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N-quantum calculation of the hydrogen atom with one-photon exchange
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The N -quantum approach (NQA) to quantum field theory uses the complete and irreducible set of in or out
fields, including in or out fields for bound states, as standard building blocks to construct solutions to quantum field
theories. In particular, introducing in (or out) fields for the bound states allows an alternative way of calculating
energy levels and wave functions for the bound states that is both covariant and effectively three dimensional. This
method is independent of the Bethe-Salpeter equation. In contrast to the Bethe-Salpeter equation, all solutions
of the NQA are normalizable and correspond to physical bound states. In this paper we use the NQA in one-loop
approximation to calculate states of the relativistic hydrogen atom and analogous two-body systems to illustrate
how our method works. With additional terms in the in field expansion we find systematic corrections beyond
the Coulomb interaction.
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I. INTRODUCTION

The tour de force experiments of Pohl et al. and Antognini
et al. [1,2] provided motivation for us to continue work on
the N -quantum approach (NQA) of calculating bound-state
properties. The discrepancy between the proton structure
measured in hydrogen and that measured in muonic hydrogen
has three possible causes: (1) new physics, (2) inadequate QED
calculations, or (3) incorrect description of the interaction with
the proton. To study (2), we are developing an alternative way
to do the QED calculations. In this paper we introduce our
method of calculation but do not carry the work to the level
necessary to resolve the discrepancy found in the experiments
by Pohl et al. and Antognini et al. Other attempts to resolve
the discrepancy can found from the citations to these articles.
We cite one such calculation [3] that also examines the second
case. In this paper we present a one-loop calculation of the
energy levels and wave functions of ordinary hydrogen and
muonic hydrogen. The NQA, based on Haag’s expansion [4]
of interacting fields in terms of asymptotic fields, also can be
applied to other two-body systems, such as the (eμ̄) and (μμ̄)
systems.

Haag’s original expansion did not take account of bound
states. We added in (or out) fields for each of the bound states
that we take as stable in our approximate treatment. For the
case of the hydrogen atom we added an in (or out) field for
every state of the hydrogen atom.

II. GOALS OF THIS PAPER

Our main goal in this paper is to develop a different method
of calculation of the energy levels and wave functions of
relativistic bound states. This method has been described
previously [5–8], but it has not been developed sufficiently
to account for high-order radiative and recoil effects that
are relevant to the analysis of high-precision spectroscopic
measurements, such as those in ordinary and muonic hydrogen.
Among the advantages of this method for (two-body) bound
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states such as the hydrogen atom are the introduction of both
masses as independent parameters, rather than via the reduced
mass. Since we are interested in muonic hydrogen as well as
ordinary hydrogen, taking the proton mass as an independent
parameter is important. We also solve integral equations that
incorporate radiative and recoil effects without perturbation
theory. References to other applications of the NQA are in
Ref. [9]. Of particular relevance to our present paper is Ref. [6],
which is the first paper to give the spectator equation for a
two-body bound state. There is related work by Källén [10],
Yang and Feldman [11], and, for bound states, Gross [12].

In this paper we present a one-loop approximation for the
relativistic bound state that reduces to the Dirac equation for
large proton mass. As stated above, we introduce the proton
mass as an independent parameter. This is relevant in the case
of muonic hydrogen where the mass ratio mμ/Mp ≈ 1/10
rather than the ratio me/Mp ≈ 1/2000 for ordinary hydrogen.
We use the Coulomb potential as the binding mechanism and
ignore magnetic interactions and renormalization effects in this
paper. We do not calculate energy levels in high accuracy in the
present paper. Rather, we describe our method of calculation.
In later papers, in addition to our systematic development of
the NQA, we will give a unified calculation that includes all
quantum electrodynamic corrections to the hydrogen spectrum
up to a given order, rather than adding various corrections
piece by piece. In our next paper we will pay particular
attention to any differences between our results and the usual
calculations to see whether this method resolves the muonic
hydrogen anomaly concerning the proton charge radius as
inferred from measurements of the Lamb shift in ordinary and
muonic hydrogen. We will also find a set of coupled integral
equations that include all terms up to a relevant order, rather
that adding corrections term by term.

III. ASYMPTOTIC FIELDS AND THE HAAG EXPANSION

The in (out) fields have free field commutators, obey free
equations of motion, and commute or anticommute with
each other everywhere in space time. Each of these sets of
asymptotic fields by themselves is completely known once the
masses, spins, and quantum numbers of the fields in a given
set are given. Thus either set serves as a collection of standard
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building blocks to construct solutions of the operator equations
of motion. For the present paper we ignore the difficulty that
results because the asymptotic limits for the charged fields do
not exist. In a recent paper [13] we found modified charged
fields for which the asymptotic limits do exist; however, we
do not use the modified charged fields here.

To solve the equations of motion using the Haag expansion,
expand the fields that appear in the Hamiltonian or Lagrangian
in normal-ordered series of in (out) fields. To determine
the c-number amplitudes (the Haag amplitudes) that are the
coefficients of the normal-ordered terms, insert the expansion
in the operator equations of motion, restore normal order, and
equate the coefficients of corresponding (linearly independent)
normal-ordered terms. The relevant Haag amplitudes are the
wave functions of the bound states.

The method based on the Haag expansion is entirely
independent of the Bethe-Salpeter equation [14]. In contrast to
the Bethe-Salpeter approach, in the NQA there are no spurious
solutions and no negative norm amplitudes. The NQA can be
used for bound states in relativistic theories even though the
amplitudes depend on the same number of kinematic variables
as nonrelativistic wave functions. In particular, there are no
relative times in the relativistic version of the NQA. With all
terms in the in field expansions allowed by conservation laws,
the Haag expansion should be equivalent to the interacting field
theory. This results in an infinite set of coupled equations.
To get a tractable set of equations, we terminate the Haag
expansions, keeping a finite set of terms for each interacting
field. For quantum electrodynamics, the case relevant here,
the smallness of α provides a rationale to terminate the series;
each vertex has a factor of

√
α. For this paper we restrict

calculations to the simplest terms in the Haag expansion that
give an equation for the bound state.

