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Casimir force between composite materials containing nonspherical particles
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The Casimir force between metal-dielectric composite slabs containing nonspherical particles is investigated.
The composite slab may have the symmetric (the nonspherical metal particles and spherical dielectric particles are
randomly distributed) or asymmetric microstructure (the nonspherical metal particles are randomly embedded
in the dielectric host medium), and the corresponding effective permittivity is described by the generalized
Bruggeman effective medium approximation or generalized Maxwell-Garnett approximation. As a consequence,
the Casimir force can be controlled by the volume fraction and the particles’ shape. It is found that the Casimir
force achieves a minimal value for spherical particles, and the magnitude of Casimir force can become strong
for nonspherical particles. In addition, the Casimir force for the metal-dielectric composites with the symmetric
microstructure shows a fast change at the shape-dependent percolation threshold, above (below) which the
composite slab is metallic (dielectric). Our study may be of great interest for making precise comparisons
between theoretical and experimental results on the Casimir force.
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I. INTRODUCTION

The Casimir force between two parallel perfect conductor
plates was first predicted to validate the existence of zero-point
energy in vacuum by Casimir in 1948 [1]. Despite its small
magnitude, the force was still observed in recent experiments
with high precision [2–7]. The Casimir force (usually attrac-
tive) should be considered carefully due to the important role
for the applications in microelectromechanical systems and
nanoelectromechanical systems, For some reviews, we refer
the readers to Refs. [8–11].

It is evident that the Casimir force is largely determined
by the material properties such as the permittivity and/or
the permeability [12–14]. Since these material properties are
controlled by the adjustment of the external magnetic field
and temperature, one can realize the field-dependent and
temperature-dependent Casimir force [15,16]. Due to recent
advances in the development of metamaterials, it is expected
that the Casimir force may be significantly influenced. For
instance, Yang et al. investigated the Casimir force between
slabs of left-handed materials and found that the force for
left-handed material with sufficiently large bandwidth of
negative refraction is generally greater than that for ordinary
dielectric [17]. In addition, scientists found that in anisotropic
and chiral metamaterials, both attractive and repulsive forces
can exist, and the sign of the force depends on the degree of
optical anisotropy [18] and the magnitude of the chirality [19].

On the other hand, the Casimir force between inhomoge-
neous composite materials has also received much attention.
By using two-phase aerogels, it was possible to reduce the
magnitude of the Casimir force [20]. Actually, aerogels can
be regarded as the composite materials in which air bubbles
are embedded in the SiO2 host medium, and the Maxwell-
Garnett approximation was adopted to estimate the effective
permittivity of the aerogels. Later, physical restrictions on the
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Casimir interaction of metal-dielectric metamaterials with the
aid of effective medium theory were investigated [21]. More
recently, several effective medium theories were applied to
investigate the effective permittivity of Au/SiO2 composites,
in which the particles are spherical in shape, and then the
Casimir force between such composites was calculated using
Casimir-Lifshiz theory [22]. It was concluded that the choice
of the effective medium theory is critical in making precise
comparisons between theory and experiment.

In this paper, we shall investigate the Casimir force between
composite systems of nonspherical particles. Our focus is
to study the effect of particles’ shape, characterized by the
depolarization factor, on the Casimir force between composite
slabs. The nonspherical shape was found to play an important
role for the effective linear and nonlinear dielectric responses
[23] and near-field superlens from composites [24,25], bistable
Goos-Hanchen shift [26]. Actually, in real experiments, the
shape of granular inclusions usually deviates from the spheri-
cal one. Here, the composite systems for studying the Casimir
force are two-phase metal-dielectric composites in which
ellipsoidal metal particles such as Au of volume fraction f and
spherical dielectric particles such as SiO2 of volume fraction
1 − f are randomly distributed, or in which the ellipsoidal
metal particles of volume fraction f are randomly embedded
in the dielectric host medium. The composites of the first kind
can be called symmetric composites because both metal and
dielectric phases may be considered as inclusions embedded in
an effective medium, while the composites of the second kind
can be called asymmetric, because only one (metal) phase
may be considered as inclusions embedded in the dielectric
host. Furthermore, we adopt the generalized effective medium
approximation (GEMA) [27,28] or generalized Maxwell Gar-
nett approximation (GMGA) [29], respectively, to estimate
the effective permittivity by taking into account the shape of
metallic particles. With the effective permittivity of composites
at hand, one can take one step forward to investigate the
Casimir force between such composite slabs. For our systems,
both the volume fraction of metallic particles and the particles’
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shape can be adjusted simultaneously, resulting in the tunable
Casimir force. In addition, within GEMA, we pay attention to
the behavior of Casimir force near the percolation threshold of
the composite system, in which the metal-insulator transition
takes place [30].

