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Bound states of dipolar molecules studied with the Berggren expansion method
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Bound states of dipole-bound anions are studied by using a nonadiabatic pseudopotential method and the
Berggren expansion involving bound states, decaying resonant states, and nonresonant scattering continuum. The
method is benchmarked by using the traditional technique of direct integration of coupled-channel equations. A
good agreement between the two methods has been found for well-bound states. For weakly bound subthreshold
states with binding energies comparable to rotational energies of the anion, the direct integration approach breaks
down and the Berggren expansion method becomes the tool of choice.
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I. INTRODUCTION

Weakly bound systems are intensely studied in different
domains of mesoscopic physics [1,2], including nuclear [3–7],
molecular [8–15], and atomic [16–18] physics. In this context,
dipolar anions are one of the most spectacular examples of
marginally bound quantum systems [19–40].

The mechanism for forming anion states by the long-range
dipolar potential has been proposed by Fermi and Teller [41],
who studied the capture of negatively charged mesons in
matter. They found that if a negative meson is captured by a
hydrogen nucleus, the binding energy of the electron becomes
zero for the electric dipole moment of a meson-proton system
μcr = 1.625 D. Later this result was generalized to the case
of an extended dipole with an infinite moment of inertia
[42]. Lifting the adiabatic approximation by considering the
rotational degrees of freedom of the anion [19–24] turned
out to be crucial; it also boosted the critical value of μ to
about 2.5 D. For anions with μ > μcr, the number of bound
states of the electron becomes finite, and the critical electric
dipole moment μcr depends on the moment of inertia of the
molecule. In the nonadiabatic calculations, the pseudopotential
was used to take into account finite size effects, repulsive
core, polarization effects, and quadrupolar interaction. The
pseudopotential method has provided a convenient description
of binding energy of the electron bound by an electric dipolar
field. Recently, this method was applied to linear electric
quadrupole systems [43]. Some recent theoretical studies
of dipole-bound anions also employed the coupled cluster
technique [44–46].

The unbound part of the spectrum of multipolar anions has
been discussed theoretically in Refs. [47,48] and Refs. quoted
therein. Resonance energies of dipolar anions have been
determined experimentally by low-energy electron scattering
off the dipolar molecules [27,28,31,33,35].

Both the long-range dipole potential and the weak binding
of dipolar anions provide a considerable challenge for theory.
The impact of the molecular rotation on a weakly bound elec-
tron can be represented by coupled-channel (CC) equations
that can be solved by means of the direct integration. While
this approach correctly predicts the number of bound states

of polar anions, it is less precise for treatment of weakly
bound excited states. Moreover, it cannot be used for studies
of dipolar anion resonances because the exact asymptotics for
a dipolar potential in the presence of a molecular rotor cannot
be determined.

In this paper, we apply the complex-energy configuration
interaction framework based on the Berggren ensemble [49]
to the problem of bound states in dipole-bound anions. The
Berggren completeness relation is a resonant-state expansion;
it treats the resonant and scattering states on the same footing as
bound states. We have successfully applied this tool to a variety
of nuclear structure problems pertaining to weakly bound
and unbound nuclear states [50–53] (for a recent review, see
Ref. [54]). The nuclear many-body realization of the complex
energy configuration interaction method is known under the
name of the Gamow shell model.

Resonances do not belong to the Hilbert space, so the
mathematical apparatus of quantum mechanics in Hilbert
space is inadequate for Gamow states [55], which are not
square-integrable. It turned out that the mathematical structure
of the rigged Hilbert space (RHS) [56–58] can accommodate
time-asymmetric processes, such as particle decays, by ex-
tending the domain of quantum mechanics. The mathematical
setting of the resonant state expansions follows directly from
the formulation of quantum mechanics in the RHS [56,57],
rather than the usual Hilbert space [58–60].

The Berggren ensemble provides a natural generalization
of the configuration interaction for the description of the par-
ticle continuum. The complex-energy Gamow-Siegert states
[55,61] have been used in various contexts in nuclear, atomic,
and molecular physics [62–75]. Some recent applications of
Gamow-Siegert states, also in the context of a CC formalism
relevant to the problem of dipole anions, can be found in, e.g.,
Refs. [76–80].

This paper is organized as follows. The Hamiltonian of the
pseudopotential method is briefly discussed in Sec. II. The
CC formulation of the Schrödinger equation for dipole-bound
anions is outlined in Sec. III. Section IV discusses the direct
integration method (DIM) for solving the CC problem with a
focus on difficulties in imposing proper boundary conditions
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when the rotational motion of the molecule is considered.
The Berggren expansion method (BEM) is introduced in
Sec. V. Section VI specifies the coupling constants of the
pseudopotential and other calculation parameters. Salient
features of DIM and BEM solutions are compared in Sec. VII.
The predictions of DIM and BEM for low-lying energy states
and r.m.s. radii of LiI−, LiCl−, LiF−, and LiH− anions are
collected in Sec. VIII. Finally, Sec. IX contains the conclusions
and outlook.

II. HAMILTONIAN

A dipole-bound anion is composed of a neutral polar
molecule with a dipole moment greater than μcr and a
valence electron. The Hamiltonian of the total system can be
written as

Htot = He + Hmol + V, (1)

where He is the Hamiltonian of the valence electron, Hmol is the
Hamiltonian of the molecule, and V is the electron-molecule
interaction. The many-body Schrödinger equation for Htot

couples all electrons of the system; hence, an approximation
scheme has to be developed.