We need not construct the in field for the bound state.
We assume possible bound states and introduce in fields,
characterized by their mass, spin, and other quantum numbers,
for each. The equations of motion for the interacting fields give
equations for the bound-state amplitudes; if there is a solution
for a given bound-state amplitude, then the corresponding
bound state exists. We take “bound-state amplitude” as a
synonym for “wave function.”

IV. RELATIVISTIC MODEL OF THE HYDROGEN ATOM

The fundamental fields are the electron, eα(x), muon,
μα(x), proton, pα(x), and photon vector potential, Aμ(x),
fields. These fields obey the operator equations of motion (for
this paper we drop renormalization counter terms):

(i �∂ − m)e(x) = e

2
[ �A(x),e(x)]+, (1)

(i �∂ − mμ)μ(x) = e

2
[ �A(x),μ(x)]+, (2)

(i �∂ − M)p(x) = − e

2
[ �A(x),p(x)]+, (3)

∂μ∂ · A − ∂ · ∂Aμ = e

2
{[ē(x),γ μe(x)]− + [μ̄(x),γ μμ(x)]−

− [p̄(x),γ μp(x)]−}, (4)

where Eq. (4) follows from

∂νF
μν(x) = e

2
([ē(x),γ μe(x)]− + [μ̄(x),γ μμ(x)]−

− [p̄(x),γ μp(x)]−) (5)

and Fμν(x) = ∂μAν(x) − ∂μAν(x). We denote the masses of
the electron, muon, proton, and hydrogen atom in states i as
m, mμ, M , and Mi , respectively. The equations are symmetric
under e ↔ μ,m ↔ mμ.

We use the Haag expansion to expand the interacting fields
appearing in the equations of motion in terms of in fields.
We truncate the series, keeping the first term involving the
hydrogen bound-state in fields, hin

i :

e(x) = e(in)(x) +
∑

i

∫
d3yd3z : p̄(in)(y)fp̄h,i(x − y,x − z)

×
←→
∂

∂z0
h

(in)
i (z):, (6)

ē(x) = ē(in)(x) +
∑

i

∫
d3yd3z : h

(in)†
i (z)

×
←→
∂

∂z0
f̄p̄h(x − y,x − z)p(in)(y) : , (7)

p(x) = p(in)(x) +
∑

i

∫
d3yd3zfēh(x − y,x − z) : ē(in)(y)

×
←→
∂

∂z0
h

(in)
i (z):, (8)

p̄(x) = p̄(in)(x) +
∑

i

∫
d3yd3z : h

(in)†
i (z)

×
←→
∂

∂z0
e(in)(y) : f̄ēh(x − y,x − z), (9)

Aμ(x) = A(in)μ(x) +
∫

d3yd3z
[

: ē(in)(y)f μ
ēe(y)(x − y,x − z)

× e(in)(z) : + : μ̄(in)(y)f μ
μ̄μ(y)(x − y,x − z)μ(in)(z)

+ : p̄(in)(y)f μ
p̄p(y)(x − y,x − z)p(in)(z)

]
, (10)

where
∑

i is the sum over the various hydrogen states, which
for simplicity we took as scalar,

f̄p̄h(x,y) = γ 0f
†
p̄h(x,y)γ 0, (11)

f̄ēh(x,y) = γ 0f
†
ēh(x,y)γ 0, (12)

and we label each amplitude by the in fields in each term in
the expansion of the interacting fields and keep this label for
the terms in the adjoints of the interacting fields.

We used translation invariance to write these forms of
the expansions. Lorentz covariance gives the transformation
properties of the amplitudes:

S(�)fp̄h(x,y)S(�)−1 = fp̄h(S(�)x,S(�)y). (13)

We choose spectroscopic notation for the states of the hydrogen
atom that is adapted to treating the proton spin on the same
basis as the electron spin. We use F , L, and S for the total
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angular momentum (an exact quantum number), the orbital
angular momentum, and the lepton-proton spin, respectively.
With the principal quantum number, n, we label states as nLF

S .
(Our choice differs from the usual choice that couples the
orbital angular momentum, L, to the electron spin, Se, then
couples J = L + Se to the proton spin to get F , and labels the
states as nLF

J .)
Because the contractions 〈0|e(in)(x)ē(in)(y)|0〉 etc. are sim-

pler in momentum space than in position space, we continue
our analysis in momentum space. To go into momentum space,
we use

e(x) =
∫

d4qe(q) exp(−iq · x) (14)

and analogous formulas for the other fields. We leave tildes off
the Fourier-transformed fields. The equations in momentum
space are

( �q − m)e(q) = e

2

∫
d4k[ �A(k),e(q − k)]+, (15)

( �q − mμ)μ(q) = e

2

∫
d4k[ �A(k),μ(q − k)]+, (16)

(/p − M)p(p) = − e

2

∫
d4k[ �A(k),p(p − k)]+, (17)

−kμk · A(k) + k2Aμ(k)

= e

2

∫
d4q ′([ē(q ′),γ μe(k − q ′)] (18)

+ [μ̄(q ′),γ μμ(k − q ′)] − [p̄(q ′),γ μp(k − q ′)]). (19)

To avoid subscripts we use h for ordinary hydrogen (electronic
hydrogen) and H for muonic hydrogen. For this one-loop
approximation we choose the Coulomb gauge. We expand
the interacting fields in normal-ordered products of in fields.
For the one-loop approximation to the amplitude in which
e ∼: p̄(in)h(in) :, we keep terms with up to three in fields in the
Haag expansions for e and A and one contraction. These terms

are : p̄
︷ ︸︸ ︷
p :: p̄ h :, :