The paper is organized as follows. In Sec. II, we first outline
the Casimir-Lifshiz theory for the Casimir force between the
composite slabs with symmetric or asymmetric microstructure.
Both GEMA and GMGA are provided to derive the effective
permittivity of composite materials by taking into account
the nonspherical shape of metal particles. In Sec. III, numerical
results and possible interpretations about the influence of
particles’ shape and the volume fraction on the Casimir force
are given and the percolation effects on the Casimir force are
discussed. Our conclusions are presented in Sec. IV.

II. MODEL AND THEORY

Let us consider the Casimir force between two semi-infinite
composite slabs separated by a distance d. The slabs are
labeled as slab A and B. Each composite slab is assumed
to possess the symmetric microstructure where the ellipsoidal
metallic particles with permittivity ε1 and volume fraction
f , and spherical dielectric particles with permittivity ε2 and
volume fractions 1 − f , are randomly distributed. To consider
the effect of the volume fraction and the particles’ shape, the
effective permittivity εA(B)

e of such composite slab A(B) should
be first investigated. For our studied model, the Casimir force
per unit area can be written as [17,18,31]

FC = h̄

2π2

∫ ∞

0
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where k is the transverse wave vector parallel to the slab
surface and r

A(B)
N is the reflection coefficient of each slab for

a given transverse-electric (N = TE) and transverse-magnetic
(N = TM) polarized wave. After introducing the imaginary
frequency analysis with ω = iξ and performing the polar
coordinates transformation ξ/c = κ cos φ, k = κ sin φ, and
x = 2κd [17], we obtain the normalized force η, which is the
ratio of the force to the Casimir force between two perfectly
conducting plates F0 (=π2h̄c/240d4),
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The reflection coefficients for the composite slab A(B)rA(B)
N in

Eq. (1) are given by
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(3)

For composite material slab A (or B), the ellipsoidal metal
particles are randomly oriented, and each particle is assumed
to be described by three depolarization factors Lx , Ly , and
Lz, satisfying the sum rule Lx + Ly + Lz = 1. For simplicity,
we assume all ellipsoids to be ellipsoids of rotation with the
symmetry axis along the z axis, Lx = Ly . For a given Lz,
one yields Lx = Ly = (1 − Lz)/2. As a consequence, one
can use only one depolarization factor Lz to characterize
the shape of the ellipsoid. For instance, Lz equals 1/3 for
spherical particles, 0 < Lz < 1/3 denotes a prolate spheroid,
and 1/3 < Lz < 1 denotes an oblate spheroid. Furthermore,
the clustering of spherical particles and their resulted dipole-
dipole interaction can be phenomenologically taken into
account via a set of effective depolarization factors [32]. These
depolarization factors are, generally speaking, fictitious, not
real quantities, and hence are not related to real ellipsoidal
shape. In particular, it was shown that for double spheres
and linear chains, the particle aggregates behave like prolate
spheroids, while for three-dimensional fcc lattices they behave
like oblate spheroids [33].

Then, we consider the embeddings of both spheroidal
metal particles and spherical dielectric particles in a uniform
medium to derive the effective permittivity of the composites.
Since spheroidal particles are randomly oriented, the average
over all orientations of the polarization density produced in
metal and dielectric particles, respectively, can be written
as [24,28,34]

〈P 〉1 = 1

3

[
ε1 − εe

εe + Lz(ε1 − εe)
+ 2(ε1 − εe)

(1−Lz)
2 ε1 + (1+Lz)

2 εe

]
,

〈P 〉2 = 3
ε2 − εe

ε2 + 2εe

. (4)

The effective permittivity εA(B)
e can then be established by

imposing the consistency requirement that the arithmetic
average of the polarization density over metal and dielectric
particles vanishes f 〈P 〉1 + (1 − f )〈P 〉2 = 0, that is

f (ε1 − εe)

[
1

εe + Lz(ε1 − εe)
+ 4

(1 − Lz)ε1 + (1 + Lz)εe

]

+ 9(1 − f )
ε2 − εe

ε2 + 2εe

= 0. (5)

Equation (5) can be considered as the generalized Bruggeman
effective medium approximation (GEMA).

