) ∞ 690.817(11.984) 395.1807(14) 368.0149(901)

4s1/2

4p1/2 24.0704 35.9364 −2665.2940 −147.2228
5p1/2 0.0097 0.0102 0.0117 0.0121
4p3/2 47.7532 70.6856 5558.6017 −333.5265
5p3/2 0.0145 0.0153 0.0175 0.0181
Remainder 0.1672 0.1710 0.1794 0.1815
Core 3.2600 3.2664 3.2793 3.2823
Total 75.2751 110.0849 2896.7954 −477.2554

4p1/2

4s1/2 −24.0704 −35.9364 2665.2940 147.2228
5s1/2 11.7449 16.4949 97.8655 −798.9861
3d3/2 −39.6152 69.1092 10.4051 8.7196
4d3/2 40.8730 51.6866 113.3267 155.5319
Remainder 5.0332 5.4542 6.6245 6.9740
Core 3.2600 3.2664 3.2793 3.2823
Total −2.7742 110.0850 2896.7954 −477.2554

The most important polarizability is that of the 4s ground
state and there is only a 1% variation between the DFCP,
MBPT-SD, and CICP static dipole polarizabilities. The DFCP
polarizability is smaller than the MBPT-SD polarizability
because the DFCP 4s−4pJ matrix elements are smaller. The
RCC calculation of the dipole polarizability is the clear outlier
at 73.0 a.u. [26]. The good agreement between the DFCP,
CICP, and MBPT-SD polarizabilities does not necessarily
imply a 1% reliability in these polarizabilities since the

calculations give lifetimes for the 4pJ states that are 2%–3%
smaller than experiment.

The variation between the DFCP, MBPT-SD, and CICP
estimates of the 3dJ state polarizabilities do not exceed 1.0 a.u.
The difference in the polarizabilities for the two members of
the spin-orbit doublet is only 0.2 a.u.

The polarizabilities of the 4pJ states are close to zero with
the polarizability of the 4p3/2 state being about 1.8 a.u. larger
than the polarizability of the 4p1/2 state. The polarizability

TABLE VIII. The contributions of individual transitions to the polarizabilities of the 4s1/2 and 4p3/2 states at the magic wavelengths. These
results assume nonpolarized light. The numbers in parentheses are uncertainties in the last digits calculated by assuming certain matrix elements
have ±2% uncertainties.

ω (a.u.) 0 0.066 320 4(11 651) 0.114 992 3(4) 0.123 265 0(511) 0.067 751 7(11 210) 0.115 125 1(3)
λ (nm) ∞ 687.022(12.285) 396.2315(13) 369.6393(1534) 672.508(11.3150) 395.7748(10)

4s1/2

4p1/2 24.0704 36.1337 −6530.5659 −157.0218 36.9414 −4009.0830
5p1/2 0.0097 0.0103 0.0117 0.0121 0.0103 0.0117
4p3/2 47.7532 71.0638 3449.6093 −358.6372 72.6100 4129.0858
5p3/2 0.0145 0.0154 0.0175 0.0181 0.0154 0.0175
Remainder 0.1672 0.1710 0.1794 0.1813 0.1712 0.1794
Core 3.2600 3.2664 3.2791 3.2820 3.2667 3.2792
Total 75.2751 110.6606 −3077.3881 −512.1655 113.0150 123.4906

4p3/2

Average mj = 1/2 mj = 1/2 mj = 1/2 mj = 3/2 mj = 3/2
4s1/2 −11.9383 −71.0636 −3449.6902 358.6371 0.0000 0.0000
5s1/2 6.0501 34.3769 219.9519 −1069.3049 0.0000 0.0000
3d3/2 −5.4283 1.4608 0.2153 0.1808 11.6778 1.9317
4d3/2 5.8429 1.0626 2.3512 3.2245 9.6796 21.2507
3d5/2 −31.6965 77.2921 11.5779 9.7303 45.8671 7.6960
4d5/2 33.7190 57.2196 126.3638 173.0763 38.6057 84.5964
Remainder 4.3193 7.0456 8.5623 9.0081 3.9179 4.7365
Core 3.2600 3.2664 3.2791 3.2820 3.2667 3.2792
Total −4.1279 110.6606 −3077.3881 −512.1655 113.0150 123.4906
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is small because the downward transitions to the 4s1/2 and
3dJ states have negative oscillator strengths which result in
cancellations in the oscillator strength sum. This is evident in
Tables VII and VIII, which show the breakdown of the different
contributions to the polarizabilities from the oscillator strength
sum rule.