As a first simplification, we notice that since the vibrational
motion of a molecule and core electron motions are much
faster than both the rotational motion of a molecule and the
orbital motion of a valence electron, the effective separation
of slow motions from the fast is present in the system largely
simplifying the dynamical equations [81]. Furthermore, the
Hamiltonian (1) simplifies considerably if one considers
anions of closed-shell systems. Moreover, if spin is neglected
[24], the molecule can be treated as a rigid rotor. Note that
the energy scales associated with the rotational motion of
the molecule and the motion of the weakly bound valence
electron may be comparable. Consequently, there appears a
strong nonadiabatic coupling between the molecular angular
momentum j and the orbital angular momentum � of the
electron. Equation (1) thus writes within this approximation
scheme

Htot = p2
e

2me

+ j2

2I
+ V, (2)

where I is the moment of inertia of the neutral molecule,
pe is the linear momentum of the valence electron, and
me its mass. The interaction V is approximated by a one-
body pseudopotential V (r,θ ) acting on the valence electron
[24,82,83],

V (r,θ ) = Vμ(r,θ ) + Vα(r,θ ) + VQzz
(r,θ ) + VSR(r), (3)

where θ is the angle between the dipolar charge separation s
and electron coordinate;

Vμ(r,θ ) = −μe
∑

λ=1,3,...

(
r<

r>

)λ 1

sr>

Pλ(cos θ ) (4)

is the dipole potential of the molecule;

Vα(r,θ ) = − e2

2r4
[α0 + α2P2(cos θ )] f (r) (5)

is the induced dipole potential, where α0 and α2 are the spher-
ical and quadrupole polarizabilities of the linear molecule;

VQzz
(r,θ ) = − e

r3
QzzP2(cos θ )f (r) (6)

is the potential due to the permanent quadrupole moment of
the molecule; and a short-range potential

VSR(r) = V0 exp(−(r/rc)6), (7)

where rc is a range radius, which accounts for the exchange
effects and compensates for spurious effects induced by the
cutoff function

f (r) = 1 − exp{−(r/r0)6} (8)

introduced in Eqs. (5) and (6) to avoid a singularity at r → 0.
The parameter r0 in Eq. (8) is an effective short-range cutoff
distance for the long-range interactions.

III. COUPLED-CHANNEL EXPRESSION OF
THE HAMILTONIAN

The eigenfunctions of the Hamiltonian (2) can be conve-
niently expressed in the CC representation,

�J =
∑

c

uJ
c (r)�J

jc�c
, (9)

where the index c labels the channel, uJ
c (r) is the radial

wave function of the valence electron in a channel c, and
the channel function �J

jc�c
arises from the coupling of jc and

�c to the total angular momentum J of the anion: j + � = J .
Due to rotational invariance of Htot, its matrix elements are
independent of the magnetic quantum number M , which will
be omitted in the following.

The potential V (r,θ ) in Eqs. (3)–(7) can be expanded in
multipoles:

V (r,θ ) =
∑

λ

Vλ(r)Pλ(cos θ ), (10)

where

Pλ(cos θ ) = 4π

2λ + 1
Y

(mol)
λ (ŝ) · Y

(e)
λ (r̂). (11)

The matrix elements of Pλ(cos θ ) between the channels c and
c′ are obtained by means of the standard angular momentum
algebra:〈

�J
jc′ �c′

∣∣Pλ(cos θ )
∣∣�J

jc�c

〉
= (−1)jc′+jc+J

{
jc′ �c′ J

�c jc λ

}(
jc′ λ jc

0 0 0

)(
�c′ λ �c

0 0 0

)

×
√

(2�c′ + 1)(2�c + 1)(2jc′ + 1)(2jc + 1). (12)

In the following, we express r in units of the Bohr radius
a0, I in units of mea

2
0 , and energy in Ry. The radial functions

uJ
c (r) are solutions of the set of CC equations,[

d2

dr2
− �c(�c + 1)

r2
− jc(jc + 1)

I
+ EJ

]
uJ

c (r)

=
∑
c′

vJ
cc′ (r)uJ

c′(r), (13)
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where EJ is the energy of the system and

vJ
cc′ (r) =

∑
λ

〈
�J

jc′ �c′

∣∣Pλ(cos θ )
∣∣�J

jc�c

〉
Vλ(r). (14)

IV. DIRECT INTEGRATION OF COUPLED-CHANNEL
EQUATIONS

The CC equations (13) can be solved by the DI method.
Below we describe the method used to generate the channel
wave functions uc(r) (from now on, the quantum number J is
omitted to simplify notation) obeying the physical boundary
conditions. Namely, we assume that uc(r) is regular at origin,
uc(r = 0) = 0, and for r → +∞ it behaves like an outgoing
wave u+

c (r).
The central issue of DI lies in the boundary condition

at infinity. Indeed, as we see in Sec. IV B, an asymptotic
wave function of a dipole-bound anion is not analytic in
general, so that one cannot exactly impose outgoing boundary
conditions. This calls for the use of controlled approximations.
In the following, we describe the numerical integration of CC
equations. While the method is standard (cf. Sec. 3.3.2 of
Ref. [84]), this particular application is not; hence, key details
should be given.