︷ ︸︸ ︷
A :: A p̄h :, and p̄

︷ ︸︸ ︷
p :: p̄ Ah :, where the

overbraces stand for contractions. The term from : h
︷ ︸︸ ︷
h̄ :: h p̄ :

is much higher order because the hydrogen atom has zero
charge. The Haag expansion for the electron field is

e(q) = ein(q) +
∑

j

∫
d4pd4bδ(p + q − b)fp̄hj

(p,b) : p̄in(p)hin
j (b) :

+
∫

d4pd4bδ(p + q + k − b)f μ

Ap̄hj
(p,k,b) : Aμ(−k)p̄in(p)hin

j (b) : , (20)

ē(q) = ēin(q) +
∑

j

∫
d4pd4bδ(p + q − b) : hin †(b)pin(p) : f̄p̄hj

(p,b) :

+
∫

d4pd4bδ(p + q + k − b) : hin †(b)pin(p)Aμ(k) : f̄Ap̄hj
(p,b) : , (21)

where f̄p̄hi
(p,b) = γ 0T f

†
p̄hi

(p,b)γ 0.
We chose this parametrization so that

(ē(q)p̄(p)|0〉,h†
i (b)|0〉) = δ(q + p − b)f̄p̄hi

(p,b)(/p + M)θ (p0)δ(p2 − M2)θ (b0)δ
(
b2 − M2

i

)
. (22)

There are analogous expressions for the muon and proton fields. For the photon field,

Aμ(k) = Aμin(k) +
∫

d4pd4p′δ(k − p − p′)
[

: p̄in(p)f μ

pp′ (p,p′)pin(p′) :

− : ēin(p)f μ

ee′ (p,p′)ein(p′) : − : μ̄in(p)f μ

μμ′(p,p′)μin(p′) :
]
. (23)

Restoring normal order, we find the one-loop equations for the two main amplitudes for any state of the hydrogen atom:

( �b − /p − m)fe(p,b) = e2

2(2π )3

∫
d3p′

2Ep′
γ μ fe(p′,b)

(p − p′)2
(γμ)T (/p + M)T − e2

2(2π )3

∫
d3p′

2ep′
γ μ fp(p′,b)T

(b − p′ − p)2
(γμ)T (/p + M)T , (24)

( �b− �q − M)fp(q,b) = e2

2(2π )3

∫
d3q ′

2eq ′
γ μ fp(q ′,b)

(q − q ′)2
(γμ)T ( �q + M)T − e2

2(2π )3

∫
d3q ′

2Eq ′
γ μ fe(q ′,b)T

(b − q ′ − q)2
(γμ)T ( �q + m)T , (25)

where fe(p,b) ≡ fp̄h(p,b)( �p + M)T , fp(q,b) ≡ fēh(q,b)
( �q + m)T , Ep =

√
p2 + M2, eq =

√
q2 + m2, p is the energy

momentum of the on-shell proton, and q = b − p is the energy
momentum of the off-shell electron. Note that, by construction,
fe(p,b) obeys the subsidiary condition fe(p,b)( �p − M)T = 0

and fp(q,b) obeys fp(q,b)( �q − m)T = 0. Unlike the Bethe-
Salpeter approach, we have arrived at a pair of coupled
equations that describe the bound state. They are explic-
itly symmetric under subscript e ↔ p and mass m ↔ M

interchange. These two equations differ from those found
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(a) (b)

FIG. 1. Graphs for the right-hand side of the electron equation
of motion. Heavy lines are off shell and light lines are on shell. The
dashed line represents the bound state (hydrogen atom). The empty
circle represents the amplitude fe in panel (a) and fp in panel (b).
The left fermion line is the electron and the right line is the proton.
Similar graphs exist for the proton equation.

in Refs. [15] and [16] where Bethe-Salpeter equations with
one on-shell particle are found, but we show that in a
certain approximation they reduce to their Bethe-Salpeter
counterparts. As far as we know, the exact properties of Eqs.
(24) and (25) are unexplored.

The terms on the right-hand side of Eqs. (24) and (25) are
expressed in diagrammatic form in Figs. 1(a) and 1(b). Heavy
lines are off shell and light lines are on shell. Point vertices
represent the substitution of an off-shell interacting field in
terms of other interacting fields via the relevant equation of
motion. These are the fundamental QED vertices. Circles
indicate the use of the Haag expansion to express off-shell
interacting fields in terms of in fields with a Haag amplitude
coefficient. We use these diagrams in Sec. IX to show how
higher order corrections are calculated.

In a covariant gauge these equations are explicitly Lorentz
covariant for an arbitrary state of motion of the hydrogen atom.
The general expansions have the support of the in fields on
both mass shells. Here we keep only the mass shell that does
not lead to extra pairs of particles.

V. NORMALIZATION OF THE WAVE FUNCTIONS

The asymptotic fields diagonalize conserved observables
such as the Hamiltonian, the momentum operators, and various
charges. We can represent any conserved quantity O in terms
of either the interacting fields or the asymptotic fields (either
the in or out fields),∑

i

O[ξi] =
∑

i

O
[
ψin

i

]
, (26)

where ξi in an interacting field and ψin
i is an asymptotic field,

including the in fields for bound states. We do not include weak
interactions in our analysis of the hydrogen atom; thus both the
number of electrons and the number of muons are conserved.
We use the number of electrons, Ne, to find the normalization
condition for the hydrogen wave function, fp̄h(p,b), in which
the electron is off shell. The only interacting field that carries
electron number is the electron field,

Ne =
∫

e†(x)e(x)d3x. (27)

The contribution to the electron number from the hydrogen
atom in a given state comes from the terms in Ne that are

bilinear in the hydrogen atom in field in that state. From
the in field expansion of e(x) we find the orthonormalization
condition∫

Md3p

Ep

Tr[f̄p̄Hj ′ (p,b′)γ 0fp̄Hj
(p,b)] = δj ′j 2Ebδ(b′ − b).