The comparisons of the polarizabilities suggest that the
basis set used in the RCC calculations [26] could be improved.
The recommended results for the RCC calculation are those
computed with the Gaussian basis. However, RCC calculations
performed using a Slater-type orbital basis [26] give polariz-
abilities that are in much better agreement with the MBPT-SD
and DFCP polarizabilities.

B. Dynamic polarizabilities and magic wavelengths

The dynamic dipole polarizability of a state at photon
energy ω is defined

α1(ω) =
∑

i

f
(1)
gi

ε2
gi − ω2

. (12)

The dipole polarizability has a tensor component for states
with states with J > 1/2. This can be written

αT
1 (ω) = 6

(
5Jg(2Jg − 1)(2Jg + 1)

6(Jg + 1)(2Jg + 3)

)1/2

×
∑
Ji

(−1)Jg+Ji

{
Jg 1 Ji

1 Jg 2

}
f

(1)
gi

ε2
gi − ω2

. (13)

The polarizability for a state with nonzero angular momentum
J depends on the magnetic projection Mg:

α1,Mg
= α1 + αT

1

3M2
g − Jg(Jg + 1)

Jg(2Jg − 1)
. (14)

The dynamic polarizabilities include contributions from
the core which is represented by a pseudo-oscillator strength
distribution [31,73,74] which is tabulated in Table IX. The
distribution is derived from the single-particle energies of a
Hartree-Fock core. Each separate (n,
) level is identified with
one transition with a pseudo-oscillator strength equal to the
number of electrons in the shell. The excitation energy is set
by adding a constant to the Koopmans energies and adjusting
the constant until the core polarizability from the oscillator
strength sum rule is equal to the known core polarizability of
3.26 a.u. The core polarizabilities of any two states effectively
cancel each other when the polarizability differences are
computed.

TABLE IX. Pseudospectral oscillator strength distribution used
in the computation of the dynamic polarizability of the Ca2+ core.
Energies are given in a.u.

i εi fi

1 133.689 002 2.0
2 14.645 933 2.0
3 11.675 258 6.0
4 1.904 777 2 2.0
5 1.110 417 1 6.0

FIG. 1. (Color online) Dynamic polarizabilities of the 4s1/2 and
4p1/2 states of the Ca+ ions. Magic wavelengths are identified by
arrows.

The dynamic polarizabilities for the 4s1/2 and 4p1/2 states
of Ca+ are shown in Fig. 1. The first magic wavelength occurs
at ω = 0.065 956 1 a.u. after the photon wavelength exceeds
the energy for the 4p1/2−3d3/2 transition. Magic wavelengths
are identified at λ = 690.817, 395.181, and 368.015 nm. The
395.181-nm magic wavelengths occur when the photon is
very close to the excitation energies of the 4s−4pJ states.
The 368.015-nm magic wavelength occurs near the energy
for the 4p1/2−5s1/2 transition. The dominant contributions
to polarizabilities at the magic wavelengths are listed in

FIG. 2. (Color online) Dynamic polarizabilities of the 4s1/2 and
4p3/2 states of Ca+. Magic wavelengths are identified by arrows.
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Table VII. The 4s polarizability is dominated by the 4s1/2−4pJ

transitions with the next largest contribution coming from
the core. However, the 4p1/2 polarizability has significant
contributions from the transitions to the 4s, 5s, and 3d3/2 states.
A magic wavelength experiment would give information about
the 4p1/2 state, but would not give detailed information about
any individual matrix element. An experiment that measured
all three magic wavelengths could conceivably be able to
extract information about individual line strengths; however, it
should be noted that two of the transitions are in the ultraviolet.

The dynamic polarizabilities of the 4s1/2 and 4p3/2 states
of Ca+ are shown in Fig. 2. These figures assume non-
polarized light. Figure 2 only has two magic wavelengths
below ω = 0.125 a.u. Transitions to the ns1/2 states make no
contribution to the 4p3/2 state polarizability. This is evident
from Table VIII, which details the breakdown of different
transitions to the polarizability. The magic wavelength at
395.775 nm for the 4p3/2,m=3/2 magnetic sublevel can give an
estimate of the contribution to the np3/2 polarizability arising
from excitations to the ndJ levels.

The 4s1/2 and 3d5/2 polarizabilities are shown in Figs. 3
and 4. The 3d5/2,m polarizabilities are shown for all magnetic
sublevels and also for the average polarizability. Magic
wavelengths occur when the photon energy gets close to the
excitation energies for the 3d5/2 →4pJ transitions and the
4s1/2 →4pJ transitions. Figure 3 shows the 4s1/2 and 3d5/2

polarizabilities at photon energies between 0.02 and 0.07 a.u.
Precise values of the magic wavelengths and the breakdown
of the polarizability into different components can be found in
Table X.