A. The basis method with the direct integration

To integrate CC equations, we introduce the matching
radius rm that defines the internal region [0 : rm], where the
centrifugal potential is appreciable, and the external zone
[rm : +∞]. An internal basis function u0

b;c(r) in [0 : rm] is
regular at r = 0:

u0
b;cb

(r) ∼ r�cb
+1 (15)

in one channel cb = (jcb
,�cb

) and u0
b;c(r) = o(r�cb

+1) for c �=
cb, which form the fundamental boundary conditions of the CC
equations for r → 0. In order to find an equivalent of u0

b;c(r)
in this case, we write the CC equations (13) at zeroth order in
u0

b;c(r):

[
u0

b;c

]′′
(r) = �c(�c + 1)

r2
u0

b;c(r)

+
(

vJ
cc(0) + jc(jc + 1)

I
− EJ

)
u0

b;c(r)

+
∑
c′ �=c

vJ
cc′ (0)uc′(r) + O

(
u0

b;c(r)
)
. (16)

Due to the fundamental boundary conditions of CC equations
at r → 0, the second term on the right-hand side of (16) and
all terms in the sum for which c′ �= cb are O(r�cb

+1), and
u0

b;cb
= r�cb

+1. Thus, Eq. (16) becomes

[
u0

b;c

]′′
(r) = �c(�c + 1)

r2
u0

b;c(r) + vJ
ccb

(0)r�cb
+1

+O
(
r�cb

+1
)
. (17)

Equation (17) can be integrated analytically along with the
fundamental boundary conditions of CC equations for r → 0
if one neglects the rest term equal to o(r�cb

+1). The internal
channel wave functions u0

b;c(r) with c �= cb and r → 0 thus

read

vJ
ccb

(0) ×
⎧⎨
⎩

r
�cb

+3

2�cb
+5 ln(r/rm) for �c = �cb

+ 2,

r
�cb

+3

(�cb
+2)(�cb

+3)−�c(�c+1) otherwise.

Note that is it necessary to pay attention when integrating CC
equations close to r = s, that is, when the electron coordinate
r and the dipolar charge separation s have the same magnitude,
as the potential (4) is not differentiable therein.

In the external region [rm : +∞], the basis wave functions
are denoted u+

b;cb
(r). By construction, at very large distances of

the order of hundreds of a0 (asymptotic region), u+
b;cb

(r) �= 0
for cb = (jcb

,�cb
) and u+

b;c(r) = 0 for other channels c �= cb.
The asymptotic behavior of external channel functions is
discussed in Sec. IV B below.

Both sets of internal and external basis functions are used
to expand the channel function uc(r):

uc(r) =
{∑

b C0
bu

0
b;c(r) for r � rm,∑

b C+
b u+

b;c(r) for r � rm.
(18)

The matching conditions at r = rm,∑
b

[
C0

bu
0
b;c(rm) − C+

b u+
b;c(rm)

] = 0, (19)

∑
b

[
C0

b

du0
b;c

dr
(rm) − C+

b

du+
b;c

dr
(rm)

]
= 0, (20)

form a linear system of equations: AX = 0. The condition of
det A = 0 determines the energy of a bound or resonant state.
(One can thus see that det A is thus the generalization of the
Jost function for CC equations.) Once the eigenenergy has been
found, the amplitudes C0

b ,C
+
b are given by the eigenvector X

of A. The overall norm is determined by the condition

∑
c

∫ +∞

0
|uc(r)|2dr = 1. (21)

B. The coupled-channel equations in the asymptotic region

At large distances, Vcc′ (r) can be written as

Vcc′ (r) = h̄2

2me

[χcc′

r2
+ V3(r)

]
, (22)

where χcc′ is a constant and V3(r) decreases for r → +∞
as r−3. In the following, we assume that V3(r) = 0 in
the asymptotic region. As the numerical integration up to
r ∼ 100a0 is stable, the error made by neglecting V3 is
around 10−6a−3

0 , which is sufficiently small to ensure that
the asymptotic zone has been practically reached.

Let us first consider the case of an infinite moment of inertia
I → +∞. Here, Eq. (13) becomes

u′′
c (r) = �c(�c + 1)

r2
uc(r) +

∑
c′

χcc′

r2
uc′ (r) − k2uc(r), (23)

where k = √
E. The outgoing solution of (23) in a basis

channel b can be written in terms of spherical Hankel functions,

u+
b;c(r) = g(b)

c H+
�

(b)
eff

(kr), (24)
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where �
(b)
eff is an effective angular momentum given by

eigenvalues of the eigenproblem

�c(�c + 1)g(b)
c +

∑
c′

χcc′g
(b)
c′ = �

(b)
eff

(
�

(b)
eff + 1

)
g(b)

c . (25)

Indeed, it immediately follows from Eqs. (23) and (25) that

u+
b;c(r)′′ =

(
�

(b)
eff

(
�

(b)
eff + 1

)
r2

− k2

)
u+

b;c(r), (26)

so the physical interpretation of �
(b)
eff in terms of an effective

angular momentum is justified.
If I is finite, however, solutions of Eq. (13) are no longer

analytical at large distances. Nevertheless, it is possible to
construct an adiabatic approximation for uc(r) in the asymp-
totic region. To this end, one defines the linear momentum
kc = √

E − jc(jc + 1)/I for a channel c. In the asymptotic
region, Eq. (13) becomes

u′′
c (r) = �c(�c + 1)

r2
uc(r) +

∑
c′

χcc′

r2
uc′ (r) − k2

cuc(r), (27)

where, compared to Eq. (23), k is replaced by the chan-
nel momentum kc. This approximation can be applied if
|E| � jc(jc + 1)/I for all channels of importance. In those
cases, one can introduce an ansatz for uc(r) by replacing k

with kc in Eq. (24). The relative error on a basis function
u

(b;c)
+ (r) associated with this approximation is

∑
c′

∣∣∣∣∣∣
χcc′

r2

g
(b)
c′

g
(b)
c

⎛
⎝H+

�
(b)
eff

(kc′r)