(28)

VI. INTERCHANGE OF THE ON-SHELL
AND OFF-SHELL PARTICLES

The equal-time anticommutators relate the Haag amplitudes
with the lepton off shell to those with the proton off shell.
These relations follow from the vanishing of the coefficients
of each (linearly independent) normal-ordered product of
in fields in the equal-time anticommutators. Most of the
relations involve Haag amplitudes for terms with higher
degree normal-ordered products than we have considered here;
however for the equal-time anticommutator [e,p]+ = 0 there
is an approximate relation that involves only terms that we
considered here,[

fēH,i(q,b)

(�q + m

2eq

)T ]
βα

+
[
fp̄H,i(p,b)

(
/p + M

2Ep

)T ]
αβ

= 0,

(29)

with the constraint p + q = b. Thus, the Haag amplitude with
the lepton off shell is simply related to that with the proton off
shell. The two amplitudes determine each other uniquely.

Using Eq. (29), we can simplify Eq. (24) to

( �b − /p − m)fe(p,b)

= e2

(2π )3

∫
d3p′

2Ep′
γ μ fe(p′,b)

(p − p′)2
(γμ)T ( �p + M)T , (30)

which matches the Bethe-Salpeter equations of Refs. [15] and
[16]. For the present paper, we choose the hydrogen atom at
rest, b = (MHi

,0), which explicitly breaks Lorentz covariance
to rotation covariance. By keeping the main mass shell and
dropping the magnetic interaction terms, we have(

γ 0MHi
− /p − m

)
fe(p)

= − e2

(2π )3

∫
d3p′

2Ep′
γ 0 fe(p′)

|p − p′|2 (γ 0)T ( �p + M)T , (31)

where fe(p) ≡ fe(p; MHi
,0).

VII. SOLUTION TO BOUND-STATE EQUATION

The purpose of the following sections is to find a method
for solving Eq. (31) which can be extended to solve Eqs. (24)
and (25). For the sake of simplicity in this work, we will put off
solving our more complicated coupled equations for a future
paper. We acknowledge that we are solving an equation that
has already been studied extensively in the literature, but our
purpose is to develop the NQA framework for high-precision
calculations. We therefore take an approach that differs from
the typical perturbative method. The methods for finding
higher order corrections are discussed in Sec. IX.

In this section, we focus on binding due to the Coulomb
interaction. We chose Coulomb gauge to simplify our
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calculations and to allow comparison with the usual solution of
the Dirac equation for the hydrogen atom. To keep the notation
general for any two-particle system, we label the constituents
m1 and m2 and the bound state mb in this section. We solve
the bound-state equation

(γ 0mb − �p − m1)fe(p)

= e2

(2π )3

∫
d3p′

2E
(2)
p′

γ 0V (p,p′)fe(p′)(γ 0)T ( �p + m2)T , (32)

where mb = m1 + m2 + εi , mb is the energy of the hydrogen
state, εi < 0 is the binding energy of the atom, V (p,p′) = −1/

|p − p′|2, and E(i)
p =

√
p2 + m2

i . A similar equation is solved
in Refs. [7,8] in the nonrelativistic limit. We solve the equation
numerically without taking a nonrelativistic limit.

We can think of m2 as the mass of the proton and m1 as
the mass of the lepton, but the N -quantum equations that give
Eq. (31) are symmetric under m1 ↔ m2 together with e ↔ −e

and our calculations reflect this.
Before solving this equation, we show that it reduces to

the expected Dirac equation in the large-m2 limit. The factor
( �p + m2)T /2Ep′ → (1 + γ 0)/2 in the potential in Eq. (31)
reduces the 4 × 4 system of equations to a 4 × 2 system with
the usual Coulomb potential. From Eq. (31), using q = b − p,
we find

(Eγ 0 − γ · q − m1 − γ 0V )fe = 0, (33)

where V is the Coulomb potential. Because this equation
comes from a covariant formulation, we have to multiply from
the left by γ 0 = β to get the usual form of the Dirac equation
for the hydrogen atom,

(α · q + m1β + V )fe = Efe, (34)

using γ 0 = β and γ 0γ i = αi.

A. Form of the matrix

To solve this equation, we break the 4 × 4 matrix down into
four 2 × 2 matrices:

fe(p) =
(

A(p) B(p)

C(p) D(p)

)
. (35)

Next we introduce the partial wave expansion of the operators
and the amplitude. Each of these 2 × 2 matrices can be written
as a product of a spin-angle part and a radial function. For
example, for a specific eigenstate we can write

A(p) = Y FmF

L,S (�)gL(p), (36)

where Y FmF

L,S (�) is the spin-angle function, gL(p) is a radial
function, and p = |p|. The most general solution is a sum over
all possible eigenstates. The spin-angle function is given by

Y FmF

L,S (�) =
∑
mL

〈L,S; mL mF − mL|FmF 〉

×φS mF −mL
YLmL

(θ,φ). (37)

where φS mS
is the total spin state of the constituents, YLmL

(θ,φ)
is a spherical harmonic, and 〈L,S; mL mF − mL|FmF 〉 is a
Clebsch-Gordan coefficient. The spin state can be either a
singlet or a triplet. We express these in terms of two-component

Pauli spinors:

φ00 = 1√
2

[ψ(↑) ⊗ χ (↓) − ψ(↓) ⊗ χ (↑)] = 1√
2

(
0 1

−1 0

)
,

(38)

φ11 = ψ(↑) ⊗ χ (↑) =
(

1 0
0 0

)
, (39)

φ1−1 = ψ(↓) ⊗ χ (↓) =
(

0 0
0 1

)
, (40)

φ10 = 1√
2

[ψ(↑) ⊗ χ (↓) + ψ(↓) ⊗ χ (↑)] = 1√
2

(
0 1
1 0

)
.