Two of the magnetic sublevels have magic wavelengths at
infrared frequencies, namely λ = 1338.474 and 1074.336 nm.
The contributions to the in 3d5/2 polarizability are dominated

FIG. 3. (Color online) Dynamic polarizabilities of the 4s1/2 and
3d5/2 states of Ca+. Magic wavelengths are identified by arrows.

by the 3d5/2 → 4p3/2 transition which constitutes about
88% of the polarizability. The measurement of these magic
wavelengths provides a method to determine the f4s1/2→4pJ

to
f3d5/2→4p3/2 oscillator strength ratios. Suppose all the remaining
components of the 3d5/2 polarizability can only be estimated
to an accuracy of 10%. The overall net uncertainty in the
remaining terms would be less than 1.5%.

There are additional magic wavelengths that can potentially
be measured. The 4s dynamic polarizability goes through
zero as the wavelength passes through energies needed to
excite the 4s → 4p1/2 and 4s → 4p3/2 transitions. Figure 4
shows the polarizabilities for the 4s and 3d5/2 at energies near
the 4s → 4pJ excitation energies. The 3d5/2 polarizabilities
are typically small in magnitude in this wavelength range. The
magic wavelength arises more from the the cancellation of the

TABLE X. The contributions of individual transitions to the polarizabilities of the 4s1/2 and 3d5/2 states at the magic wavelengths. These
results assume nonpolarized light. The numbers in parentheses are uncertainties in the last digits calculated by assuming certain matrix elements
have ±2% uncertainties as described in the text.

ω (a.u.) 0 0.034 041 4(22 387) 0.042 410 9(10 654) 0.115 118 2(1) 0.115 118 4(1) 0.115 118 6(1)
λ (nm) ∞ 1338.474(82.593) 1074.336(26.352) 395.7982(1) 395.7978(1) 395.7968(1)

4s1/2

4p1/2 24.0704 26.3917 27.8762 −4090.5249 −4088.7574 −4085.2247
5p1/2 0.0097 0.0098 0.0099 0.0117 0.0117 0.0117
4p3/2 47.7532 52.2705 55.1513 4087.5752 4088.4488 4090.2003
5p3/2 0.0145 0.0147 0.0148 0.0175 0.0175 0.0175
Remainder 0.1672 0.1682 0.1688 0.1794 0.1794 0.1793
Core 3.2600 3.2618 3.2627 3.2792 3.2792 3.2792
Total 75.2751 82.1167 86.4837 0.5371 3.1792 8.4633

3d5/2

Average mj = 1/2 mj = 3/2 mj = 1/2 mj = 3/2 mj = 5/2
4p3/2 29.5834 71.3309 76.6749 −11.5457 −7.6971 0.0000
5p3/2 0.0113 0.0165 0.0119 0.0227 0.0151 0.0000
4f5/2 0.0607 0.0109 0.0988 0.0136 0.1223 0.3398
5f5/2 0.0196 0.0035 0.0318 0.0041 0.0367 0.1018
4f7/2 2.5573 3.2582 2.7444 4.0780 3.3983 2.0391
5f7/2 0.8270 1.0479 0.8799 1.2223 1.0186 0.6112
Remainder 2.5979 3.1870 2.7803 3.4628 3.0060 2.0922
Core 3.2600 3.2618 3.2627 3.2792 3.2792 3.2792
Total 38.5915 82.1167 86.4837 0.5371 3.1792 8.4633
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FIG. 4. (Color online) Dynamic polarizabilities of the 4s1/2 and
3d5/2 states of Ca+. Magic wavelengths are identified by circles and
arrows.

4p1/2 and 4p3/2 contributions to the 4s dynamic polarizability
than from the cancellation between the 4s and 3d5/2 dynamic
polarizabilities. Measurement of the magic wavelength here is
in some respects analogous to a measurement of the longest
tune-out wavelength for neutral potassium [56]. Zero field
shift wavelengths measured in the spin-orbit energy gap of
the resonant transition are strongly dominated by the large and
opposite polarizability contributions of the two members of the
spin-orbit doublet [56,75]. This makes it possible to accurately
determine the oscillator strength ratio, i.e., f4s→4p1/2 :f4s→4p3/2 ,
of the two transitions comprising the spin-orbit doublet.

