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Considerations on Hund’s first rule in a planar two-electron quantum dot
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We give a detailed analysis of the applicability of Hund’s first rule for harmonic planar two-electron quantum
dots by means of entanglement witnesses. We find that for purely harmonic confinement there is only one pair
of singlet and triplet states for which it can be applied. We also discuss the origin and validity for this case
and extend the discussion to a quartic confining potential, a hard-wall potential, and a combination of harmonic
confinement with quartic perturbation. A generalized rule, the alternating rule, is found to be applicable and
valid for vanishing angular momentum states in all these cases. Furthermore, we are able to clarify the role of
entanglement in general harmonic two-electron models for vanishing interaction strength. This behavior can be
attributed to the special separability properties of these models.
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I. INTRODUCTION

Hund’s first rule (HFR) [1,2] is well known to have universal
predictive power for the ground-state electron configuration of
atoms. In case of equal spatial configuration the higher spin
state has less energy than the lower spin state. The rule can
be generalized to excited states with the same configuration of
one-electron orbitals [3].

There has been a long discussion about the origin of this
effect, starting from the first explanation by Slater [4]. He
claimed that the difference in Coulomb interaction between the
electrons due to the existence of a Fermi hole was responsible
for this effect. More than 30 years later a numerical calculation
by Davidson [5] for helium was the first to reveal that Slater’s
argumentation was wrong; in fact the Coulomb interaction was
higher for the triplet state. Several calculations for helium and
heliumlike ions supported this result [6–9]. Calculations for
atomic systems with more electrons, e.g., Ref. [10], confirmed
this behavior. A result based on perturbation theory [11,12]
showed that generally all atoms violate Slater’s explanation
and a new interpretation was given by Boyd [13]. His
argumentation follows the virial theorem for atomic systems:
The total energy equals half of the potential energy. All
interactions are Coulombic and the potential energy is the
sum of the interelectron and the negative electron-nucleus
interactions. As a consequence the absolute value of the
nuclear potential energy must rise for higher spin states to
compensate the higher interelectron interaction. This could
be interpreted as a higher effective nuclear charge or lower
screening of the nuclear attraction, caused by different angular
configurations. Only recently this interpretation has again been
doubted by Sajeev et al. [14] when they compared the effect
in atoms to rectangular quantum dots. They claim that the
angular configuration does not play a major role for screening
effects. A detailed review of the meaning and applicability
of Hund’s rules can be found in [15]. A generalization of
HFR, the alternating rule, was first proposed by Morgan
and Kutzelnigg [3] distinguishing different behaviors between
natural and unnatural parity states. The comparison of the
results for heliumlike systems with harmonic quantum dot
systems has been addressed recently by Sako et al. [16], and
also by Katriel et al. [17]. Just like in atoms, the filling of the

electron orbitals for few-electron quantum dots in the ground
state is in general governed by Hund’s rules [18–20].

In the present paper, we address the applicability, the
range of validity, and the origin of HFR in the widely used
planar harmonic confinement model for two-electron quantum
dots. In addition, we investigate the same issues for the
alternating rule [3]. This rule is shown to be applicable and
extensively valid for zero-angular-momentum states in a planar
two-electron model with quartic confinement, and also for
harmonic confinement with quartic deviation.

The interparticle interaction is the driving force for the
energy splitting between singlet and triplet states. Appropriate
quantum numbers and probability densities obtained in center-
of-mass (COM) and relative coordinates reveal the importance
of the interparticle potential. This enables us to give an
interpretation that holds not only for HFR, but also for
the alternating rule, for both the harmonic and the quartic
potentials.

The planar harmonic model has already been addressed
in [16,21], and we agree with the main conclusion, that the
cause of the lower energy for the triplet state is the angular
momentum configuration in the relative motion. However, only
very little attention has been paid to a detailed investigation of
the applicability of Hund’s rules. We find evidence that there is
only one pair of states of each parity, even and odd, for which
HFR is applicable at all.

We investigate measures for the entanglement between two
fermions [22], in order to obtain an explicit quantity bearing
the information on applicability of HFR. These measures of the
entanglement are calculated analytically in the noninteracting
limit. We only presume the system to be in the symmetry class
appropriate for the interaction depending on the interelectron
distance. Our results are therefore applicable not only to
Hooke’s atom with Coulomb interaction, but also to Crandall’s
atom, with inverse square interaction and Moshinsky’s atom
with harmonic interaction. The entanglement of these and
similar models have been considered recently [23,24] and
the entanglement of several excited states has been found
to be nonvanishing in the noninteracting limit, which might
seem counterintuitive. Another issue has been discussed when
comparing these results to the conceptually similar system
of helium, which has Coulombic confinement [24–26]. The
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linear entropy for the harmonic models was found to saturate
to unity, while for helium the limit is one-half. Both effects
can be clarified by our analysis of the entanglement.

In Sec. II we briefly describe our model for a planar
quantum dot which has been presented in detail in [27]. A
general discussion about entanglement and separability of the
system is presented in Sec. III. Section IV is devoted to the
discussion of the applicability of HFR in the case of harmonic
confinement. In Sec. V we address the quartic confinement
and show our results supporting the alternating rule. Before
we conclude in Sec. VII, we briefly discuss the alternating rule
in a combination of a harmonic with a weak quartic potential
and also in a planar hard-wall quantum dot model in Sec. VI.