(41)

We expect our matrix wave function to be analogous to the
direct product of an electron and a proton spinor,

� ≡ �e ⊗ �T
p

=
(

ψe ⊗ ψT
p ψe ⊗ (σ · pψp)T

(σ · pψe) ⊗ ψp (σ · pψe) ⊗ (σ · pψp)T

)
, (42)

where �e and �p are free Dirac spinors for the electron and
proton respectively, and ψe and ψp are their upper components.
Our wave function must also satisfy the auxiliary condition

fe(p)( �p − m2)T = 0. (43)

With these two things in mind, we use the form

fe(p)

=
(

Y FmF

L,S gL(p)1 S(p)Y FmF

L,S (σ · p̂)T gL(p)

σ · p̂Y FmF

L,S hL(p) S(p)σ · p̂Y FmF

L,S (σ · p̂)T hL(p)

)
,

(44)

where S(p) = p/(E(2)
p + m2), and p̂ is the unit vector in the

direction of p. We constructed this wave function to satisfy
Eq. (43). This wave function is also a parity eigenstate,

γ 0fe(−p)γ 0T = (−1)Lfe(p). (45)

B. The coupled radial integral equations

Use of Eq. (44) and the left-hand side (LHS) of Eq. (31)
gives

LHS =
(

L11 L12

L21 L22

)
, (46)

where

L11 = [(
mb − E(2)

p − m1
)
gL(p) + phL(p)

]
Y FmF

L,S ,

L12 =S(p)
[(

mb−E(2)
p − m1

)
gL(p) +phL(p)

]
Y FmF

L,S (σ · p̂)T,

L21 = −[
pgL

(
p) + (mb + m1 − E(2)

p

)
hL(p)

]
σ · p̂Y FmF

L,S ,

L22 = −S(p)
[
pgL(p) + (

mb + m1 − E(2)
p

)
hL(p)

]
× σ · p̂Y FmF

L,S (σ · p̂)T .

The right-hand side (RHS) becomes

RHS =
(

R11 R12

R21 R22

)
, (47)
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where

R11 =
∫

d3p′ V (p,p′)

2E
(2)
p′

[(
E(2)

p + m2
)
Y ′FmF

L,S

+ S(p′)pY ′FmF

L,S (σ · p̂′)T (σ · p̂)T
]
gL(p′),

R12 =
∫

d3p′ V (p,p′)

2E
(2)
p′

S(p)
[(

E(2)
p + m2

)
Y ′FmF

L,S (σ · p̂)T

+ S(p′)pY ′FmF

L,S (σ · p̂′)T
]
gL(p′),

R21 = −
∫

d3p′ V (p,p′)

2E
(2)
p′

[(
E(2)

p + m2
)
σ · p̂′Y ′FmF

L,S

+ S(p′)pσ · p̂′Y ′FmF

L,S (σ · p̂′)T (σ · p̂)T
]
hL(p′),

R22 =−
∫

d3p′ V (p,p′)

2E
(2)
p′

S(p)
[(

E(2)
p +m2

)
σ · p̂′Y ′FmF

L,S (σ · p̂)T

+ S(p′)pσ · p̂′Y ′FmF

L,S (σ · p̂′)T
]
hL(p′),

where Y ′FmF

L,S = Y FmF

L,S (�′). At this point, there is an apparent
redundancy in the four equations. Right multiplying the
upper right and lower right component equations by σ · p̂
and dividing by S(p) results in the upper left and lower
left component equations. Since we reduced the number
of independent radial functions in our matrix to two by
demanding that it satisfy the auxiliary condition, Eq. (43),
we expected this redundancy. We focus only on the left
components for the remainder of this discussion.

To keep this analysis general, we must find the action of the
σ · p operators on the spin-angle functions,

σ · pY FmF

L,S =
∑
L′S ′

C
FmF

L,SL′S ′Y
FmF

L′S ′ , (48)

Y FmF

L,S (σ · p)T =
∑
L′S ′

CT FmF

L,SL′S ′Y
FmF

L′S ′ , (49)

where C
FmF

L,SL′S ′ are coefficients that can be determined explic-
itly and tabulated. σ · p is a pseudoscalar operator and must
change L by ±1, i.e., |L − L′| = 1. Other properties of these

coefficients are

C
FmF

L0L′S ′ = −CT FmF

L0L′S ′ , C
FmF

L1L′0 = −CT FmF

L1L′0,

C
FmF

L1L′1 = CT FmF

L1L′1, C
FmF

L,SL′S ′ = C
FmF

L′S ′L,S,
(50)∑

L′S ′
C

FmF

L,SL′S ′C
FmF

L′S ′L′′S ′′ = δLL′′δSS ′′ ,

∑
L′S ′

CT FmF

L,SL′S ′C
T FmF

L′S ′L′′S ′′ = δLL′′δSS ′′ .

These properties are useful when using our general equations
to determine specific cases.

The partial-wave expansion of the potential is

V (p,p′) = 1

2π2

∞∑
L=0

(2l + 1)VL(p,p′)PL(cosθpp′ )

= 2

π

∞∑
L=0

L∑
mL=−L

VL(p,p′)Y ∗
LmL

(�′)YLmL
(�). (51)

With the orthogonality conditions,∫ 1

−1
dxPL′ (x)PL(x) = 2

2L + 1
δLL′ ,

(52)∫
d�Y ∗

LmL
(�)YL′m′

L
(�) = δLL′δmLm′

L
,

the components of the partial wave expansion in terms of the
potential are

VL(p,p′) = π2
∫ 1

−1
dxPL(x)V (p,p′), (53)

where x = cos θpp′ . The orthogonality relation of the spin-
angle functions,∫

d� Tr
[
Y FmF

L,S

†
Y FmF

L′S ′
] = δLL′ ,δSS ′ , (54)

are also useful.
By using Eqs. (51) and (52) we find the left components on

the right-hand side:

R11 = 2

π

∫
dp′p′2

2E
(2)
p′

[(
E(2)

p + m2
)
VL(p,p′)Y FmF

L,S + S(p′)p
∑
L′S ′

∑
L′′S ′′

CT FmF

L,SL′S ′C
T FmF

L′S ′L′′S ′′VL′ (p,p′)Y FmF

L′′S ′′

]
gL(p′), (55)

