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Exchange-assisted tunneling and positron annihilation on inner atomic shells
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It has long been known that the long-range asymptotic behavior of Hartree-Fock orbitals is different from that
of the orbitals in the local potential. However, there is no consensus about observable physical effects associated
with this asymptotics. Here we argue that a weaker decrease of the Hartree-Fock orbitals at large distances is
responsible for the positron annihilation on the inner shell electrons, which is observed experimentally.
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I. LONG DISTANCE BEHAVIOR OF
ELECTRON ORBITALS

It is sometimes assumed that exchange interaction between
electrons is important only at short distances and can be
neglected when one of the electrons is far from the origin.
It is easy to see that this is not true if we consider long-range
asymptotics of an inner shell electron [1–3]. At large distances
the exchange term for all occupied orbitals has the form
r−νφv , where φv is the outermost orbital with the highest
energy εv . The power ν depends on the leading multipolarity
of the exchange interaction. The monopole component does
not contribute to the asymptotics due to the orthogonality of
the orbitals and for the dipole component of the exchange
interaction ν = 2.

This fact was first realized by Handy et al. [1], who showed
that generally speaking asymptotic behavior of all Hartree-
Fock orbitals is given by the exponential with the highest
energy εv (or the smallest binding energy):

φhf
i |r�rv

∼ r−νi exp (−
√

−2εvr), (1)

where νi is specific for each orbital and rv is the radius of the
outermost atomic orbital. We use atomic units h̄ = me = |e| =
1 unless stated otherwise. Because the monopole component of
the exchange interaction does not contribute to the asymptotic
behavior, the expression (1) does not apply to the systems
where only s orbitals are occupied.

Later, the asymptotic behavior of the electron orbitals was
reanalyzed by many authors [2–6]. Dzuba et al. [2] showed
that the asymptote Eq. (1) holds for the relativistic Hartree-
Fock-Dirac equations as well. The role of correlations was
studied by Morrell et al. [4] and Katriel and Davidson [5],
who demonstrated that (1) holds also for the natural orbitals
φnat

i with nonzero occupation numbers. Natural orbitals are
the eigenfunctions of the one-electron density matrix ρ(x ′,x),
where x ≡ r,σ , and they can be found for any many-electron
wave function.

Natural orbitals are mostly used in the context of the
configuration-interaction approach. For the core-valence cor-
relations, the many-body perturbation theory (MBPT) is
usually more efficient. Within the MBPT approach, Flambaum
[3] showed that Eq. (1) also holds for the Brueckner orbitals.
The latter are solutions of the one-particle equation with the

correlation potential � added to the Hartree-Fock potential.
The nonlocal part of the potential � decreases faster than
the exchange potential and therefore does not change the
long-range behavior of the Brueckner orbitals.

In solid-state physics, the long-range exchange-induced
interaction is well known. For example, the Ruderman-
Kittel-Kasuya-Yasida (RKKY) exchange-induced spin-spin
interaction is responsible for the magnetic ordering in metal
alloys [7–9]. The long-range interaction in one-, two-, and
three-dimensional systems was also considered in [3].

In spite of the results cited above and numerous other
studies, it is sometimes assumed that asymptotic behavior (1)
is an artifact of the used approximations, and the physically
observable one-particle asymptote should depend on the
energy εi of the orbital in question (see, for example, Ref. [10]):

φi |r�rv
∼ r−νi exp (−

√
−2εir). (2)

Such asymptotic behavior follows, for example, from the
analytical continuation to the negative energies of the wave
function in the scattering theory [5]:

�N = −S0,i

r1
ei(ki r1+ηi ln r1)�N−1

i (2, . . . ,N), (3)

where S0,n is the matrix element of the S matrix and �N−1
i is

the wave function of the ion. However, it is easy to present an
example in which Eq. (2) is incorrect: the double-well potential
with one electron below and another above the barrier (see
Appendix A and also Ref. [6]).