II. GENERAL MODEL

We discuss a planar model of two electrons confined
by a harmonic or quartic potential interacting via Coulomb
interaction. The Hamiltonian in modified units (m.u.) (see
Appendix A) reads

H =
2∑

j=1

[
−1

2
∇2

j + Vconf(rj )

]
+ γ

|r1 − r2| . (1)

Here the adiabatic introduction of the interparticle interaction
can be tuned by the Coulomb strength parameter γ and the
confining potential is defined by one of

Vharmonic(r) = 1
2 r2, (2)

Vquartic(r) = (r2)2. (3)

For all cases we consider the following set of operators com-
muting with the Hamiltonian and each other: The square of the
total angular momentum perpendicular to the plane L2

z , the par-
ticle exchange operator �12, and the parity operator �xy , inter-
changing the coordinates x and y. The corresponding eigen-
values are m2 with |m| ∈ N, εs ∈ {+1 (singlet),−1 (triplet)},
and εp ∈ {+1 (even),−1 (odd)}, respectively. For details of the
approach we refer to Ref. [27].

The Hamiltonian can be written as the sum of the kinetic
energy, the confining potential, and the interparticle interaction
potential. From the quantum virial theorem it is well known
that there is an interdependence between the expectation values
of these contributions in an eigenstate.

From our point of view the expectation value of the kinetic
energy is to be considered as a consequence of the potentials
involved and we write the eigenenergy as the weighted sum of
the expectation values of the potentials:

Eharmonic = 2 〈Vharmonic〉 + 1
2 〈VCoulomb〉, (4)

Equartic = 3 〈Vquartic〉 + 1
2 〈VCoulomb〉. (5)

Note that our numerical results agree with the virial theorem
up to the full accuracy of the eigenenergies. The importance
of the virial theorem and the preservation by the numerical
results for an interpretation of Hund’s rules has been pointed
out recently by Oyamada et al. [28].

III. ENTANGLEMENT AND SEPARABILITY

Entanglement for indistinguishable particles, where all
states are linear superpositions, has attained much interest in
recent years. A clear description of the bosonic and fermionic
entanglement properties has been given in [29,30]. For a
fermionic state |�〉 the Slater rank is introduced, which is
the minimal number of nonvanishing coefficients in the Slater
decomposition:

|�〉 =
∑
j,k

cj,k(|ψ1,j 〉 ⊗ |ψ2,k〉 − |ψ2,j 〉 ⊗ |ψ1,k〉). (6)

If the Slater rank of a quantum state is unity it is a nonentangled
state, i.e., the only correlations that exist between the fermions
can be attributed to their indistinguishable nature. In order
to determine the Slater rank the partial trace over one of the
particles is performed on the density matrix, which defines the
reduced density matrix,

ρred = Tr2[|�〉〈�|] =
∑

j

〈ψ2,j |�〉〈�|ψ2,j 〉. (7)

The Slater rank equals the rank of the reduced density matrix.
For pure states of two identical fermions we consider two
entanglement witnesses, the reduced von-Neumann entropy
EVN and the reduced linear entropy EL,

EVN = S[ρred] − log22, (8)

EL = 1 − 2 Tr
[
ρ2

red

]
, (9)

where S[ρred] = −Tr[ρredlog2(ρred)] is the ordinary von-
Neumann entropy. Canceling the amount of entropy corre-
sponding to the antisymmetrization of the fermionic states
(log22 and 1, respectively) both measures vanish if and only
if a state is nonentangled in the fermionic sense [22]. The
advantage of (9) is that the reduced density matrix needs not
be diagonalized for evaluation, therefore it is most commonly
used in numerical treatments.

Up to now we have considered a general state |�〉,
describing two fermions, that can be written as a Slater
determinant. Turning on an interaction between the fermions
introduces entanglement. We will only consider interactions
that do not explicitly couple the spatial and the spin degrees
of freedom. Thus entanglement stems from the separability
inherited by this kind of interaction, and remains, even in
the noninteracting limit, as an offset entanglement. The spins
couple to give singlet and triplet states due to the interaction
as we have implicitly assumed by the choice of the symmetry
operator �12. The separability of the Hamiltonian is carried
forward to a product wave function and further to a product of
reduced density matrices,

ρred = ρ
spatial
red ρ

spin
red . (10)

Notice that this holds only because the one-particle basis, used
to trace over the density matrix, can equivalently be expressed
as product states |ψ2,j 〉 = |ψj (r2)〉 ⊗ |(S,Sz)2,j 〉 of a spatial
and a spin state. Plugging (10) into (8) and (9) we find

EVN = S
[
ρ

spatial
red

] + S
[
ρ

spin
red

] − 1, (11)

EL = 1 − 2 Tr
[(

ρ
spatial
red

)2]
Tr

[(
ρ

spin
red

)2]
. (12)
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TABLE I. The spatial entanglement between the two electrons
for the lowest energy states in the COM and relative basis for
the noninteracting harmonic model. We show two entanglement
witnesses, the reduced von-Neumann entropy E spatial

VN and the reduced
linear entropy E spatial

L , which are zero for nonentangled states, and
greater than zero for entangled states. A fermionic state is not
entangled if it is the result of antisymmetrizing two orthogonal
one-particle states, where we purposely consider solely the spatial
wave function. Notice that the entropies of the states including spin
can be obtained from the results presented by applying Eqs. (11) and
(12), respectively.