R21 = − 2

π

∫
dp′p′2

2E
(2)
p′

[(
E(2)

p + m2
) ∑

L′S ′
C

FmF

L,SL′S ′VL′(p,p′)Y FmF

L′S ′

+ S(p′)p

(∑
L′S ′

∑
L′′S ′′

∑
L′′′S ′′′

C
FmF

L,SL′S ′C
T FmF

L′S ′L′′S ′′C
T FmF

L′′S ′′L′′′S ′′′VL′′(p,p′)Y FmF

L′′′S ′′′

)]
hL(p′). (56)

We remove the spin-angle functions by multiplying the top left by (Y
jmj

L,S )† and the bottom left by (σ · p̂Y
jmj

L,S )†, taking a trace,
and integrating over � using Eq. (54). The resulting equations are(

mb − E(2)
p − m1

)
gL(p) + phL(p) = 2

π

∫
dp′p′2

2E
(2)
p′

[(
E(2)

p + m2
)
VL(p,p′) + S(p′)p

∑
L′S ′

(
CT FmF

L,SL′S ′
)2

VL′(p,p′)

]
gL(p′) (57)

−pgL(p) − (
mb + m1 − E(2)

p

)
hL(p) = − 2

π

∫
dp′p′2

2E
(2)
p′

[(
E(2)

p + m2
)∑

L′S ′

(
C

FmF

L,SL′S ′
)2

VL′(p,p′)

+ S(p′)p
∑
L′S ′

∑
L′′S ′′

∑
L′′′S ′′′

C
FmF

L,SL′S ′C
T FmF

L′S ′L′′S ′′C
T FmF

L′′S ′′L′′′S ′′′C
FmF

L,SL′′′S ′′′VL′′(p,p′)

]
hL(p′). (58)
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Substituting mb = ε + m1 + m2 gives

εgL(p) = (
E(2)

p − m2
)
gL(p) − phL(p) + 2

π

∫
dp′p′2

2E
(2)
p′

[(
E(2)

p + m2
)
VL(p,p′) + S(p′)p

∑
L′S ′

(
CT FmF

L,SL′S ′
)2

VL′(p,p′)

]
gL(p′),

(59)

εhL(p) = (
E(2)

p − m2 − 2m1
)
hL(p) − pgL(p) + 2

π

∫
dp′p′2

2E
(2)
p′

[(
E(2)

p + m2
)∑

L′S ′

(
C

FmF

L,SL′S ′
)2

VL′(p,p′)

+ S(p′)p
∑
L′S ′

∑
L′′S ′′

∑
L′′′S ′′′

C
FmF

L,SL′S ′C
T FmF

L′S ′L′′S ′′C
T FmF

L′′S ′′L′′′S ′′′C
FmF

L,SL′′′S ′′′VL′′ (p,p′)

]
hL(p′). (60)

C. Specific cases of the bound-state equation

As shown earlier, our equation reduces to the Dirac-
Coulomb equation in the large-m2 limit. Here we show this
reduction for each partial wave. The last term in both equations
goes to zero and the equation simplifies to

εgL(p) = −phL(p) +
∫

dp′p′2vL(p,p′)gL(p′), (61)

εhL(p) = −2m1hL(p) − pgL(p)

+
∫

dp′p′2∑
L′S ′

(
C

FmF

L,SL′S ′
)2

vL′(p,p′)hL(p′), (62)

where vL(p,p′) = 2
π
VL(p,p′). Again, we find the momentum

space Dirac equation for an electron moving in a Coulomb
potential.

We can use Eq. (50) along with some general properties
of the coefficients to simplify our equations in some specific
cases. For the case where S = 0, S ′ must be 1, and we can use
Eq. (50) to greatly simplify the sums in the last term of the
second equation. The result is

εgL(p) = (
E(2)

p − m2
)
gL(p) − phL(p)

+ 2

π

∫
dp′p′2

2E
(2)
p′

[(
E(2)

p + m2
)
VL(p,p′)

+ S(p′)p
∑
L′

(
CT FmF

L0L′1
)2

VL′(p,p′)

]
gL(p′), (63)

εhL(p) = (
E(2)

p − m2 − 2m1
)
hL(p) − pgL(p)

+ 2

π

∫
dp′p′2

2E
(2)
p′

[(
E(2)

p +m2
)∑

L′

(
C

FmF

L0L′1
)2

VL′(p,p′)

+ S(p′)pVL(p,p′)

]
hL(p′). (64)

For S = 1, L = J , we know L′ = J ± 1 and S ′ = 1. Our
simplified equations are

εgL(p) = (
E(2)

p − m2
)
gL(p) − phL(p)

+ 2

π

∫
dp′p′2

2E
(2)
p′

[(
E(2)

p + m2
)
VL(p,p′)

+ S(p′)p
∑
L′

(
CT FmF

L1L′1
)2

VL′(p,p′)

]
gL(p′), (65)

εhL(p) = (
E(2)

p − m2 − 2m1
)
hL(p) − pgL(p)

+ 2

π

∫
dp′p′2

2E
(2)
p′

[(
E(2)

p +m2
)∑

L′S ′

(
C

FmF

L1L′1
)2

VL′ (p,p′)

+ S(p′)pVL(p,p′)

]
hL(p′). (66)

Finally, we have the case where S = 1 and L = J − 1. In this
case L′ must be equal to J , and the remaining sum of the
squared coefficients over S ′ is 1. The simplified equations are

εgL(p) = (
E(2)

p − m2
)
gL(p) − phL(p)

+ 2

π

∫
dp′p′2

2E
(2)
p′

[(
E(2)

p + m2
)
VL(p,p′)

+ S(p′)pVJ (p,p′)
]
gL(p′), (67)

εhL(p) = (
E(2)

p − m2 − 2m1
)
hL(p) − pgL(p)

+ 2

π

∫
dp′p′2

2E
(2)
p′

[(
E(2)

p + m2
)
VJ (p,p′)