To get asymptote (2), it is sufficient to assume that when
the first electron is far from the origin, r1 � 1, the N -particle
wave function �N can be factorized as

�N |r1�1 = φi(1)�N−1
i (2, . . . ,N). (4)

The N -particle Hamiltonian can be written in the form

h(1) + h(2) · · · + h(N ) +
∑
k<l

1

rkl

= h(1) + HN−1(2, . . . ,N) +
N∑

l=2

1

r1l

≈ h(1) + HN−1(2, . . . ,N) +
N∑

l=2

(
1

r1
+ rl

r2
1l

)
. (5)
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In the last line, we left two first terms in the expansion of 1/r1l

and skipped for simplicity the angular factors P1(cos θ1l). Sub-
stituting Eqs. (4) and (5) in the Schrödinger equation HN�N =
EN�N and integrating over the coordinates 2, . . . ,N with the
function �∗ N−1

i , we get

(
h(r1) + N − 1

r1

)
φi(r1) = (

EN − EN−1
i

)
φi(r1). (6)

Due to the parity selection rule, the second term of the
multipolar expansion from (5) becomes zero here. The solution
of this equation satisfies Eq. (2) with the energy

εi = EN − EN−1
i . (7)

The obvious problem with the ansatz (4) is that it is not
antisymmetric in permutations. It also does not account for the
correlations between the outgoing electron and the electrons of
the remaining ion. Let us see what happens if we substitute (4)
with the wave function of the general form �N . Following [5],
we can project the N -particle wave function on the eigenstates
of the (N − 1)-particle ion:

|�N (1, . . . ,N)〉 =
∑

i

fi(1)|�N−1
i (2, . . . ,N)〉, (8a)

fi(1) = 〈
�N−1

i (2, . . . ,N)
∣∣�N (1, . . . ,N)〉2,...,N .

(8b)

Expansion (8a) is valid at all distances, and the functions fi

play the role of one-particle orbitals. They do not form an
orthonormal basis set. In general, these functions are (i) not
orthogonal to each other; (ii) normalized so that

∑
i〈fi |fi〉 =

1; and (iii) not described by a definite angular momentum ji . It
follows from Eq. (8a) that each function fi has several angular
components:

fi(r) =
J+Ji∑

j=|J−Ji |
fi,j,m(r), (9)

where m = M − Mi and J,M and Ji,Mi are the angular
quantum numbers of the initial atom and the final ion,
respectively.

It is easy to see that the amplitudes fi satisfy the following
equations [5]:

[h(r1) − εi] fi(r1) = −
∑

k

fk(r1)Wi,k(r1), (10a)

Wi,k(r1) = 〈
�N−1

i (2, . . . ,N)
∣∣

×
N∑

l=2

1

r1,l

∣∣�N−1
k (2, . . . ,N)

〉

=
∫

ρN−1
i,k (r2,r2)

r1,2
d r2, (10b)

where ρN−1
i,k (r ′,r) is the transition density matrix of the ion.

If we look for the solution of this system at large distances,
it is useful to single out from the functions Wi,i the term with

zero multipolarity and add it to the left-hand side:(
h(r1) + N − 1

r1
− εi

)
fi(r1)

=
(

(N − 1)
fi(r1)

r1
−

∑
k

fk(r1)Wi,k(r1)

)
. (11)

In this way, we account for the screening of the nucleus
by the electrons of the ion (note that this expression is still
exact). Now we can take a limit r1 � 1 and apply a multipolar
expansion to evaluate the integral in Eq. (10b). The zeroth
multipole cancels the first term on the right-hand side of
Eq. (11) and we get(

h(r1) + N − 1

r1
− εi

)
fi(r1)

= 1

r2
1

∑
k

′fk(r1)
∫

ρN−1
i,k (r,r)rr2dr. (12)

Here we again omitted the angular factors and assumed that
the sum runs only over states k that satisfy the dipole selection
rule.

Let us assume that the solution of the homogeneous equa-
tion is localized at the distances ri . Then, for larger distances
r1 � ri , we can neglect the solution of the homogeneous
equation (6) and write

fi(r1)|r1�ri
=

(
h(r1) + N − 1

r1
− εi

)−1 1

r2
1

∑
k

′fk(r1)

×
∫

ρN−1
i,k (r,r)r3dr. (13)

This expression can be simplified further if we note that at
large distances the resolvent is approaching a constant [3],
[h(r) + N−1

r
− εi]−1 → −ε−1

i , so

fi(r)|r�ri
≈ − 1

εir2

∑
k

′fk(r)
∫

ρN−1
i,k (y,y)y3dy. (14)

In Eqs. (12)–(14), we did not make any assumptions
about the wave function of the ion. In the single determinant
approximation, the integral in (14) is reduced to the sum over
occupied orbitals of the opposite parity, pipk = −1 [2]:

fi(r)|r�ri
≈ − 1

εir2

∑
k

′fk(r)〈φk|r|φi〉, (15)

and we return to the Hartree-Fock case.
Both Eqs. (14) and (15) clearly lead to the asymptote (1).