H+
�

(b)
eff

(kcr)
− 1

⎞
⎠
∣∣∣∣∣∣ , (28)

i.e., is of the order of |kc − kc′ |/r2.
In practical calculations, I ∼ 105 and jmax ∼ 7. This gives

jmax(jmax + 1)/I ∼ 10−4. Consequently, if |E| > 10−3 Ry, the
error |kc − kc′ |/r2 < 10−6a−3

0 for r ∼ 100a0 is close to that
associated with the neglect of V3(r). On can thus see that
the proposed ansatz accounts for the coupling term (22) in
many cases. However, this approximation breaks down for
weakly bound/unbound states with |E| < 10−4 Ry; hence, a
more adequate theoretical method based on a resonant state
expansion needs to be introduced.

V. DIAGONALIZATION WITH THE BERGGREN BASIS

Another way to find eigenstates of the CC problem (13) is
to diagonalize the associated Hamiltonian in a complete basis
of single-particle states. Since our goal is to describe weakly
bound or unbound states, special care should be taken to treat
the asymptotic part of wave functions as precisely as possible.
A suitable basis for this problem is the one-body Berggren
ensemble [49,65,85]. This basis is generated by a finite-depth
spherical potential and contains bound (b), decaying (d), and
scattering (s) one-body states. For that reason, the Berggren
ensemble is ideally suited to deal with structures having
large spatial extensions (such as halos or Rydberg states) or
outgoing behavior (such as decaying resonances). Some recent
applications, in a many-body context, have been reviewed in
Ref. [54].

A. The Berggren basis

The finite-depth potential generating the Berggren ensem-
ble can be chosen arbitrarily. To improve the convergence,
however, it is convenient in practical applications to use
a one-body potential, which is as close as possible to the
Hartree-Fock field of the Hamiltonian in question. Therefore,
in the case of the one-body problem (13), the most optimal
potential to generate the Berggren basis is the diagonal part of
vcc′ (r). This means that the basis states �k,c(r) are eigenstates
of the spherical potential vcc(r),

�′′
k,c(r) =

(
�c(�c + 1)

r2
+ vcc(r) − k2

)
�k,c(r), (29)

that obey the following boundary conditions:

�k,c(r) ∼ C0r�c+1, r ∼ 0 for all states, (30)

�k,c(r) ∼ C+H+
�c

(kr), r → +∞ (b,d), (31)

�k,c(r) ∼ C+H+
�c

(kr) + C−H−
�c

(kr), r → +∞ (s), (32)

where the boundary conditions at r ∼ 0 and at r → +∞ for
scattering states (s) are standard, and for bound and decaying
states (b,d) one imposes the outgoing boundary condition. This
condition reduces to the standard decaying boundary condition
for bound states, as H+

�c
(kr) → 0 when r → +∞ in this case.

Note that k in Eq. (29) is, in general, complex.
The scattering states are normalized to the Dirac δ,

which results in a condition for the C− and C+ amplitudes
in (32) [49]:

〈�k,c|�k′,c〉 = δ(k − k′) ⇔ 2πC+C− = 1. (33)

The normalization of bound states is standard as well, but
that of decaying resonant states is not. Indeed, resonant states
rapidly oscillate and diverge exponentially in modulus along
the real r axis; hence, one cannot calculate their norm in the
same way as for the bound states.

The solution of this problem is provided by the exterior
complex scaling [86]; i.e., one calculates the norm of the
resonant state using complex r radii,

〈�k,c|�k,c〉 =
∫ R

0
�2

k,c(r) dr

+
∫ +∞

0
�2

k,c(R + xeiθ ) eiθ dx, (34)

where R is a radius taken sufficiently large so that condition
(31) is fulfilled. In the above formula, θ is an angle of rotation
chosen so that �k,c(R + xeiθ ) → 0 for x → +∞, which is
always possible provided θ is larger than a critical value
depending on k [51]. Note that no modulus enters Eq. (34).
This arises from the finite-lifetime character of resonant states,
which requires us to use the biorthogonal scalar product
[51,54,87–89]. It can be shown [87–89] that the norm defined
in Eq. (34) is indeed independent of R and θ , as expected from
a norm. Since the expression (34) is also valid for bound states,
bound and decaying states enter the Berggren ensemble as one
family of resonant states.

The exterior complex scaling can be used to calculate matrix
elements of a one-body operator O(r) as well, provided it
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L+

FIG. 1. (Color online) Berggren ensemble in the complex mo-
mentum plane. The bound (b) and antibound (a) states are distributed
along the imaginary k axis at Im(k) > 0 and Im(k) < 0, respectively.
The decaying resonant states (d) are located in the fourth quadrant
[Re(k) > 0,Im(k) < 0]. The Berggren completeness relation involves
bound states, scattering states (s) on the L+ contour, and decaying
states lying between the real-k axis and L+. If antibound states are
included, the L+ contour has to be slightly deformed [54,90]. If the
contour L+ lies on the real k axis, the Berggren completeness relation
reduces to the Newton completeness relation [54,91] involving bound
and real-energy scattering states.

decreases faster than 1/r along the complex r contour:

〈�k′,c′ |O|�k,c〉 =
∫ R

0
�k′,c′ (r)Occ′(r)�k,c(r) dr

+
∫ +∞

0
�k′,c′ (z(x))Occ′ (z(x))

× �k,c(z(x)) eiθ dx, (35)

where z(x) = R + xeiθ , and |�k,c〉 and |�k′,c′ 〉 can here be
bound, decaying, or scattering states.