+ S(p′)p
∑
S ′

∑
L′′

∑
S ′′′

C
FmF

L1JS ′C
T FmF

JS ′L′′1C
T FmF

L′′1JS ′′′

× C
FmF

L1JS ′′′VL′′ (p,p′)

]
hL(p′). (68)

Note that even without the inclusion of a hyperfine spin-spin
coupling term there is a difference between the nS0

0 and the nS1
1

equations. The former’s state equations, found from Eqs. (63)
and (64), are

εg0(p) = (
E(2)

p − m2
)
g0(p) − ph0(p)

+ 2

π

∫
dp′p′2

2E
(2)
p′

[(
E(2)

p + m2
)
V0(p,p′)

+ S(p′)pV1(p,p′)
]
g0(p′), (69)

εh0(p) = (
E(2)

p − m2 − 2m1
)
h0(p) − pg0(p)

+ 2

π

∫
dp′p′2

2E
(2)
p′

[(
E(2)

p + m2
)
V1(p,p′)

+ S(p′)pV0(p,p′)
]
h0(p′), (70)
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and the latter’s, found from Eqs. (67) and (68), are

εg0(p) = (
E(2)

p − m2
)
g0(p) − ph0(p)

+ 2

π

∫
dp′p′2

2E
(2)
p′

[(
E(2)

p + m2
)
V0(p,p′)

+ S(p′)pV1(p,p′)
]
g0(p′), (71)

εh0(p) = (
E(2)

p − m2 − 2m1
)
h0(p) − pg0(p)

+ 2

π

∫
dp′p′2

2E
(2)
p′

[(
E(2)

p + m2
)
V1(p,p′)

+ S(p′)p
(

1

9
V0(p,p′) + 8

9
V2(p,p′)

)]
h0(p′). (72)

Because p ∼ αμ, where μ is the reduced mass, the terms
containing S(p′) are very small. For this reason the splitting
between the energy levels of these two states created by the
dissimilarity in the equations is very small. For large m2,
the potential terms with S(p′) are smaller by a factor that
is O(α2(m1/m2)2).

D. Corrections to the approximation using the reduced mass

The NQA introduces both the light- and heavy-particle
masses independently, rather than introducing the heavy-
particle mass via the reduced mass. In the small-p approxima-
tion, the NQA coincides with the reduced-mass approxima-
tion, but for larger momenta the reduced-mass approximation
fails. We show this by examining the kinetic terms in the
bound-state equations:[

E(2)
p − m2 −p

−p E(2)
p − m2 − 2m1

] [
g

h

]
= ε

[
g

h

]
. (73)

The eigenvalue of this equation is

ε =
√

p2 + m2
2 − m2 +

√
p2 + m2

1 − m1

≈ p2

2μ
− m3

1 + m3
2

8m3
1m

3
2

p4.

For the Dirac equation the kinetic terms are[
0 −p

−p −2μ

] [
g

h

]
= ε

[
g

h

]
. (74)

The eigenvalue for the Dirac equation is

ε =
√

p2 + μ2 − μ ≈ p2

2μ
− p4

8μ2
,

where μ = m1m2/(m1 + m2) is the reduced mass. (This result
was found earlier by Raychaudhuri [8].) We note that there
are further mass dependencies in the potential term but do not
discuss them here.

VIII. NUMERICAL RESULTS

We briefly discuss some of our numerical results here. The
purpose of this section is to show that our procedure and
numerical calculations yield results that are consistent with
standard calculations. We are aware that solutions to Eq. (30)

TABLE I. Energy eigenvalues for electronic and muonic hy-
drogen states. The table on the left gives electronic hydrogen
levels in units of electron-volts and the table on the right gives
muonic hydrogen levels in units of kilo-electron-volts. We give
Dirac eigenvalues for the Dirac-Coulomb equation with the reduced
mass. We found NQA values numerically from the the NQA integral
equations with a Coulomb potential.

n NQA Dirac

(a) Electronic hydrogen nS0
0

1 −13.59847 −13.59847
2 −3.39963 −3.39963
3 −1.51094 −1.51094

(b) Muonic hydrogen nS0
0

1 −2.528506 −2.528527
2 −0.632130 −0.632134
3 −0.280946 −0.280947

are already well known, and we merely intend to show that
our procedure does not return any erroneous results.

We solved the integral equation numerically for several
states. We used a grid with 1200 points per equation and con-
verted the integral eigenvalue equations into matrix eigenvalue
equations. We handled the singularities at p = p′ in the kernels
with Lande subtractions [17]. We excluded momenta close to
infinity to avoid infinities in our discretized integral equation.
The wave functions are extremely close to zero well before our
cutoff is imposed. We made our equations dimensionless by
dividing by m1 and expressed the coupled equation in terms
of the dimensionless parameter ξ = m2/m1. Our results agree
with those of the Dirac-Coulomb equation with the reduced
mass. With higher precision we expect our results to differ from
the Dirac-Coulomb equation because our equation contains ef-
fects of the proton spin that are not found in the Dirac equation.

We found a rough estimate of our uncertainty by finding
the eigenvalues with 800, 1000, and 1200 grid points and
analyzing the stability of the eigenvalues. We conservatively
estimated our uncertainty to be 0.01 meV for electronic
hydrogen and 2 meV for muonic hydrogen.

We give comparisons of the NQA electronic hydrogen
eigenvalues and Dirac-Coulomb eigenvalues for the nS0

0 states
in Table I(a). These values are nearly identical and the results
indicate that we may have overestimated our uncertainty. We
give the same comparisons for muonic hydrogen in Table I(b).
These values are similar but differ significantly for the lower
eigenvalues. The NQA energies in the ground and next lowest
states are higher than the Dirac energies by 21 and 4 meV,
respectively. It is possible that our numerical calculations
failed for these two particular eigenvalues, or we may have
underestimated the uncertainty. We plan on achieving a higher
degree of precision in the future to investigate such concerns.