For r � rv , the outermost orbital dominates the sum and

fi(r)|r�rv
∼ r−νi fv(r). (16)

Note that the power νi can be larger than 2 if there is no
dipole matrix element 〈fv|r|fi〉. In this case, higher terms of
the multipolar expansion are required. Expression (7) shows
that instead of the one-electron binding energy of the valence
orbital −εv one should use the ionization potential of the
atom IN :

fi |r�rv
∼ r−νi exp (−

√
2INr). (17)
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We see that Eq. (17) has much wider applicability than
the Hartree-Fock approximation. On the other hand, it is
valid only for distances r � rv , where for the neutral atom
rv ∼ 1. In fact, for the inner orbitals the exchange interaction
starts to dominate over the direct Coulomb interaction much
earlier, at r � ri , where ri is the radius of the inner orbital
in question [2,3,11]. The more general form of Eq. (17) is
given by Eq. (14). In particular, we can use it to estimate inner
orbitals in the classically forbidden region. At large distances
in the many-electron atom, all inner orbitals are asymptotically
proportional to the outermost orbital up to a power of the
radius. For shorter distances, different terms of the sum (15)
will dominate.

Note that the system (10) is particularly useful for the
highly charged ions, where 1

Z
expansion is applicable. In

this case, the right-hand side in Eq. (10a) is of the order 1
Z

and we can solve this system iteratively. For the first-order
corrections to the amplitudes fi , we can use zero-order wave
functions �

N−1 (0)
i to calculate functions Wi,k . In this way, we

can find the analytical form of the first-order corrections in
1
Z

to the amplitudes fi . One simple example is considered in
Appendix B.

At the end of this section, we can say that the asymptotic
behavior of the inner orbitals is changed by the entanglement
induced by the (anti)symmetrization postulate. This effect
appears in the Hartree-Fock approximation, but survives for
the correlated many-electron atoms.

II. OBSERVABILITY OF THE ONE-PARTICLE
ASYMPTOTICS OF THE BOUND MANY-ELECTRON

WAVE FUNCTION

Here we try to formalize the notion of the one-particle
asymptotics of the bound many-electron wave function. In
quantum mechanics, one needs to associate an operator with
any observable. When we discuss the asymptotic behavior of
the bound orbitals, we mean that the electron is registered at
a given distance R from the origin and we simultaneously
register the ion in a state with the hole in a given shell. This
can be described by the following operator:

T R
i =

N∑
l=1

T R
l,i , (18a)

T R
1,i = ∣∣�N−1

i (2, . . . ,N)
〉δ(r1−R)

4πR2

〈
�N−1

i (2, . . . ,N)
∣∣, (18b)

and so on for the operators T2,i , T3,i , etc. When this operator
is applied to the antisymmetric wave function �N , we get

〈�N |T R
i |�N 〉 = N〈�N |T R

1,i |�N 〉. (19)

The expectation value of the operator T R
i for state (8a) is

〈�N |T R
i |�N 〉 = N

4πR2
〈fi(r)|δ(r−R)|fi(r)〉. (20)

Thus, we can say that functions fi indeed play the role of the
orbitals, whose long-range behavior we want to study.

The observable (20) does not commute with the Hamil-
tonian. The measurement of Ti requires significant energy.
To detect an electron at a particular distance R, we introduce
uncertainty in its momentum. That means that we interact with

the whole many-electron system. Because of that, the energy
of the system is not conserved and we detect the final ion
with the energies EN−1

i , which are larger than the initial energy
of the system EN . The energy we need to detect the position
of the bound electron is E � εi .

We see that the measurement of the observable Ti changes
the energy of the system. This is different from the observations
in the scattering theory where we detect particles at infinity.
Such measurements can be done with arbitrary small momen-
tum and energy transfer. Because of that, in the scattering
theory the energy of the system is conserved. These examples
suggest that when the energy of the system is conserved during
the measurement, the exponent of the asymptote is given by
the energies of the initial and the final state. On the contrary,
when the measurement requires energy, the asymptote can be
described by many exponents.