E (m.u.) m State E spatial
VN E spatial

L

2 0 |0,0,0,0〉+1 0.0 0.0
3 1 |0,1,0,0〉±1 0.0 0.0
3 1 |0,0,0,1〉±1 0.0 0.0
4 0 |1,0,0,0〉+1 1.0 0.5
4 0 |0,0,1,0〉+1 1.0 0.5
4 0 |0,1,0,−1〉±1 0.0 0.0
4 2 |0,0,0,2〉±1 1.0 0.5
4 2 |0,2,0,0〉±1 1.0 0.5
4 2 |0,1,0,1〉±1 0.0 0.0
5 1 |0,1,0,−2〉±1 1.29879 0.53125
5 1 |0,1,1,0〉±1 1.5 0.625
5 1 |1,1,0,0〉±1 1.29879 0.53125
5 1 |0,0,1,1〉±1 1.29879 0.53125
5 1 |1,0,0,1〉±1 1.5 0.625
5 1 |0,2,0,−1〉±1 1.29879 0.53125
5 3 |0,1,0,2〉±1 1.06128 0.40625
5 3 |0,3,0,0〉±1 1.56128 0.65625
5 3 |0,0,0,3〉±1 1.56128 0.65625
5 3 |0,2,0,1〉±1 1.06128 0.40625

The spin-dependent part is easily evaluated for the spin states
|S,Sz〉:

S
[
ρ

spin
red (|0,0〉)] = S

[
ρ

spin
red (|1,0〉)] = 1,

S
[
ρ

spin
red (|1,+1〉)] = S

[
ρ

spin
red (|1,−1〉)] = 0,

Tr
[(

ρ
spin
red (|0,0〉))2] = Tr

[(
ρ

spin
red (|1,0〉))2] = 1

2 ,

Tr
[(

ρ
spin
red (|1,+1〉))2] = Tr

[(
ρ

spin
red (|1,−1〉))2] = 1,

and depends only on |Sz|. By considering the interparticle
interaction with first-order perturbation theory for a fourfold
degenerate subsystem the authors of [24] introduce this kind of
entanglement. Independently of the confining potential these
states will be entangled for Sz = 0. However, this effect does
not explain the nonvanishing values of entanglement in atomic
models with harmonic confinement for decreasing interaction
strength, as they claim. Indeed another separability induces
this nonvanishing entanglement.

For two distance-dependently interacting fermions in har-
monic confinement the system is separable in COM and
relative motion. This holds in any dimension, also for
anisotropic harmonic potentials. The separability leads to the
eigenstates being product states of COM and relative wave
functions, which can preliminarily be incorporated. Regarding
the interaction as a perturbation, the correct symmetrization
of the eigenstates can be found by diagonalizing the in-
teraction matrix in a basis of degenerate eigenstates [24].
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FIG. 1. (Color online) The linear entropies EL for all eigenstates
in the noninteracting limit up to principal quantum number n = 13.
Points corresponding to the same principal quantum number n, but
different angular momenta m are displaced horizontally for better
visibility, as indicated for n = 6 and 7 by the enlarged scale. The
spin quantum number is set to Sz ≡ 0 for all states. For nonvanishing
angular momentum we consider states without parity symmetrization.
The dashed horizontal line corresponds to the saturation limit
for the linear entropy in helium. The eigenenergies are given by
En = (n + 2) m.u..

Entanglement is introduced by the symmetrization already
before the interaction actually couples the two particles. As
a consequence the entanglement for such systems will not
generally vanish in the noninteracting limit. The explicit kind
of interelectron interaction does not play a major role, as long
as it depends solely on the interparticle distance. With this
we include the Crandall atom and the Hooke atom discussed
in [23], as well as the Moshinsky atom and a model with
contact interaction addressed in [24]. Systems without explicit
separability in COM and relative coordinates usually relax in a
basis of independent particles and will not show such an offset
entanglement. The linear entropy of helium has been shown
to saturate to the value of one-half [24,26]. In contrast, the
linear entropy for states in the above-mentioned atomic models
with harmonic confinement saturates to the higher value of
unity [24]. The linear entropy is either equal to the spatial
linear entropy presented in Table I or calculated by EL = 1

2 +
1
2E

spatial
L . The spatial linear entropy is calculated by considering

only the spatial wave function, E spatial
L = 1 − 2 Tr[(ρspatial

red )2].
For most of the states the entropies in the noninteracting case
already exceed the limit for helium; see Fig. 1. The offset
entanglement is thus responsible for the higher limit for the
linear entropy in the harmonic cases. Furthermore the linear
entropy for the interacting model has been shown to increase
with the energy [24]. This dependence is already contained in
the noninteracting limit (Fig. 1).