What is the need to consider such a generalization? In fact,
the conventional Bruggeman effective medium approximation
(BEMA) is, probably, the most popular phenomenological
approximation used to describe the effective conductivity and
permittivity of various composite systems. The issues of its
applicability and realizability of corresponding microgeome-
tries have been discussed in many papers. Among them, we
especially notice the work by Milton [35] who has considered
the problem in terms of the coherent potential approximation.
In particular, the following points, stemming from Milton’s
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study, are noteworthy. (i) Milton has shown that the BEMA
is exact for a wide class of composites made of spherical
particles. To fill all space, the spheres must have a range
of sizes (obviously, at least one of composite phases must
include zero-radius particles to fill empty cavities between
spheres), and to avoid clustering on a macroscopic scale, the
spatial distribution of the particles must satisfy a homogeneity
condition. (ii) Most of Milton’s analysis can be extended to
model composites with nonspherical particles. In particular,
no obvious obstacles exist to generalize Milton’s analysis to
particles with smooth surfaces. Therefore, in our situation,
in order to fill the whole space, the ellipsoids and/or spheres
must have distribution in sizes including infinitesimally small
particles, while keep the same shape or aspect ratio. (iii) The
treatment of the depolarization factor Lz in Eq. (5) as
the effective one allows one to consider this equation as
a generalization of the BEMA for spherical particles with
allowance for the particle clustering.

In spite of its popularity, the conventional BEMA has the
disadvantage. For instance, although it predicts the percolation
threshold, its fixed and high value (fc = 1/3) is an exception
rather than a rule; in fact, the percolation threshold should
depend on actual microgeometry and is usually lower than
1/3 in three-dimensional composites [36]. At the same time,
GEMA is free of the above disadvantage. Indeed, the percola-
tion threshold for GEMA is found to be [24,29,34]

fc = 9Lz(1 − Lz)

−9L2
z + 15Lz + 2

. (6)

As is easy to check from Eq. (6), the percolation threshold
peaks at Lz = 1/3 (for spheres) and then it monotonically
approaches zero as Lz → 0 or Lz → 1.

On the other hand, for the composite slab with asymmetric
microstructure, in which randomly oriented, ellipsoidal metal
particles with volume fraction f are embedded in a dielectric
host medium with volume fraction 1 − f , the effective per-
mittivity can be described by the generalized Maxwell-Garnett
approximation [23],

εe = ε2

{
1 + f

3

[
ε1 − ε2

ε2 + Lz(ε1 − ε2)

+ 4
ε1 − ε2

2ε2 + (1 − Lz)(ε1 − ε2)

]}
. (7)

Note that in comparison with Eq. (5), Eq. (7) is valid for not
too large volume fractions and does not predict the percolation
transition. For composite slabs A and B with different volume
fraction f or different Lz, the effective permittivity for slabs
A and B predicted by Eq. (5) and/or Eq. (7) should be
quite different. As a consequence, our formulas are applicable
for the situation in which two composite slabs are not
identical. Substituting Eqs. (5) and/or (7) into Eq. (3), and
then Eq. (2), one may estimate the Casimir force between
two infinite composite slabs with symmetric or asymmetric
microstructures. For simplicity, we assume the two composite
slabs have the same microstructures with the same physical
and geometric parameters.

III. NUMERICAL RESULTS

We are now in a position to present numerical results for
Casimir force between two infinite composite slabs containing
nonspherical metal particles. For this purpose, we shall
describe the permittivity ε(iξ ) of the material at the imaginary
frequencies from the available data ε′′(ω) according to the
Kramers-Kronig relations

ε(iξ ) = 1 + 2

π

∫ ∞

0
dω

ωε′′(ω)

ω2 + ξ 2
. (8)

For gold, we have [14]

ε1(iξ ) = 1 + εI (iξ ) + εII (iξ ) + εIII (iξ ), (9)

where εI (iξ ) is integrated in the frequency region from zero
to the cutoff frequency 0.125 eV from the Drude model of the
metal with the form [12,14,22]

εI (iξ ) = 2

π

ω2
pe

ξ 2 − ω2
c

[
arctan

(
ωc

γe

)
− γe

ξ
arctan

(
ωc

ξ

)]
,

(10)

with the plasma frequency ωpe = 9.0 eV and the damping
coefficient γe = 0.035 eV. In addition, εII (iξ ) and εIII (iξ )
can, respectively, be calculated by integrating the polynomial
expressions, which are fitted for ωc < ω < ω0 and ω > ω0

(ω0 ∼ 2.45) eV for the tabulated data of Au from Palik [37].
The permittivity of SiO2 in the imaginary frequency is

described by an oscillator model [22,37],

ε2(iξ ) = 1 + CUV

1 + (ξ/ωUV)2 + CIR

1 + (ξ/ωIR)2 , (11)

where CIR (CUV) is the absorption strength in the infrared
(ultraviolet) region and ωIR (ωUV) is the corresponding
frequency.