B. The Berggren completeness relation

Figure 1 shows a distribution the Berggren ensemble in the
complex momentum plane. To determine the basis, one first
chooses a L+ contour in the fourth quadrant containing the
decaying eigenstates. The scattering states of the ensemble lie
on this contour. The resonant part of the ensemble contains the
bound states lying on the imaginary-k axis and those decaying
states of (29) that are found in the region between the real-k
axis and L+. The Berggren basis is built from all those states:∑

n∈(b,d)

∣∣�kn,c

〉 〈
�kn,c

∣∣+ ∫
L+

|�k,c〉 〈�k,c| dk = 1. (36)

This completeness relation corresponds to a given channel c;
hence, one has to construct Berggren ensembles for all the
channels considered in Eq. (13).

In order to be able to use (36) in practice, one needs to
discretize L+. Our method of choice is to apply the Gauss-
Legendre quadrature to each of the segments defining L+ in
Fig. 1. The last segment, chosen along the real-k axis, extends
to the large cutoff momentum k = kmax that is sufficiently
large to guarantee completeness to desired precision. It is
then convenient to renormalize scattering states using the
corresponding Gauss-Legendre weights ωkn

:

|�n,c〉 = √
ωkn

∣∣�kn,c

〉
. (37)

The discretized Berggren completeness relation, used in
practical computations, reads

N∑
i=1

|�i,c〉 〈�i,c|  1, (38)

where the N basis states |�i,c〉 include all bound, decaying,
and discretized scattering states of the channel c. By using
Eq. (37), the Dirac δ normalization of scattering states has
been replaced by the usual normalization to Kronecker’s δ. In
this way, all |�i,c〉 states can be treated on the same footing in
Eq. (38), as in any basis of discrete states.

C. Hamiltonian matrix in the Berggren basis

As the basis states |�i,c〉 are generated by vcc(r), the
Hamiltonian matrix within the same channel c is diagonal:

〈�i ′,c|h|�i,c〉 =
(

k2
i + jc(jc + 1)

I

)
δii ′ . (39)

Matrix elements between two basis states belonging to
different channels c and c′ are

〈�i ′,c′ |h|�i,c〉

= 〈�i ′,c|v|�i,c〉 =
∫ R

0
�i ′,c′ (r)vcc′(r) �i,c(r) dr

+
∫ +∞

0
�i ′,c′ (z(x))vcc′ (z(x)) �i,c(z(x)) eiθ dx, (40)

where the complex scaling (35) can be used, because vcc′ (r)
decreases at least as fast as r−2.

As the off-diagonal matrix elements are present only for
c �= c′, the Berggren basis generated by Eq. (29) is optimal.
The channel wave functions uc(r) can be expressed in the
Berggren basis by diagonalizing the matrix of h (39) and (40).

VI. CALCULATION PARAMETERS

Results of the DIM depend both on the parameters of the
pseudopotential (3) and on the cutoff value of the electron
orbital angular momentum �max considered in the CC problem.
They are fixed to reproduce the experimental value of the
ground-state energy of the LiCl− anion: Eexpt = −4.483 ×
10−2 Ry [29].

The most important term in (3) is the dipole potential Vμ,
which depends only on the dipole moment μ and the size s of
the neutral molecule. The remaining parameters of the pseu-
dopotential are taken from Ref. [24], namely, α0 = 15.3a3

0 ,
α2 = 1.1a3

0 , r0 = 2.2a0, rc = 2.828a0, Qzz = 3.28ea2
0 , and

V0 = 2.0 Ry. The moment of inertia parameters are I =
150 000mea

2
0 for LiCl−, 240 000mea

2
0 for LiI−, 82 000mea

2
0

for LiF−, and 26 000mea
2
0 for LiH−. The dipole moment of

each molecule considered in this work is known experimen-
tally and has been taken from the NIST database.

For �max = 9 the ground-state energy of the LiCl− anion is
reproduced by taking the charge separation s

(9)
DIM = 0.336a0.

To remove the dependence of results on �max in the DIM, the
ground-state energy of LiCl− is extrapolated for �max → ∞,
and the size of the charge separation s is adjusted to reproduce
the experimental binding energy. In this case, s(∞)

DIM = 0.337a0.
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The matching radius was taken as rm = a0. This value was
found to optimize the DIM procedure.

Anion spectra in the BEM depend sensitively on the
cutoff parameter kmax of the single-particle basis. However,
as we see in Sec. VII, for a chosen value of kmax they
are practically independent of �max. In this study, we have
chosen kmax = 1.53 a−1

0 for each partial wave in order to
attain both a good numerical precision and approximately
the same value of the dipole size parameter s as in DI. In
this case, s

(9)
BEM = s

(∞)
BEM = 0.336 a0. We have used complex

contours with straight segments connecting points: k1 = (0,0),
k2 = (0.15, − i0.04), k3 = (1,0), and k4 = kmax in units of
a−1

0 . Each scattering contour has been discretized with 220
points. The precise form of the contour does not change results;
since the applications carried out in this work pertain to bound
states only, we could have used real scattering contours, i.e.,
the Newton completeness relation [54,91].