Another effect can be interpreted in terms of the offset
entanglement that emerges from some separability of the
considered system. For an anisotropic harmonic system with
ωz � ω0 = ωx = ωy and Coulomb interparticle interaction
a magnetic field is applied [31]. As shown in [32] the
primarily cylindrically symmetric system becomes spherically
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symmetric for magnetic fields, such that ωz ≡
√

ω2
B + ω2

0 ,
with the Larmor frequency ωB . At this specific value a
minimum of the entanglement is found for several different
strengths of the confinement parameter ω0. The states in the
noninteracting limit belong either to a symmetry class of
the cylindrical or of the spherical symmetry. Qualitatively
speaking the interaction does affect the states differently
according to their algebraic properties. We expect that the
offset entanglement is different, depending on the symmetry. In
particular, we expect the spherically symmetric representation
to be less entangled than the cylindrically symmetric one. This
discontinuity in the noninteracting limit carries forward to a
minimum in the interacting case.

IV. HARMONIC CONFINING POTENTIAL

We discuss the harmonic case (Vharmonic) for two reasons.
First we show that HFR is not applicable for the planar
model, except for one particular case, which includes both
parities. Then we use this case as an illustrative example and
to introduce basic concepts that will clarify the origin of the
alternating rule in the quartic case.

The harmonic two-electron quantum dot model is separable
in COM and relative motion and the associated potentials
are radially symmetric. Therefore, the angular momenta in
these two separate dynamics are good quantum numbers. We
construct a basis with two pairs of quantum numbers (nc,
mc) and (nr , mr ) associated with the polar COM and relative
coordinates, respectively:

|nc,mc,nr ,mr〉εp

= 1√
2

(|nc,mc,nr ,mr〉 + εp|nc,−mc,nr,−mr〉).

The eigenvalues of the symmetry operators in this basis are
m = |mc + mr |, εs = (−1)mr , and εp = ±1.

Understanding the applicability of HFR for the harmonic
case requires the identification of states that arise from the
same configuration of one-electron orbitals. This, however,
is not a trivial task due to the separability in the chosen
coordinates. The fermionic entanglement for indistinguishable
particles [30] can be used for this purpose. At this point it
is necessary to clearly distinguish our application from the
general term of entanglement, as presented in the last section.
Our goal is to identify states that are the direct antisym-
metrization of one-particle orbitals, as stated in the empiric
definition of HFR [3]. This rule is valid in the nonrelativistic
limit, where no coupling between spatial and spin degrees of
freedom is presumed. Consequently, we do not consider the
spin-dependent part of the wave function at all, as it has no
influence on the energy of the state. The ambiguities here are
easily explained with an example. The state |0,1,0,0〉+1 can be
expressed with a Slater decomposition of rank unity and gives
EVN = 0 in the noninteracting limit. Taking into consideration
also the spin-dependent wave function, which is singlet, the
state is indeed entangled in the fermionic sense, since

EVN[|0,1,0,0〉+1 ⊗ |0,0〉] = 1. (13)

The corresponding state of helium is the (1s2p) 1P state, for
which HFR is applicable in combination with the triplet state

(1s2p) 3P . A unique case is the ground state, for which we
find EVN[|0,0,0,0〉+1] = −1, since the antisymmetrization is
exclusively contained in the spin wave function. This will be of
no further concern to us, since there cannot be a corresponding
triplet state for the ground state.

In the last section we explained, that already the choice
of the appropriate symmetry class creates entanglement of
the states. The symmetry and the exact quantum numbers nc,
mc, nr , mr are independent of the value of γ . We have thus
found a possible choice of symmetry class induced by the
interaction. For nonvanishing angular momenta, omitting the
parity and allowing negative values for m offers another choice
of an appropriate basis. For γ = 0 the entanglement between
the two fermionic particles in terms of the quantum numbers
describing the state |nc,mc,nr ,mr〉εp can be calculated analyt-
ically (see Appendix B). We consider the density matrix,

|ψ〉〈ψ | = |nc,mc,nr ,mr〉εp εp 〈nc,mc,nr ,mr |, (14)

and represent it in an independent-particle basis. The trace
over one particle leads to the reduced density matrix ρred.
In Table I we show the reduced spatial von-Neumann
entropy E spatial

VN and the reduced spatial linear entropy E spatial
L

for various eigenstates. We have tested all states up to
E = 15 m.u. for the noninteracting case, and the only pairs
of spatially nonentangled singlet and triplet states we found
are |0,1,0,0〉εp and |0,0,0,1〉εp . Here the even- and odd-parity
states are degenerate, so we only consider the even case
εp = 1. Notice that we have also tested the entanglement for
the more common second choice of positive and negative
angular momenta. The only spatially nonentangled pairs we
found are the corresponding pairs (|1,0,0,0〉,|0,0,1,0〉) with
m = 1 and (|0,1,0,0〉,|0,0,0,1〉) with m = −1.

These states follow HFR and the singlet energy grows
larger than the corresponding triplet energy with adiabatically
increasing the interparticle interaction. We show the details of
this effect by considering the different parts, which contribute
to the total energy in Fig. 2. We observe that the total energy, the
Coulomb energy, and the confining harmonic energy are higher
for the singlet state. In contrast to the atomic case, Slater’s
explanation generally holds for the harmonic quantum dot:
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FIG. 2. (Color online) Energy difference between the singlet state
|0,1,0,0〉+1 and the triplet state |0,0,0,1〉+1 for the harmonic confining
potential. Adiabatically raising the interparticle interaction via the
Coulomb strength parameter γ lifts the degeneracy of the singlet and
triplet states for total energy (solid line), Coulomb potential (dashed
line), harmonic potential (dotted line), and kinetic energy (dot-dashed
line).
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The Fermi hole causes the lower value of the triplet Coulomb
interaction.