In Fig. 1, the effective permittivity εe of the composite slab
with symmetric microstructure is plotted as the function of
the depolarization factor Lz. For small frequency ξ = 0.02ωp

[see Fig. 1(a)], the permittivity of nonspherical Au particles
is much larger than that of SiO2 particles, and Au metal
particles should dominate the behavior of the composites. As a
consequence, one observes that the effective permittivity εe is
strongly dependent on the shape or the depolarization factor of
Au particles. In detail, εe exhibits nonmontonic behavior with
increasing Lz, i.e., first, it decreases, reaches a minimum for
spherical shape Lz = 1/3, and then it increases. In other words,

(a) (b)

FIG. 1. (Color online) Effective permittivity εe of nonspherical
composite materials as a function of the shape Lz for (a) ξ = 0.02ωp

and (b) ξ = 0.5ωp .
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(a) (b)

FIG. 2. (Color online) Normalized Casimir force η as a function
of Lz in (a) (GEMA) and (b) (GMGA) for various f and d = 500 nm.

when the shape of Au particles deviates from the spherical one,
the effective permittivity will become large regardless of the
prolate (Lz < 1/3) or the oblate (Lz > 1/3) shape. However,
for large frequency ξ = 0.5ωp [see Fig. 1(b)], the permittivity
of Au can be comparable to the permittivity of SiO2, resulting
in weak dependence of εe on the particles’ shape Lz. Moreover,
it is seen that the effective permittivity εe is increased with the
increase of the volume fraction f , as expected. Therefore, the
shape of Au particles Lz and the volume fraction f may play
important roles in determining the magnitude of the Casimir
force between two composite slabs.

It is known that the main contributions of the Casimir
force come from the frequencies in the vicinity of ω ∼ c/2d

(the corresponding wavelengths about the order of λ ∼ 4πd),
where d is the corresponding separation of two material
slabs [12,14,22]. In order to investigate the Casimir force
between two composite materials, the separation between two
composite materials and the size of granular inclusions a

should satisfy the condition 4πd � a. If the typical size of
the granular inclusions considered in the composite material
is about a = 20 nm, the corresponding separations of two
material slabs should be larger than d � 2 nm. In Fig. 2, we
investigate the effect of Lz on the normalized Casimir force η

between two composite slabs with symmetric microstructures
[see Fig. 2(a)] and asymmetric ones [see Fig. 2(b)] for
large distance d = 500 nm. Since the main contribution to
the Casimir force comes from the frequencies ξ < c/d, the
larger d is, the larger the weight of contributions from low
frequencies to η is. As a result, one observes the dependence
of η on Lz is quite similar as the dependence of εe on Lz

in the low-frequency case, i.e., η is quite sensitive to Lz [see
Fig. 2(a)]. Especially, we find that the normalized Casimir
force is smallest for the spherical Au particles (Lz = 1/3), and
the adjustment of the particles’ shape far from the spherical
one results in large εe and η. This indicates that the spherical
particle clustering, which can be described via a change of the
depolarization factors, results in an increase of the Casimir
force. We further find that η exhibits weak dependence on
Lz for large volume fractions such as f = 0.5. Actually, in
this situation, the nonspherical Au particles can easily form
an infinite clusters through the whole composite, and the
percolation effect takes place. For small volume fraction such
as f = 0.02, one observes that η keeps invariant in most
region 0 < Lz < 1 due to the fact that the Casimir force is
mainly determined by the spherical SiO2 particles. However,
for needlelike (Lz → 0) and disklike (Lz → 1) shapes, the
percolation effect can still occur even for small volume fraction

FIG. 3. (Color online) η versus Lz for f = 1/3.

of Au, resulting in much larger η in comparison with the force
for the system containing both spherical metal and dielectric
spherical particles. As for the composite slabs with asymmetric
microstructures [see Fig. 2(b)], for small volume fractions such
as f = 0.01, both the magnitude for η and the dependence of η

on Lz based on GMGA [Eq. (7)] are almost the same as those
based on GEMA [Eq. (5)]. However, for large volume fractions
such as f = 1/3 and f = 0.4, in general, GMGA gives smaller
Casimir force than GEMA does due to the metal-insulator
transition predicted by GEMA [22].

Then, the Casimir force based on GEMA as a function of
the depolarization factor Lz is plotted in Fig. 3 for different
separations d. Again, η exhibits nonmonotonic behavior with
increasing Lz and has a minimum for spherical metal particles
(Lz = 1/3). In addition, the magnitude of the Casimir force
becomes large with the increase of the separations. The
physical origin can be understood as follows: when the
separation is small (large), i.e., c/d is large (small), the weight
of the contributions from the high (low) -frequency region in
the Casimir force will increase. Correspondingly, the effective
permittivity εe at the high (low) frequency is small (large),
resulting in small (large) Casimir force.