VII. NUMERICAL TESTS AND BENCHMARKING

Along with the asymptotic behavior of channel wave func-
tions, treated approximately with the DIM and exactly within
BEM, the Hamiltonian (2) cannot be identically represented
in both approaches. Indeed, since the potential Vμ(r) (4) is
not differentiable at r = s, it cannot be treated exactly in
BEM because the channel wave functions expanded in the
Berggren basis are analytic by construction. In practice, this
translates into a node beyond r = s in DIM channel wave
functions, which is absent in BEM. This is illustrated in Fig. 2
for a (j = 0,� = 0) channel function corresponding to the first
excited Jπ = 0+

2 state of LiCl−. It is to be noted, however, that
beyond this point the channel wave functions calculated with
both methods are very close and—as discussed later—this
near-origin pathology has a very small impact on the total
energy as the contribution from this region is small.

As discussed in Sec. IV B, DIM is inadequate for states
with very small energies, while BEM has been shown to be
very precise in this case. On the other hand, for states with

FIG. 2. (Color online) The modulus of the channel wave function
uj=0,�=0 near r = 0 for the first excited J π = 0+

2 state of LiCl−

calculated in DIM (solid line) and BEM (dotted line) with �max = 9.
The charge separation s of LiCl has been adjusted in both approaches
to the experimental ground-state energy in the limit �max → ∞.

FIG. 3. (Color online) The modulus of the channel wave function
uj=0,�=0 for the J π = 0+

1 ground state of LiCl− calculated in DIM
(solid line) and BEM (dotted line) with �max = 9. At large distances,
spurious wiggles appear in BEM results (see the inset) due to basis
truncation.

binding energies typically greater than 10−2 Ry, BEM yields
channel wave functions that exhibit spurious low-amplitude
oscillations. Figure 3 illustrates such wiggles in the tail of the
channel wave function uj=0,�=0 of the Jπ = 0+

1 ground state
of LiCl−. For such well-bound states that quickly decay with
r , the standard size of the Berggren basis (measured in terms
of contour discretization points and kmax) is not sufficient.
The DIM is thus preferable for such cases, as the asymptotic
behavior of well-bound states is treated almost exactly (see
Sec. IV B).

The direct integration becomes numerically unstable when
the channel orbital angular momentum becomes large, around
�c = 10, even for the states with relatively large binding
energies. In this case, the matrix of basis channel wave
functions u0

b;c(rm) and u+
b;c(rm) and their derivatives, introduced

in Sec. IV A in the context of matching conditions at r = rm, is
ill-conditioned and its eigenvector of zero eigenvalue becomes
imprecise. This results in a discontinuity at rm and spurious
occupation of channels with large orbital angular momentum
�c > 10. This is illustrated in Fig. 4 for the Jπ = 0+

1 ground
state of LiCl−. As a result, the energy and spatial extension
of the electron cloud distribution of the CC eigenstate become
incorrect.

The convergence of the LiCl− ground-state energy with
respect to �max is shown in Fig. 5. One may notice an
exponential convergence of calculated DIM energies with �max

for 6 � �max � 10 and a clear deviation for � � 11, which
is related to the discontinuity of channel wave functions for
�c > 10. The energy calculated in BEM is perfectly stable
with �max.

The rapid convergence of BEM with � is due to kmax

truncation of the single-particle basis that suppresses contribu-
tions from large-� configurations. This is illustrated in Fig. 6,
which displays the average modulus of the off-diagonal matrix
element of the channel-channel coupling in BEM:

Ac,c′ = 1

N2

N∑
n,n′

|〈�n′,c′ |V |�n,c〉| (41)
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max

FIG. 4. (Color online) The modulus of the channel wave function
uj=0,�=0 for the J π = 0+

1 ground state of LiCl− calculated in DIM with
several values of �max. For �max � 10, one may notice the development
of a discontinuity at the matching point rm = a0. In such cases, the
channel wave function becomes ill-conditioned, introducing serious
errors in CC eigenenergy and eigenfunction.

between the first channel c = (j = 0,� = 0) and higher-�
channels c′. Only the channels with �c � 5 and |�c − �c′ | �
3 contribute significantly to the channel coupling matrix
element. We checked that this is generally the case. Using the
same truncation, the DIM yields numerically stable results. In
this case, the energies of well-bound states (|E| > 10−2 Ry)
agree in both methods.

The numerical instability of DIM at large �max leads to a
collapse of calculated radii. Figure 7 shows the dependence
of the ground-state r.m.s. radius of LiCl− on �max. This result,
together with discussion of Fig. 6, suggests that the BEM can
provide practical guidance on the minimal number of channels
in the CC approach.

In practical applications, spurious oscillations in BEM
channel wave functions for well-bound states can be taken
care of by extrapolating wave functions from the intermediate
region of r , where they are reliably calculated, into the
asymptotic region. This can be done by applying the analytical

max

FIG. 5. (Color online) The dependence of the LiCl− ground-state
energy on �max in DIM (dots) and BEM (triangles). The DIM results
converge exponentially (red line). This allows us to determine the
asymptotic value of energy at �max → ∞.

c

FIG. 6. Average off-diagonal matrix element A0,c (41) of the
channel-channel coupling in BEM between the channel (j = 0,� =
0) and c′ for the J π = 0+

1 ground state of LiCl−.

expression,

ũc(r) ≡ lim
r�0

uc(r) = eikcr

M∑
j=1

α
(c)
j

rj
, (42)

where kc is the channel momentum and α
(c)
j are parameters to

be determined by the fit. The precision of this procedure can
be assessed by computing the norm of the eigenstate. Using
this procedure, one obtains perfectly stable r.m.s. radii in BEM
for different values of �max, as can be seen in Fig. 7.