In order to understand the origin of the Fermi hole we take
a deeper look at the structure of the effective potential. This
potential consists of the ordinary potential and the dynamic
part coming from the angular solution which corresponds to
the classical angular momentum barrier. The antisymmetry
under interparticle exchange imposes even (odd) values of the
angular momentum quantum number in relative coordinates
mr for the singlet (triplet) case. The effective potential depends
on these quantum numbers and thus on the symmetrization and,
already for the noninteracting case, determines the localization
properties of the state. This localization is responsible for the
amount of influence of the Coulomb interaction. In the example
considered, the singlet state has vanishing angular momentum
in the relative coordinate, while for the triplet state mr = ±1.
In general it may well be possible, that a singlet state has higher
relative angular momentum than the corresponding triplet state
which would cause a violation of Hund’s rule.

The localization of these states, their corresponding effec-
tive potentials, and influences of the Coulomb potential are
illustrated in Fig. 3. The singlet state localizes close to the
origin in the relative coordinate, because it does not feel an
angular momentum barrier in this coordinate (top, left panel).
The Coulomb term thus has a large influence on the singlet
state and the expectation value of the Coulomb interaction
reads

+1〈0,1,0,0| 1

rrel
|0,1,0,0〉+1 =

√
π

2
m.u. (15)

In addition, the Coulomb barrier changes the effective potential
and the localization of the state as shown in Fig. 3 (top, right
panel). The triplet state has no probability of presence close
to the origin of the relative coordinate (bottom, left panel),
which is reflected in a smaller value of the Coulomb interaction
compared with the singlet case,

+1〈0,0,0,1| 1

rrel
|0,0,0,1〉+1 =

√
π

8
m.u. (16)

In the interacting case only minor changes in the effective
potential and the localization can be observed in Fig. 3 (bottom,
right panel).

The rather low dependence of the localization of both states
on the Coulomb interaction suggests application of first-order
perturbation theory. The energy levels depend nearly linearly
on γ ; see Fig. 4(a), particularly for the triplet state, and the
deviation is quadratic in γ [see Fig. 4(b)], and is well described
with second-order perturbation theory for both cases.

V. QUARTIC CONFINING POTENTIAL

For the quartic confining potential Vquartic the separability
in COM and relative motion is lost. Still we can express the
potential in the coordinates rCOM, rrel, and ϕ = ϕCOM − ϕrel,
such that the confining potential is given by

Vquartic(rCOM,rrel,ϕ)

= 2 r4
COM + 1

8 r4
rel + r2

COMr2
rel(3 − 2 sin2 ϕ). (17)
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FIG. 3. The probability density of the singlet state |0,1,0,0〉+1

(top) and the triplet state |0,0,0,1〉+1 (bottom) in the noninteracting
(γ = 0, left) and interacting (γ = 1, right) harmonic case is pictured
here. The angular dependencies have been integrated out [27]. The
gray shadings represent the confining effective potential with the thick
equipotential line equal to the eigenenergy of the state. The white lines
are contour lines of the probability density starting from 0.05 in steps
of 0.1. The probability density of the singlet state is localized close to
the origin of the relative coordinates for the non-interacting case (top,
left) and therefore significantly affected by the Coulomb interaction
(top, right). The triplet state is localized close to the origin of the
COM coordinate, but the angular momentum barrier in the relative
coordinate repels the wave function from the origin (bottom, left).
The Coulomb interaction causes only minor changes in the effective
potential and in the localization of the triplet state (bottom, right).

There is no dependence on the angle ϑ = ϕCOM + ϕrel, which
is the conjugate coordinate to the conserved total angular
momentum perpendicular to the plane.

For potentials lacking a further separation, apart from
the separation in independent particles for the noninteracting
case, there is no subtlety about the applicability of HFR.
This is also valid for the quartic potential. All states arise
from (anti-)symmetrization of one-particle orbitals and the
noninteracting eigenenergies can be expressed as the sum of
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FIG. 4. (Color online) For the harmonic confinement the numeri-
cally exact eigenenergies Enum (circles) and the results from first-order
perturbation theory E1 (lines) are shown in (a). The singlet state has
higher energy than the triplet state. Both can be approximated by
first-order perturbation theory (singlet: dashed line; triplet: dotted
line). The deviation E1 − Enum is shown in (b). The numerical values
(circles) are close to the quadratic fit for the triplet (dotted) and the
singlet case (dashed). Small deviations are observed close to γ = 1.
The magnitude of the quadratic deviation of the singlet state is larger
by a factor of approximately ten, in accordance with the significant
change in the wave function (compare Fig. 3).

the one-particle solutions. For the planar quartic confinement
the one-particle problem is radially symmetric and solutions
are provided by Ref. [33] with principal quantum number nj

and angular momentum quantum number mj , where j denotes
the particle. We construct the two-electron basis by

|n1,m1,n2,m2〉εp,εs

ind

= 1
2 [(|n1,m1,n2,m2〉ind + εp|n1,−m1,n2,−m2〉ind)

+ εs(|n2,m2,n1,m1〉ind + εp|n2,−m2,n1,−m1〉ind)], (18)

with the eigenvalues εp for the parity operator, εs for the
particle exchange operator, and (m1 + m2)2 for L2

z . In order
to distinguish the basis in COM and relative coordinates from
the independent particle basis we introduce the subscript “ind”
for the latter.