Next, we study the effect of the volume fraction f on the
Casimir force based on GEMA for different depolarization
factors Lz, as shown in Fig. 4. η increases as the volume

FIG. 4. (Color online) η versus f for d = 500 nm.

042509-4



CASIMIR FORCE BETWEEN COMPOSITE MATERIALS . . . PHYSICAL REVIEW A 87, 042509 (2013)

FIG. 5. (Color online) dη/df versus f for various Lz and for
d = 500 nm. Note that, for each curve, there is a maximal value at
the corresponding percolation threshold. The percolation threshold
as a function of Lz is plotted in the inset.

fraction increases in all cases, which are quite similar as
those reported in Ref. [22] for spherical composite materials.
Actually, for the composite material with spherical particles
(Lz = 1/3), the percolation threshold fc is 1/3. For f > fc,
the composite is metallic, while for f < fc, the composite
is pure dielectric. Therefore, metal-insulator transition in
composite material can take place, resulting in the drastic
change of the Casimir force at the percolation threshold
fc = 1/3 (see the case for Lz = 1/3). For Lz 	= 1/3, the
percolation threshold is less than 1/3, and the drastic increase
of η with f occurs at small volume fractions for both prolate
(Lz < 1/3) and oblate (Lz > 1/3) particles. In order to show
this, we calculate the slope of the η-f curve, i.e., dη/df

as a function of f in Fig. 5. It is evident that, for a given
Lz, there is a critical volume fraction, at which the slope
dη/df is maximal. The maximal slope just indicates that the
Casimir force exhibits the fastest increase at such a critical
volume fraction. Actually, this critical volume fraction is
nothing but the percolation threshold for the given Lz (see
the inset). Therefore, one should observe the fastest change
of the Casimir force at the percolation threshold fc, at which
the metal-insulator phase transition occurs for the composite
slabs with symmetric microstructures. Incidentally, for the
composite slabs with asymmetric microstructures, dη/df is
expected to exhibit monotonic behavior with f , indicating no
percolation effect with GMGA.

IV. CONCLUSIONS

The Casimir force between two semi-infinite slabs made
of the metal-dielectric composite material is investigated
by Casimir-Lifshitz theory. The composite material slab
may have the symmetric microstructure, in which randomly
oriented nonspherical metal particles and spherical dielectric
particles are randomly mixed and the effective permittivity

is predicted by GEMA, or the asymmetric microstructure,
in which randomly oriented nonspherical metal particles are
embedded in the dielectric host and the effective permittivity
is predicted by GMGA. Numerical results show that the
Casimir force is strongly dependent on the particles’ shape.
When metal particles are spherical in shape (Lz = 1/3), the
magnitude of the Casimir force is minimal, and the adjustment
of the particles’ shape far from spherical shape results in
the enhancement of the Casimir force. In addition, within
GEMA, the curve for the Casimir force η against the volume
fraction f exhibits a fast increase with the increase of f at the
percolation threshold fc, which is determined by the particles’
shape. Therefore, the particles’ shape plays a crucial role
in determining the magnitude of the Casimir force between
two inhomogeneous composite slabs containing nonspherical
metal particles.

Some comments are in order. Our theoretical predictions
of the Casimir force, including its nonmonotonic dependence
on the particles’ shape and metal-insulator transition, have yet
to be observed experimentally. Fortunately, some techniques
have been developed to fabricate nonspherical metal particles
by lithographic means [38] and even to realize the morphology
control with colloid-chemical synthesis [39]. In addition, the
composite media containing nonspherical metal particles were
fabricated and characterized [40]. With the development of
the Casimir measurements and the metal-dielectric composites
manufactured in recent years, it is expected that the Casimir
measurement of ellipsoidal shape effects in composite ma-
terials will be feasible in the near future, and an interesting
question whether the Casimir force can undergo a fast change
near the metal-insulator phase transition can be checked. In
addition, we adopt GEMA and GMGA to predict the effective
permittivity of the inhomogeneous metal-dielectric composite
materials containing nonspherical particles. Generally, the
sizes of metal-dielectric particles are about 10 nm, and
the nonlocality or spatial dispersion should be taken into
account. In this connection, the nonlocal effective-medium
theory can be adopted, in order to make the precise calculation
of the Casimir force between the composite materials. Work
along this line is in progress and we shall report it elsewhere.
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