III. POSITRON ANNIHILATION ON INNER ELECTRONS

It seems that asymptotics (2) and (17) are so different that
it should be easy to prove experimentally which of them is
correct. However, these expressions coincide for the outermost
electron shell, which gives the dominant contribution to any
physical processes at large distances. The inner shell asymp-
totic amplitudes are strongly suppressed. Though predictions
for the inner shell contribution to such processes from Eqs. (2)
and (17) can differ by many orders of magnitude, they still can
be too small to be experimentally observable.

Recently, Amusia [12] argued that asymptotics (17) should
lead to an observable field ionization (FI) from the inner
shells in the strong electric field F = F ẑ. He estimated that
the inner shell contribution scales as F 4 and for the field
F ∼ 1 a.u. = 5 × 109 V/cm it can be on the order of 10−5.
Unfortunately, such static fields are not achievable. If we use
the low-frequency laser field instead of the dc field, it will
be hardly possible to disentangle the tunneling FI from the
multiphoton processes. Therefore, it is unlikely that the FI
from the inner shells can be detected even for the asymptotics
given by Eq. (17).

Here we want to draw attention to the positron annihilation
on the inner electron shells [13–16] as a potential test of
the expression (16). In the nonrelativistic approximation, the
annihilation vertex is proportional to the δ function. Thus, if
we can control the final state of the ion, the annihilation cross
section can be approximately linked to the observable T (R)
defined by Eq. (18).

In a typical experiment, only one of the two annihilation γ

quanta is detected (see, e.g., the review [17]). For low energy
positrons, an observed linewidth is determined by a Doppler
broadening associated with the average momentum of the
bound electron. Because of that, the annihilation linewidth
is given by [15]

� ≈
√

|εi |mec2 ≈ 3.7
√

|εi | KeV. (21)

Thus, the annihilation on the inner shells contributes to the
wings of the line, while annihilation on the outermost shell
gives the central peak. Consequently, the accurate study of the
annihilation line shape provides information about the inner
shell contribution [13]. The inner shell annihilation was also
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detected directly with the coincidence technique for γ quanta
and Auger electrons [14].

Let us discuss Eq. (21) in more detail. The line shape of the
annihilation γ line is determined by the Fourier transform of
the atomic orbital. It is clear that inner orbitals have a wider
spectrum and contribute to the wings of the line. However, it is
not so clear that the asymptotic part of the inner orbitals also
contributes to the wings. Let us write the inner orbital as

φi = φ0
i + φa

i , (22)

where φ0
i is a solution in a local potential and φa

i describes the
exchange-induced asymptotic tail. Let us write φa

i as

φa
i (r) = C

r2 + a2
φv(r). (23)

This function has correct asymptotic behavior (16) with
νi = 2 and parameter a is introduced to ensure that at short
distances φ0

i � φa
i . The Fourier transform of this function is

the convolution of the transforms of the multipliers. The width
of the convolution is the sum of the widths of the components,
i.e., P a

i ≈ a−1 + Pv , where Pv ≈ r−1
v is the width of the

Fourier transform of the valence orbital φv . The exchange
term starts to dominate the tail at distances between ri and
rv [2]. Thus, the cutoff parameter a should be chosen from
the interval ri < a < rv . Even if we take a close to rv , we
get the width two times larger than for the outermost orbital.
However, a is closer to ri since it plays the role of the cutoff
factor in the expansion over r</r> in the exchange Coulomb
interaction between the inner and outer electrons. For a ∼ ri

we return to Eq. (21). In both cases, the annihilation on the
asymptotic part of the inner orbital φa

i indeed contributes to
the wing of the γ line.

We conclude that in the annihilation experiment, we can
control the final state of the ion. Unfortunately, this is not
the case for the position of the annihilated electron. Still, the
positron cannot penetrate deep into the atom because of the
strong repulsion from the nucleus. Therefore, the annihilation
should predominantly take place at the edge of the atom.