For two independent particles with vanishing total angular
momentum we find three different classes of states for which

TABLE II. Numerical results for the states |1,1,0,−1〉εp,εs

ind for the
quartic potential. All four states are degenerate for the noninteracting
case with the energy E = 12.098604 m.u.. The approximate quantum
numbers are used to calculate the effective potential in Figs. 6 and
7. The expectation value of the Coulomb potential is used for the
calculation of first-order perturbation theory in Fig. 8.

Spin Parity m̃rel 〈1/rrel〉 (m.u.) E(γ = 1) (m.u.)

Singlet Even 0.2269 1.711000091 13.65192024
Triplet Even 1.0090 0.966742637 13.03986337
Singlet Odd 2.0136 0.761620656 12.85001951
Triplet Odd 1.0745 0.947045869 13.02380571
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FIG. 5. (Color online) Energy differences between singlet and
triplet states for total energy (solid line), Coulomb potential (dashed
line), quartic potential (dotted line), and kinetic energy (dot-dashed
line). (a) Shows states with even parity |1,1,0,−1〉+1,±1

ind ; (b) shows
states with odd parity |1,1,0,−1〉−1,±1

ind . The lowest states with zero
angular momentum follow the alternating rule; the even singlet state
has higher energy than the even triplet state while the odd singlet state
has lower energy than the odd triplet state. The Coulomb potential
follows the same trend as the total energy.

HFR can be applied. There are pairs of singlet and triplet
states with even parity and pairs with odd parity. Furthermore,
there are states of the form |n1,m1,n1,−m1〉±1,±1

ind which give
rise to pairs of mixed parity, namely singlet even-parity
states corresponding to triplet odd-parity states. In the quartic
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0.0

0.5
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rCOM m . u . rCOM m . u . ψ r rel ²
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FIG. 6. (Color online) The probability density of the singlet
(a) and triplet state (b) |1,1,0,−1〉+1,±1

ind with even parity in COM and
relative radial distance for the noninteracting case (γ = 0) confined
by a quartic potential. The angles are integrated out. The thick lines
are the equipotential lines equal to the eigenenergy of the effective
potential (solid line, sin2 ϕ = 0; dot-dashed line, sin2 ϕ = 1) with the
numerically obtained approximate angular quantum numbers m̃c and
m̃r . The projection (integration over rCOM) on the relative distance
(c) shows the different effect of the Coulomb potential (schematic,
solid line) on the singlet (dashed line) and the triplet (dotted line)
state. The Coulomb potential has a larger effect on the singlet than
on the triplet state, as a consequence of the different approximate
relative quantum numbers of m̃r ≈ 0 and m̃r ≈ 1, respectively.
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FIG. 7. (Color online) The probability density of the singlet (a)
and triplet state (b) |1,1,0,−1〉−1,±1

ind with odd parity; settings equal
those in Fig. 6. Again the projection on the relative distance (c) shows
the different effect of the Coulomb potential. The alternating rule can
be explained with the approximate quantum number m̃r ≈ 2 for the
odd singlet state, while the odd triplet state has m̃r ≈ 1.

confining potential we consider 110 states in total, where the
highest level is the state |3,0,3,0〉+1,+1

ind with eigenenergy E =
36.917640 m.u.. Within this range there are 25 even-parity
pairs and 12 mixed-parity pairs. For all of those the singlet
energy is higher than the corresponding triplet energy. For
the 16 odd-parity states considered the behavior is inverted
and all triplet energies are higher than the corresponding
singlet energies. Therefore HFR holds for all the even and
mixed-parity pairs, while the odd-parity pairs violate the
rule. A similar effect can be observed for helium, which
was investigated in [3] and led to the formulation of the
alternating rule. This rule states that for unnatural parity states,
corresponding to odd states for vanishing angular momentum,
HFR is reversed, such that singlet states are lower in energy
than the associated triplet states.

To understand this behavior we follow the line of argumen-
tation from the harmonic case. As an example we pick the first
pair of states that shows the violation |n1,m1,n2,m2〉εp,εs

ind =
|1,1,0,−1〉−1,±1

ind . We compare these states with the degener-
ate pair of even states |n1,m1,n2,m2〉εp,εs

ind = |1,1,0,−1〉+1,±1
ind .

The common eigenenergy for the noninteracting case is
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even
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even
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FIG. 8. (Color online) For quartic confinement the numerically
exact eigenenergies Enum (circles) and results from first-order
perturbation theory E1 (lines) are shown in (a) and (b) for even
and odd states, respectively. The deviation E1 − Enum is shown in
(c) and (d), for even and odd states, respectively. For the singlet
even case, the dashed line is a guide to the eye, while for the other
cases the lines are the quadratic fit. For these cases the behavior
of the states confined by a quartic potential can be understood
considering first-order perturbation theory. The singlet even state, like
in the harmonic potential, is significantly changed by the interaction
potential.