Figures 8–10 compare the four most important channel
wave functions (�,j ) of DIM and BEM corresponding to the
three lowest Jπ

i = 0+
i eigenstates of LiCl−. For the ground

state, both approaches predict the same energy E = −4.483 ×
10−2 Ry and the channel functions are practically identical.
For the first excited state, the agreement is still reasonable.
Here, the energy in DIM is E = −7.374 × 10−4 Ry, while
BEM gives slightly more binding: E = −8.241 × 10−4 Ry.
Consequently, the BEM wave functions decay faster than
those computed with DIM. For a second excited 0+

3 state, both

max

FIG. 7. (Color online) The dependence of the LiCl− ground-state
r.m.s. radius on �max DIM (dots) and BEM (dotted line). The DIM
results are stable up to �max = 10.

042515-7



FOSSEZ, MICHEL, NAZAREWICZ, AND PŁOSZAJCZAK PHYSICAL REVIEW A 87, 042515 (2013)

FIG. 8. (Color online) Most important channel wave functions
uc(r) with c = (j,�) for the J π = 0+

1 ground state of LiCl−, as
calculated in DIM (solid line) and BEM (dashed line) with �max = 9.

methods differ markedly. This state has a subthreshold nature,
with EDIM = −7.051 × 10−6 Ry and EBEM = −9.907 × 10−6

Ry. For this extremely diffused state, the DIM fails completely.
This is manifested by the very different nodal structure of
channel wave functions in DIM seen in Fig. 10.

A stringent test of the computational framework to describe
dipolar molecules is provided by the analytic result μcr =
0.639ea0 for the fixed dipole (I → ∞) [42]. To this end, we
performed BEM calculations for a dipolar system at steadily
decreasing moments of inertia [20,21]. For each value of
I , the dipolar anion energies have been calculated for 1080
values of μ in the interval 0.6 � μ � 3.0. Only 170 energies
satisfying the subthreshold condition E < Elim = −10−8 Ry
were retained to minimize the numerical error. These energies
correspond to an interval �μ  0.377 of the dipole moment.
We checked that in this energy interval μcr can be obtained by
using the expression

E(μ) = (μ + b)
a
μ ec (43)

to extrapolate the calculated energy down to E = 0. One
should stress however, that an excellent energy fit in the
subthreshold region does not guarantee an excellent estimate
of the critical dipole moment. The values of μcr extracted by
this extrapolation procedure can be considered reliable only if
�μ, which depends on the chosen precision Elim, is close to
the critical dipole moment. In the cases studied, this criterion
is approximately satisfied only for the ground state and the first
excited 0+ state. The critical dipole moments for these states in

FIG. 9. (Color online) Similar to Fig. 8 but for the first excited
J π = 0+

2 state of LiCl−.

FIG. 10. (Color online) Similar to Fig. 8 but for the second excited
J π = 0+

3 state of LiCl−.

anions with the dipole length s = 4a0 are shown in Table I for
various moments of inertia. The agreement with the analytic
limit is excellent for the ground-state configuration and is fairly
good for the first excited 0+ state. This is very encouraging,
considering the slow convergence with I and various sources
of numerical errors in the E → 0 regime [20].

VIII. RESULTS FOR SPECTRA AND RADII OF DIPOLAR
ANIONS

Energies and r.m.s. radii of the lowest bound 0+ and 1−
states of LiI−, LiCl−, LiF−, and LiH− dipolar anions predicted
in this study are listed in Table II.

One can see that for each total angular momentum Jπ there
are at most three bound eigenstates in each system. The r.m.s.
radius of an electron cloud shows a spectacular increase with
decreasing the binding energy of the state. For the subthreshold
states, such as 0+

3 and 1−
3 , the radius is of the order of hundreds

to thousands a0.
Energy spectra and radii of dipolar anions do not change

significantly in the limit �max → ∞. Usually, the extrapolated
results for both E and rrms agree very well with those in Table II
(�max = 9). For instance, the extrapolated values for the 1+

2
state in LiH− are E = −7.931 × 10−5 Ry and rrms = 1.147 ×
102a0.

The DIM and BEM results are generally consistent for both
energy and radii though significant quantitative differences
persist for excited, weakly bound states of anions where the
DIM is not expected to work. In the case of LiF−, the BEM

TABLE I. Critical dipole moments for dipolar anions in the two
lowest 0+ states calculated in this work (BEM) and in Ref. [21] for
the charge separation s = 4a0 and different moments of inertia I . The
analytic result at I → ∞ [41,42] is μcr = 0.639ea0.

μ(0)
cr (ea0) μ(1)

cr (ea0)

I
(
mea

2
0

)
BEM Ref. [21] BEM Ref. [21]

104 0.937 0.843 1.024 1.515
106 0.674 0.750 0.633 1.145
108 0.639 0.715 0.622 0.974
1010 0.639 0.622
1015 0.639 0.62
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TABLE II. Energies and r.m.s. radii for 0+ and 1− bound states of selected dipolar anions obtained in DIM (�max = 9) and BEM. The
parameters of the calculation are given in Sec. VI. The numbers in brackets denote powers of 10.