Let us estimate the classical turning point for the thermal
positron with the energy εp ∼ 300 K ∼ 10−3 a.u. The atomic
potential seen by the slow positron has the form [18]

U (r) = Q(r)/r − α/2r4, (24)

where α is the static polarizability of the atom. At large
distances we can parametrize the effective charge Q(r) as

Q(r) = Nv

2
exp[−2

√
−2εv(r − rv)], (25)

where εv and Nv are the electron energy and the number of
electrons for the outermost atomic shell. The radius rv can be
defined so that Q(rv) = Nv

2 , i.e., the screening of the nucleus
at the distance rv by the outer shell is reduced by 50%. For
the neutral closed-shell atom, rv ∼ 1 and Nv = 4lv + 2. The
classical turning point for the positron rt is given by the
equation U (rt ) = εp � 1, or neglecting positron energy εp,

rt ≈ rv + 1

2|2εv|1/2
ln

Nvr
3
v

α
≈ rv + 1

2|2εv|1/2
, (26)

where we approximated the logarithm by unity. We see that rt

is only about an atomic unit larger than the outer shell radius

FIG. 1. (Color online) Ratios of the 1s and 2p orbitals for
different configurations of Be. Vertical arrows show rms radii of
1s and 2p1/2 orbitals and the positron turning point rt .

rv . This is much smaller than the typical tunneling distance in
the dc electric field, making positron annihilation much more
sensitive to the inner shell contributions. On the other hand, the
distance rt is much larger than the inner shell radii, so annihi-
lation on the inner electrons should depend on the asymptotic
behavior of the inner orbitals in the classically forbidden
region. The estimate Eq. (26) for the positron turning point
rt is close to rv where Eq. (17) is not applicable, but Eq. (16)
should hold.

As a first example, we considered the Be atom in different
configurations and compared asymptotics of the 1s orbital. We
used relativistic Hartree-Fock-Dirac code [19] for three closed-
shell configurations: 1s2, 1s22s2, and 1s22p2

1/2. Figure 1 shows
the ratio of the 1s orbitals for all three cases. One can see
that for the configurations 1s2 and 1s22s2, the long-distance
behavior is similar. The small difference is caused by a 20%
change in the 1s energy. We conclude that here numerical
results agree with (2). The 1s energy for the configuration
1s22p2

1/2 lies between the values for two other configurations,
but the asymptotics is absolutely different, in agreement with
Eq. (1). This is in agreement with the statement that Eq. (1)
applies for the systems with occupied shells with l = 0 [1].
Figure 1 also shows the ratio of the 2p1/2 and 1s orbitals
for the configuration 1s22p2

1/2. We see that this ratio first
grows exponentially but then stabilizes at r � 3, in agreement
with (16).

Figure 1 shows that exchange interaction starts to determine
the behavior of the 1s wave function at the distances r � r2p,
i.e., near the main maximum of the 2p orbital. At such
intermediate distances, which lie far behind the classical
turning point for the inner electron but in the localization
domain of the outer electrons, the exchange interaction is
suppressed only by a power of the radius [3,11].
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FIG. 2. (Color online) Ratios of the 5p3/2, 5s1/2, 4d5/2, 4p3/2, and
4s1/2 orbitals in the Xe atom. Vertical arrows show the rms radius of
the 5p3/2 orbital and the positron turning point rt .

For the Be atom in 1s22p2
1/2 configuration, the estimate (26)

gives rt ≈ 4.2. Thus, the distances where annihilation can take
place are r ∼ 4. At such distances, the difference between 1s

orbitals with and without exchange interaction (configurations
1s2 and 1s22p2

1/2, respectively) is about one order of magni-
tude. Therefore, the exchange-assisted tunneling can enhance
the annihilation rate (which is proportional to the probability
density) by approximately two orders of magnitude. As we
see from Fig. 1, the ratio of the 2p and 1s orbitals at these
distances is on the order of 102. Therefore, for the Be atom in
the configuration 1s22p2, we can expect the 1s contribution
to the annihilation rate to be on the order of 10−4, instead of
10−6 without exchange-assisted tunneling.

Let us consider now a more realistic example. The inner
shell contributions to the annihilation γ line were studied by
Iwata et al. [13] for several noble gases. For Xe the total
probability of the annihilation on the inner shells 4d, 4p, and
4s was found to be 2.4%. In Fig. 2, we plot the ratios of the
orbitals for Xe at the distances from 1 to 8 Bohr radii, where
these orbitals do not oscillate. For Xe the estimate (26) for
the classical turning point gives rt ≈ 3.1. At such distances,
the ratio of the 5p and 4d orbitals is close to 10. Taking into
account that the d shell has 10 electrons while the p shell has
only 6, we conclude that a 2% contribution of the 4d shell
agrees with our simple consideration. The rms radius for the
4d orbital in Xe is 0.95 a.u., so such a large contribution is due
to the asymptotics (16).