Table XI identifies the magic wavelengths associated with
the 4s → 3d3/2 energy interval. The situation here is similar to
the situation for the 4s → 3d5/2 magic wavelengths. However,

FIG. 5. (Color online) Dynamic polarizabilities of the 4s1/2 and
3d3/2 states of Ca+. Magic wavelengths are identified by arrows.

there are three magic wavelengths in the infrared region
of the spectrum. This transition has an additional magic
wavelength since the 3d3/2,m=1/2 state, unlike the 3d5/2,m=1/2

state, also undergoes undergoes a transition to the 4p1/2

state. The polarizability difference in the 0.02- to 0.07-a.u.
energy range is plotted in Fig. 5. The 3d3/2 polarizability
is dominated by the 3d3/2 → 4pJ transition and a magic
wavelength measurement can be used to make an estimate
of the 3d3/2 → 4pJ line strength relative to the 4s dynamic
polarizability. The 3d3/2,m=1/2 polarizability at 850.335 nm
has large contributions from the 4p1/2 and 4p3/2 states since
it lies between the excitation energies of these of states.
Measurement of the 850.335- and 1308.590-nm wavelengths
together would give estimates of the 3d3/2 → 4p1/2 line

TABLE XI. The contributions of individual transitions to the polarizabilities of the 4s1/2 and 3d3/2 states at the magic wavelengths. These
results assume nonpolarized light. The numbers in parentheses are uncertainties in the last digits calculated by assuming certain matrix elements
have ±2% uncertainties as described in the text.

ω 0 0.034 818 8(20 007) 0.051 346 0(1855) 0.053 583 1(1) 0.115 118 2(1) 0.115 118 5(1)
λ ∞ 1308.590(71.108) 887.382(3.196) 850.335(2) 395.7981(1) 395.7970(1)

4s1/2

4p1/2 24.0704 26.5098 30.0922 30.7777 −4090.1007 −4086.1347
5p1/2 0.0097 0.0098 0.0100 0.0101 0.0117 0.0117
4p3/2 47.7532 52.4999 59.4402 60.7642 4087.7840 4089.7488
5p3/2 0.0145 0.0147 0.0150 0.0151 0.0175 0.0175
Remainder 0.1672 0.1683 0.1695 0.1697 0.1794 0.1794
core 3.2600 3.2619 3.2639 3.2643 3.2792 3.2792
Total 75.2751 82.4644 92.9908 95.0011 1.1711 7.1019

3d3/2

Average mj = 1/2 mj = 3/2 mj = 1/2 mj = 1/2 mj = 3/2
4p1/2 9.9038 70.5419 0 −1034.8996 −10.4461 0
5p1/2 0.0033 0.0134 0 0.0139 0.0184 0
4p3/2 5.4284 1.3416 84.7097 1119.1728 −0.2147 −1.9320
5p3/2 0.0021 0.0003 0.0029 0.0003 0.0004 0.0038
4f5/2 2.3339 3.1745 2.1676 3.2644 3.9674 2.6449
5f5/2 0.7556 1.0218 0.6928 1.0422 1.1908 0.7939
Remainder 2.3601 3.1091 2.1539 3.1428 3.3757 2.3121
core 3.2600 3.2619 3.2639 3.2643 3.2792 3.2792
Total 24.0472 82.4644 92.9908 95.0011 1.1711 7.1019
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strengths and the f3d3/2→4p1/2 :f3d3/2→4p3/2 ratio. A measurement
of the magic wavelengths in the vicinity 395 nm provides
would permit a determination of the f4s→4p1/2 :f4s→4p3/2 ratio.

C. Uncertainties

An uncertainty analysis has been done for all the magic
wavelengths presented in the preceding sections. This analysis
was aimed at making an initial estimate of how uncertainties
in the matrix elements of the most important transitions would
translate to a shift in the magic wavelengths. The primary
purpose of the uncertainty analysis is to define reasonable
limits to help guide an experimental search for the magic
wavelengths identified in this paper.

In the case of the 4s → 4pJ polarizability differences, the
4s → 4pJ , 4pJ → 5s, 4pJ → 3dJ , and 4pJ → 4dJ matrix
elements were all changed by 2% and the magic wavelengths
recomputed. The matrix elements involving the different
spin-orbit states of the same multiplet were all given the same
scaling. A variation of ±2% was chosen by reference to the
difference of the DFCP matrix elements with the experimental
or the MBPT-SD matrix elements. The estimate of a 2%
uncertainty in the 4s → 4pJ matrix element can be regarded
as a conservative estimate.