E (Ry) rrms (a0)

Anion State DIM BEM DIM BEM

LiI− 0+
1 −5.079[−2] −5.023[−2] 7.569[0] 7.620[0]

0+
2 −9.374[−4] −1.037[−3] 5.112[1] 4.759[1]

0+
3 −1.502[−5] −1.797[−5] 3.719[2] 3.308[2]

1−
1 −5.079[−2] −4.995[−2] 7.569[0] 7.641[0]

1−
2 −9.291[−4] −1.023[−3] 5.112[1] 4.886[1]

1−
3 −1.261[−7] −1.099[−5] 3.423[3] 3.464[2]

LiCl− 0+
1 −4.483[−2] −4.483[−2] 7.885[0] 7.894[0]

0+
2 −7.374[−4] −8.241[−4] 5.632[1] 5.017[1]

0+
3 −7.051[−6] −9.907[−6] 5.124[2] 4.106[2]

1−
1 −4.482[−2] −4.458[−2] 7.885[0] 7.915[0]

1−
2 −7.241[−4] −8.067[−4] 5.633[1] 5.337[1]

1−
3 −3.062[−7] −8.159[−7] 2.066[3] 8.831[2]

LiF− 0+
1 −2.795[−2] −2.983[−2] 9.117[0] 8.991[0]

0+
2 −3.022[−4] −3.525[−4] 8.098[1] 7.501[1]

0+
3 −6.101[−8] 3.363[3]

1−
1 −2.793[−2] −2.968[−2] 9.117[0] 9.010[0]

1−
2 −2.782[−4] −3.277[−4] 8.124[1] 7.520[1]

LiH− 0+
1 −2.149[−2] −2.370[−2] 1.011[1] 9.698[0]

0+
2 −1.491[−4] −1.922[−4] 1.058[2] 9.297[1]

1−
1 −2.142[−2] −2.353[−2] 1.011[1] 9.717[0]

1−
2 −7.942[−5] −1.231[−4] 1.146[2] 9.591[1]

predicts the existence of the third 0+
3 state at an energy −6.1 ×

10−8 Ry, which is absent in DIM.
It is instructive to compare our DIM results with those found

in Ref. [24] using a similar approach. Table III lists energies
of the lowest 0+ bound states of LiI−, LiCl−, LiF−, and LiH−
dipolar anions obtained in both studies, and Table IV shows
the adopted values of dipole moments.

The two calculations agree reasonably well for the lowest-
lying states; some difference stems from slightly different
dipole moments used in Ref. [24] and here. Indeed, while the
charge separation in both studies was adjusted to reproduce the
experimental ground-state energy of LiCl−, the fitted values of

TABLE III. Energies for 0+ bound states of selected dipolar
anions obtained in DIM in this work (�max = 9) and in Ref. [24].
The numbers in brackets denote powers of 10.

E (Ry)

Anion State This work Ref. [24]

LiI− 0+
1 −5.079[−2] −4.998[−2]

0+
2 −9.374[−4] −1.022[−3]

0+
3 −1.502[−5] −1.999[−5]

LiCl− 0+
1 −4.483[−2] −4.483[−2]

0+
2 −7.374[−4] −7.497[−4]

0+
3 −7.051[−6] −9.775[−6]

LiF− 0+
1 −2.795[−2] −2.793[−2]

0+
2 −3.022[−4] −3.366[−4]

0+
3 −8.746[−7]

LiH− 0+
1 −2.149[−2] −2.352[−2]

0+
2 −1.491[−4] −1.926[−4]

s in both calculations are different: s = 0.3335a0 in Ref. [24]
and sDIM = 0.336a0 here.

The largest deviations, seen for weakly bound states, can be
traced back to the cutoff value of the electron orbital angular
momentum when solving CC equations. In Ref. [24], adopted
�max was small, typically �max = 4 [37], whereas it is fairly
large, �max = 9, in our work. As seen in Fig. 5 and discussed
in Sec. VII, energies of weakly bound states obtained in
DIM do converge slowly with �max. Therefore, calculations
employing low �max values cannot be useful when performing
extrapolation �max → ∞.

IX. CONCLUSIONS

In this study, we applied the theoretical open-system
framework based on the Berggren ensemble to a problem of
weakly bound states of dipole-bound anions. The method has
been benchmarked by using the traditional technique of direct
integration of CC equations. While a fairly good agreement
between the two methods has been found for well-bound states,

TABLE IV. Dipole moments of selected dipolar anions adopted
in this work and in Ref. [24].

μ (ea0)

Anion This work Ref. [24]

LiI− 2.911 384 272 2.911 384 272
LiCl− 2.805 158 089 2.793 355 179
LiF− 2.472 316 049 2.478 610 934
LiH− 2.313 370 205 2.321 238 811
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the direct integration technique breaks down for weakly bound
states with energies |E| < 10−4 Ry, which is comparable with
the rotational energy of the anion. For those subthreshold
configurations, the Berggren expansion is an obvious tool of
choice.

The inherent problem of the DIM is the lack of stability
of results when the number of channels is increased. Indeed,
the method breaks down when the channel orbital angular
momentum becomes large, around �c = 10. This can be traced
back to the applied matching condition. We demonstrated
that this pathology is absent in BEM. Here, the rapid
convergence with � is guaranteed by an effective softening
of the interaction through the momentum cutoff kmax, which
suppresses contributions from high-� partial waves.

The future applications of BEM will include the structure
of quadrupole-bound anions [43,92–94] and the continuum

structure of anions, including the characterization of low-
lying resonances. In the latter case, the BEM will provide
a viable alternative to the computational method based on the
nondirect product discrete-variable representation [95], which
was applied for resonant scattering in dipole-dipole collisions
[96], stripping and excitations in p + He+collisions [97], and
breakup of weakly bound halo nuclei [98].
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