Correlations play a very important role in the process of
positron annihilation. They lead to a huge enhancement of the
cross section. The electron core polarization leads to the attrac-
tive potential for the positron (24) increasing the annihilation
rate. Usually this effect has the size of a typical correlation
correction for many-electron atoms. The dominant correlation

corrections come from the positron-electron correlations [18].
This type of correlation can lead to the virtual formation of
the positronium and neutralization of the positron charge. As
a result, the positron can penetrate deeper inside the atom.
As we saw above, the classical turning point for the positron
rt lies in the region where the electron density of the atom is
exponentially decreasing, so even small correlation corrections
to rt can drastically increase the annihilation rate. However, it
was shown by Green and Gribakin [20] that these correlations
equally affect the outer and inner shell contributions and only
slightly change the annihilation line shape. Note that this result
indirectly confirms that the densities of the inner and outer
electrons in the annihilation region are almost proportional to
each other, as suggested by Eq. (16).

In this section, we considered direct annihilation on the
inner shell electron. We argued that this process is enhanced
by the exchange interaction between inner and outer shells.
The inner shell hole can also be formed in the annihilation
on the outer shell followed by ionization of the inner shell
caused by the changed atomic potential. In the lowest order of
MBPT, this process is described by the Coulomb interaction
between the inner and the outer shell holes. This Coulomb
integral is the same as the exchange integral considered above
with substitution of the one final orbital by the orbital in the
continuum. Such processes were considered by Dunlop and
Gribakin [15].

Positron annihilation has been observed for both atoms and
molecules [17]. Molecular calculations are much more difficult
and additional approximations are often used [21]. Significant
simplifications follow from the local-density approximation
for the exchange interaction and for the correlation corrections.
However, as we have seen here, this approximation leads to
the incorrect asymptotics of the inner shell orbitals and cannot
describe the inner shell contribution to the annihilation γ line
profile.

IV. CONCLUSIONS

In this paper, we argue that the exchange assisted tunneling
of the electrons from the inner atomic shells is not an artifact
of the Hartree-Fock approximation, but an observable effect,
at least for the intermediate distances r � 1. In particular, it
can be observed in the annihilation of the slow positrons on
the many electron atoms. The annihilation on the inner shell
electrons forms the shoulders of the experimentally observed
γ lines for the noble gases [13]. It can be also directly
detected in the coincidence experiments where γ quanta are
registered simultaneously with the Auger electrons [14]. This
process takes place at the distances, comparable to the size
of the outermost atomic shell. Because of that it is much
less suppressed than the inner shell dc field ionization, which
may be difficult to observe. On the other hand, without the
exchange assisted tunneling of the inner electrons to this
region, the inner shell annihilation would be unobservably
small. The theory which is aimed at the accurate prediction of
the shape of the annihilation γ line can not be based on the local
density approximation. At present we do not see any realistic
experiment to test the inner electron asymptotics at the large
distances r � 1 in atomic physics. However such asymptotics
can be important in the condensed-matter physics [3].
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APPEPNDIX A: DOUBLE-WELL POTENTIAL

Let us consider a double-well potential. We assume that
there are two localized states L and R and one delocalized state
D with energies εL, εR , and εD (see Fig. 3). If εL = εR = εLR ,
then the true eigenstates are ψ± = (ψL ± ψR)/

√
2 and there

is exponentially small energy splitting between them:

ε± = εLR ∓ δ, δ ∼ 〈ψL|ψR〉. (A1)

The one-particle spectrum of this system is ε+, ε−, and εD .
If we have two noninteracting electrons in this potential in

a triplet state, the spectrum still includes three levels:

Ea = 2εLR, Eb,c = εLR + εD ∓ δ. (A2)

If we switch on interaction 1/|x1 − x2| between the electrons,
we get additional splitting between levels Eb and Ec from the
exchange integral:

Ec − Eb = 2(δ + �), (A3)

� =
〈
ψL(x1)ψD(x2)

∣∣∣∣ 1

|x1 − x2|
∣∣∣∣ ψD(x1)ψR(x2)

〉

≈ − 2

x3
LR

〈ψL|x|ψD〉〈ψD|x|ψR〉. (A4)

Here we left the first nonzero term of the multipolar expansion
(xLR is the distance between the minima of the potential).