The 4s → 3dJ polarizability difference is predominantly
determined by the 4s → 4pJ and 3dJ → 4pJ matrix ele-
ments. So variations of ±2% in these two transitions were used
in determining the uncertainties in the magic wavelengths.

There are a number of magic wavelengths which are
relatively insensitive to changes in the matrix elements of a
multiplet. One of these wavelengths is the 850-nm wavelength
for the 4s−3d3/2 interval and the others are the magic
wavelengths near 395 nm. These wavelengths arise due to
cancellations in the polarizabilities due to two transitions
of a spin-orbit doublet. In the case of the 850-nm magic
wavelength, the relevant transitions are the 3d3/2 → 4pJ

transitions.
The sensitivity of the magic wavelengths near 395 nm

to changes in the transition matrix elements depends on
the overall size of the polarizabilities of the 4pJ and 3dJ

levels. When these are large due to transitions other than
the 4s → 4pJ transition, then the 395-nm magic wavelength
shows higher sensitivity to the changes in the matrix elements.
However, the net change in the magic wavelengths for 2%
changes in the matrix elements is about 0.001 nm for the
4s → 4pJ interval. The sensitivity to 2% matrix element
changes for the 4s → 3dJ intervals is about 0.0001 nm due
to the small polarizabilities of the 3dJ states near 395 nm.
The 850-nm magic wavelength is also relatively insensitive
to changes in the overall size of the matrix elements, with
the 2% matrix element change leading to a change of only
0.0001 nm in the magic wavelengths. The low sensitivity of
magic wavelengths to the overall size of the matrix elements
in these cases means that these the magic wavelengths can be
used to give precise estimates of the matrix element ratios of
the two transitions in the spin-orbit doublet.

The 1338-, 1309-, 1074-, 887-nm magic wavelengths show
much greater sensitivity to 2% changes in the matrix elements.
The changes in the magic wavelengths range from 3 to 80 nm.
The sensitivity of the magic wavelengths to these matrix

elements is driven by the rate of change of the 4s and 3dJ

polarizabilities with energy. A large change in the photon
energy is needed to compensate for a small change in the
polarizability when dα1/dω is small. The sensitivity of the
magic wavelength to small changes in the matrix elements
decreases as the photon energy gets closer to the 3dJ →
4pJ ′ excitation thresholds. The high sensitivity of the magic
wavelengths with respect to changes in the matrix elements
means it is only necessary to measure the magic wavelength to
a precision of 0.10 nm to impose reasonably tight constraints
on the ratios of the 4s → 4pJ and 3dJ → 4pJ ′ matrix element
rations.

V. CONCLUSION

A relativistic semiempirical core model is applied to the
calculation of the dynamic polarizabilities of the 4s, 3dJ , and
4pJ states of Ca+. A number of magic wavelengths at con-
venient photon energies have been identified for the 4s−3dJ

energy intervals. Measurement of these magic wavelengths
can be used to determine reasonably accurate estimates of the
3dJ -4pJ ′ line strengths relative to the 4s−4pJ line strengths.
This could lead to improved estimates of the blackbody
radiation shift for the Ca+ clock transition. There is one
impediment. At the moment there is a 3% spread between
theoretical and experimental lifetimes for the 4pJ ′ states. This
variation, which does not exist for the same transition in
potassium [56,76], needs to be resolved so the uncertainty
in the 4s−4pJ line strengths can be reduced to 1% or
better.

There are two other relatively clean measurements of
atomic structure parameters that could be made. Measurement
of the magic wavelength near 395 nm could be used to
determine a value of the oscillator strength f4s→4p1/2 :f4s→4p3/2

ratio. This could help resolve the incompatible predictions
of this ratio by DFCP/MBPT-SD and RCC calculations.
Comparisons of polarizabilities do suggest that the Gaussian
basis set used for the RCC calculations could be improved.
Further, measurements of the two longest magic wavelengths
for the 3d3/2,m=1/2 → 4s1/2 transition could give a good
estimate of the f3d3/2→4p1/2 :f3d3/2→4p3/2 ratio.

The utility of measuring magic wavelengths for selected
Ca+ transitions can of course be extended to other alkaline-
earth ions, with Sr+ and Ba+ being obvious possibilities.
A single-ion optical frequency standard at the 10−17 level
of precision has recently been reported for the 5s−4d5/2

transition of the Sr+ ion [77]. It is likely that the determination
of the magic wavelengths for this transition could be used to
improve the precision of estimates of the blackbody radiation
shift for this transition [57,78].
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