E = 12.098604 m.u., while the energies for the interacting
case are given in Table II. Again we start with considering the

TABLE III. For the quartic confinement all states considered with vanishing angular momentum follow the alternating rule. We show six
examples of states, which are degenerate for the noninteracting case and split into four states, one in each symmetry class, when turning on the
interaction. The behavior of the energies is closely related to the approximate angular momentum quantum number in relative coordinates m̃rel.

εp,εs → ±1, ± 1 +1,+1 +1,−1 −1,−1 −1,+1 +1,+1 +1,−1 −1,−1 −1,+1

States ↓ E (γ = 0) (m.u.) m̃rel (γ = 0) E (γ = 1) (m.u.)

|1,1,0,−1〉εp,εs

ind 12.098 604 0.227 1.009 1.074 2.014 13.651 920 13.039 863 13.023 806 12.850 020
|1,2,0,−2〉εp,εs

ind 17.159 089 1.062 2.015 1.062 2.015 18.380 186 17.964 433 18.070 037 17.909 929
|2,1,0,−1〉εp,εs

ind 18.375 959 1.047 1.069 2.071 2.104 19.820 331 19.352 300 19.212 249 19.140 113
|1,3,0,−3〉εp,εs

ind 22.599 343 1.284 2.364 1.284 2.364 23.734 568 23.359 149 23.487 848 23.325 314
|2,1,1,−1〉εp,εs

ind 23.678 262 1.028 1.982 2.042 3.576 24.938 356 24.515 878 24.524 989 24.331 156
|2,2,0,−2〉εp,εs

ind 23.869 758 2.061 2.088 2.061 2.088 25.105 915 24.699 766 24.717 959 24.634 682
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TABLE IV. For the full potential (20) we show all states with vanishing angular momentum up to the fourth state that exists only as singlet
even |3,0,3,0〉+1,+1

ind . All pairs of singlet and triplet spin symmetry presented here follow the alternating rule. For the parity mixing pairs the
singlet has higher eigenenergy than the triplet in all cases.

εp,εs → ±1, ± 1 +1,+1 +1,−1 −1,−1 −1,+1

States ↓ E (γ = 0) (m.u.) E (γ = 1) (m.u.)