Using the same method of estimating the uncertainty as be-
fore, we conservatively take our uncertainty to be 0.01 meV. As
in the case of muonic hydrogen, there are some discrepancies in
the first two eigenvalues. The first and second values are larger
than the Dirac energies by 0.16 and 0.03 meV respectively.
The higher eigenvalues are consistent with the Dirac energies.

We also calculated the energies of the nS1
1 states. They are

identical to those shown in Tables I(a) and I(b) for some nS0
0
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(a) 1S0
0 state wave functions (b) 1S0

0 wave function differences

(c) 2S0
0 state wave functions (d) 2S0

0 wave function differences

FIG. 2. (Color online) Plots on the left are NQA momentum space wave functions for certain electronic and muonic hydrogen states. Plots
on the right are differences between NQA wave functions and Dirac-Coulomb wave functions for certain electronic and muonic hydrogen
states. Thick (red [gray]) lines represent electronic hydrogen wave functions or differences and thin (blue [dark gray]) lines represent muonic
hydrogen wave functions or differences.

states. We need higher precision to study the energy splitting
in these states caused by the differences in the NQA equations.

The full coupled NQA equations are symmetric under
m1 ↔ m2. We used an approximation to get the final form
of the equations used in these numerical calculations. This
approximation obscures the mass interchange symmetry, but
it should still be present to some degree. To check this, we
interchanged masses and calculated a few of the eigenvalues
for electronic hydrogen, where the mass interchange creates
more of a drastic change to the equations than in muonic
hydrogen. We recovered the same eigenvalues shown in the
tables up to 1 or 2 σ .

We also found evidence that our precision is not high
enough for the final terms in Eqs. (59) and (60) to have a
significant effect on the eigenvalues. We calculated ground-
state and n = 1 eigenvalues without these terms and the values
were not appreciably different. This is another motivation for
improving our precision in the future.

In addition to eigenvalues, we compared our wave functions
with Dirac equation solutions. Specifically, we compared
the momentum space radial wave function of the upper
components of the Dirac equation solutions with our function
gL(p). Once again we make comparisons for both muonic
and electronic hydrogen. Comparisons for two states are
shown in Fig. 2. Plots on the left-hand side are the NQA
wave functions as a function of p/m1 for three electronic
and muonic hydrogen states. Plots on the right-hand side
are differences between the NQA wave functions and Dirac-
Coulomb wave functions for the same electronic and muonic
hydrogen states. We plotted the muonic and electronic wave

functions and differences for each state on the same set of
axes in order to make direct comparisons between electronic
and muonic hydrogen. As is the case for Dirac-Coulomb
wave functions, NQA muonic wave functions are larger for
smaller momenta and smaller for large momenta than their
electronic counterparts. It is clear from the right plots that
muonic hydrogen wave functions are more consistent with
Dirac-Coulomb wave functions. The NQA solutions are less
than the Dirac wave functions for small momenta and greater
for larger momenta.

The differences shown on the right in Fig. 2 are small
compared to the size of the wave functions themselves;
therefore we can conclude that we have found wave functions
that are fairly consistent with Dirac wave functions, as well
as eigenvalues that are all within 2 σ except for the 1S0

0 state.
It is worth noting that we introduced the heavy-particle mass
independently in the NQA equations, yet the results compare
nicely with Dirac equation results with the reduced mass.

IX. FRAMEWORK FOR HIGHER
ORDER CONTRIBUTIONS

In this section, we show how to calculate higher order
contributions to the bound-state energy, specifically Lamb
shift terms. The actual calculation of these terms is beyond
the scope of this paper, but we explain how to extend our
formalism to include the corrections. The usual diagrams
used to calculate the Lamb shift perturbatively are shown in
Fig. 3. The energy contributions of these diagrams are typically
calculated with respect to zeroth-order wave functions of
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FIG. 3. Lamb shift diagrams.

solutions to equations such as Eq. (31). We intend to calculate
the analogs of these diagrams within the framework of the
NQA. We can incorporate these terms in our integral equations
and use the numerical techniques described above to find a less
perturbative solution.

Three examples of NQA Lamb shift diagrams are shown
in Fig. 4. The external off-shell line at the lower left of each
diagram is assumed to be the electron. These terms are added
to the right-hand side of Eq. (24). In any diagram, every
loop that does not contain an NQA amplitude must have one
on-shell line. With this rule, there are two permutations of the
vacuum polarization diagram, three of the anomalous magnetic
moment diagram, and two of the mass renormalization
diagram. The diagrams shown in Fig. 4 involve the amplitude
fe, but there are similar diagrams involving fp where the line
directly to the lower left of the circle is the on-shell line and the
line directly to the circle’s lower right is off shell. This means
that there are a total of four diagrams for vacuum polarization,
six for the anomalous magnetic moment, and four for mass
renormalization. We also must find similar diagrams to add to
the right-hand side of Eq. (25), where the external off-shell
line is the proton.

The NQA seems to be more complicated than the standard
procedure where there is only one Feynman diagram for each
Lamb shift contribution, but diagrams of the same type are
very similar and it is not necessary to calculate each diagram
explicitly. Additionally, the mass shell δ functions that appear
in the NQA simplify calculations.

(a) (b) (c)

FIG. 4. Examples of NQA Lamb shift diagrams.

X. SUMMARY AND FUTURE WORK

We used the NQA in one-loop order to calculate the energy
levels and bound-state amplitudes of ordinary and muonic
hydrogen. We used the NQA systematically to find a relation
between wave functions with the light particle off shell and the
heavy particle off shell and to find normalization conditions
for our amplitudes.

We used perturbation theory to add corrections to the
electron-photon vertex and to the photon propagator to include
the terms that lead to the Lamb shift.

In future work we will derive integral equations that
include higher order corrections. We will solve these equations
numerically without using perturbation theory in order to
include some of the energy correction terms that are usually
calculated perturbatively. We will compute the Lamb shift
and the hyperfine structure of both electronic and muonic
hydrogen. We plan to carry these calculations to sufficient
order to compare our results with the usual methods to see if
our methods resolve the muonic hydrogen anomaly.
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