We see that for the noninteracting electrons the splitting
is caused by the tunneling through the barrier and is of the
order of the overlap integral 〈ψL|ψR〉, which exponentially
depends on the distance xLR . The exchange interaction with
the delocalized electron results in the splitting which depends
on this distance as x−3

LR . The dipole matrix elements in (A4) are
not suppressed because the state D has large overlaps with both
localizes states. We conclude that the exchange interaction can
lead to the long-range interaction between localized states.

FIG. 3. (Color online) Double-well potential with two localized
and one delocalized states.

APPENDIX B: Z−1 EXPANSION FOR THE HE-LIKE ION

The system (10) can be used to form the 1
Z

expansion of
the eigenfunction of the highly charged ion. Let us consider
a He-like ion with Z � 1. Making the substitution ξi = Zri ,
we write Hamiltonian (5) as

H (2) ≡ Z2H
(2)
ξ = Z2

(
−1

2
�ξ1 − 1

ξ1
− 1

2
�ξ2 − 1

ξ2
+ 1

Z

1

ξ12

)
.

(B1)

In the new variables, we have

H
(2)
ξ �(2) = E (2)�(2), E (2) ≡ Z−2E(2) . (B2)

We present the solution in the form (8) and need to solve
system (10), where

Wi,k(1) = 1

Z
〈φni,li (2)| 1

ξ1,2
|φnk,lk (2)〉. (B3)

Here the functions φni,li are hydrogenic. Explicit smallness
in (B3) and, therefore, on the right-hand side of Eq. (10a)
allows expansion in Z−1.

Let us consider the triplet state 1s2pm=0. The zero-order
orbital functions have the form

�
(2)
0 = 1√

2
[φ2p0 (1)φ1s(2) − φ1s(1)φ2p0 (2)], (B4)

φ1s(ξ ) = 2√
4π

e−ξ , (B5)

φ2p0 (ξ ) = cos θ

4
√

2π
ξe−ξ/2. (B6)

Note that already in the first order in Z−1 we have infinite
number of channels. However, these channels correspond to
the different final states of the ion and can be considered inde-
pendently. We are interested only in the first-order corrections
to the orbitals f1 and f2, which correspond to the ion either in
the 1s, or in the 2p state:

f1 = φ2p0 + f
(1)
2p0

, (B7)

f2 = φ1s + f
(1)
1s + f

(1)
d0

. (B8)

Note that angular and parity selection rules allow mixing of
s and d waves for the amplitude f2. However, we will be
interested only in the correction to the s wave f

(1)
1s .

For the orbitals (B5) and (B6), the functions Wi,k can be
found analytically using Eq. (B3):

W1,1 = 1√
2Zξ

[1 − e−2ξ (ξ + 1)], (B9)

W1,2 = − 2 cos θ

243Zξ 2
[64 − e−3ξ/2(27ξ 3 + 72ξ 2 + 96ξ + 64)],

(B10)
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W̃2,1 = 2

729Zξ 2 cos θ
[64 − e−3ξ/2(27ξ 3 + 72ξ 2

+ 96ξ + 64)], (B11)

W2,2 = − 1√
2Zξ

[
1 − 1

24
e−ξ (ξ 3 + 6ξ 2 + 18ξ + 24)

]
.

(B12)

In Eq. (B11) we left only the term for which the product
φ2p0W̃2,1 has no angular dependence and, therefore, con-
tributes to the s-wave part of the amplitude (B8).

The first-order corrections f
(1)
2p0

and f
(1)
1s satisfy the

equations

(
−1

2
�ξ − 1

ξ
+ 1

8

)
f

(1)
2p0

= −φ2p0W1,1 − φ1sW1,2, (B13)

(
−1

2
�ξ − 1

ξ
+ 1

2

)
f

(1)
1s = −φ2p0W̃2,1 − φ1sW2,2. (B14)

These equations are valid at all distances. We see that
the right-hand sides of both of them have three different
exponents, −ξ/2, −ξ , and −5ξ/2. The long-range asymp-
totics depends on the weakest exponent −ξ/2, which cor-
responds to the binding energy of the electron 2p. We
conclude that the first term of the Z−1 expansion has
asymptotics in agreement with the general case discussed
above.
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