|0,0,0,0〉εp,εs

ind 2.300376 3.445300
|0,1,0,−1〉εp,εs

ind 4.828681 5.901348 5.526039
|1,0,0,0〉εp,εs

ind 5.026830 6.210941 5.745411
|0,2,0,−2〉εp,εs

ind 7.544645 8.304078 8.221913
|1,0,1,0〉εp,εs

ind 7.753283 8.658231
|1,1,0,−1〉εp,εs

ind 7.809767 8.939785 8.507135 8.509367 8.374 386
|2,0,0,0〉εp,εs

ind 8.205149 9.297429 8.932604
|0,3,0,−3〉εp,εs

ind 10.422142 11.168524 11.067339
|1,2,0,−2〉εp,εs

ind 10.743092 11.550716 11.311839 11.346638 11.298 899
|1,1,1,−1〉εp,εs

ind 10.790854 11.660480 11.437097
|2,0,1,0〉εp,εs

ind 10.931602 11.915729 11.544597
|2,1,0,−1〉εp,εs

ind 11.169260 12.255326 11.884325 11.804700 11.736 365
|3,0,0,0〉εp,εs

ind 11.718736 12.694313 12.429348
|0,4,0,−4〉εp,εs

ind 13.442625 14.161967 14.063219
|1,3,0,−3〉εp,εs

ind 13.811615 14.545183 14.356594 14.452876 14.341 369
|1,2,1,−2〉εp,εs

ind 13.941538 14.605366 14.518543
|2,0,2,0〉εp,εs

ind 14.109921 14.864683
|2,1,1,−1〉εp,εs

ind 14.150347 15.029219 14.762885 14.756618 14.625 066
|2,2,0,−2〉εp,εs

ind 14.268852 15.116291 14.849053 14.906673 14.830 529
|3,0,1,0〉εp,εs

ind 14.445189 15.433439 15.088643
|3,1,0,−1〉εp,εs

ind 14.828671 15.814453 15.532502 15.412681 15.379 656
|4,0,0,0〉εp,εs

ind 15.507363 16.388931 16.196457
|0,5,0,−5〉εp,εs

ind 16.592132 17.286283 17.192212
|1,4,0,−4〉εp,εs

ind 17.003417 17.738025 17.524732 17.626659 17.512 953
|1,3,1,−3〉εp,εs

ind 17.201089 17.825499 17.750490
|2,2,1,−2〉εp,εs

ind 17.467298 18.143407 17.959234 17.993150 17.948 675
|2,3,0,−3〉εp,εs

ind 17.490745 18.232610 18.045281 18.060870 18.028 437
|2,1,2,−1〉εp,εs

ind 17.509840 18.262858 18.125871
|3,0,2,0〉εp,εs

ind 17.623508 18.476730 18.175475
|3,1,1,−1〉εp,εs

ind 17.809757 18.752802 18.458853 18.386646 18.304 178
|3,2,0,−2〉εp,εs

ind 18.065858 18.820033 18.635417 18.650041 18.613 835
|4,0,1,0〉εp,εs

ind 18.233816 19.157663 18.875963
|4,1,0,−1〉εp,εs

ind 18.741379 19.630870 19.426534 19.291770 19.274 082
|5,0,0,0〉εp,εs

ind 19.532674 20.344307 20.200976
|0,6,0,−6〉εp,εs

ind 19.859704 20.531683 20.442313
|1,5,0,−5〉εp,εs

ind 20.308870 21.017504 20.810666 20.912889 20.801 416
|1,4,1,−4〉εp,εs

ind 20.564210 21.164293 21.094610
|3,3,0,−3〉εp,εs

ind 20.824908 21.499174 21.341913 21.393522 21.329 198
|2,3,1,−3〉εp,εs

ind 20.880218 21.523390 21.375837 21.464398 21.358 846
|2,2,2,−2〉εp,εs

ind 20.993059 21.602197 21.517722
|3,0,3,0〉εp,εs

ind 21.137096 21.796490

virial theorem, Eq. (5), and the splitting of the eigenenergy in
kinetic, quartic, and Coulomb potential energies (see Fig. 5).
In both cases the potential energies support the trend of the
total energy. This is expected for the even-parity case, but
surprising for the odd case. Although one pair follows the rule,
while the other violates it, the effect appears to have the same
origin.

The investigation in the COM and relative coordinates
offered an insight for the harmonic potential, so it appears
to be reasonable to consider the same for the quartic potential.
We neglect the term depending on the angle ϕ in Eq. (17) for

a moment and assume the solution,

1

2π
exp[i(m̃COMϕCOM + m̃relϕrel)],

for the angular part in the COM and the relative motion with the
approximate not necessarily integer valued quantum numbers
m̃COM and m̃rel. We determine numerically the values of these
approximate quantum numbers by evaluating the expressions
|m̃COM| =

√
〈ψ |∂2

ϕCOM
|ψ〉 and |m̃rel| =

√
〈ψ |∂2

ϕrel
|ψ〉. The re-

sults preserve the total angular momentum to the extent that
m = ||m̃COM| ± |m̃rel||. The approximate effective potential
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including the dependence on the angle ϕ reads

Veff(rCOM,rrel,ϕ)

= −1/4 − m̃2
COM

4r2
COM

− 1/4 − m̃2
rel

r2
rel

+ γ

rrel

+ 2 r4
COM + 1

8
r4

rel + r2
COMr2

rel(3 − 2 sin2 ϕ). (19)

In Figs. 6 and 7 we show the limiting cases for sin2 ϕ = 0
(solid line) and sin2 ϕ = 1 (dot-dashed line). The numerically
obtained wave functions fit very well into these approximate
effective potentials. The high angular excitation for the odd
singlet state explains the violation of HFR. The angular
momentum barrier shapes the localization of the state such
that it has only weak overlap with the Coulomb potential,
which becomes obvious when considering the projection of
the wave function on the relative radial coordinate alone; see
Fig. 7(c).

Finally, we also consider first-order perturbation theory
for the quartic confinement. The expectation values of the
Coulomb potential for the noninteracting eigenstates can be
calculated numerically (see Table II). The energies calculated
by first-order perturbation theory are in good agreement with
the numerically exact results; see Figs. 8(a) and 8(b). The
deviation is quadratic in γ for most cases; see Figs. 8(c) and
8(d), except for the singlet state with even parity. Here the

deviation is not quadratic, which means that the localization of
the wave function is significantly changed by the interparticle
interaction.

The alternating rule is applicable for all singlet-triplet
pairs of states with vanishing angular momentum and is valid
in an energy regime up to approximately E = 32 m.u. (see
Table III). For planar confinement the even- and odd-parity
states for nonvanishing angular momentum correspond to
negative and positive angular momenta and are degenerate. It
is not meaningful to apply the alternating rule for these cases.
Nevertheless, HFR is generally fulfilled, with some exceptions,
e.g. when certain corresponding singlet and triplet levels cross
for strong correlation γ > 1; Hund’s rules were never assumed
to be valid for strongly correlated states. Considering the range
for the Coulomb strength parameter γ for the case with GaAs
(see Appendix A) this is still in the physically relevant regime.

VI. OTHER CONFINEMENTS

Finally, we consider harmonic confinement with a quartic
perturbation which accounts for a realistic deviation from the
well-established harmonic model [20]. With modified units
corresponding to the harmonic potential the full confining
potential reads

Vfull(r) = 1
2 r2 + κ(r2)2, (20)

TABLE V. For the billiard potential Vbilliard we show unperturbed energies and the first- and second-order corrections for the first 67 states
in all four symmetry classes with vanishing angular momentum. Values are given in modified units. All presented states follow the alternating
rule considering full Coulomb interaction (γ = 1).

εp,εs → ±1, ± 1 +1,+1 +1,−1 −1,−1 −1,+1

States ↓ E (γ = 0) O(γ ) O(γ 2) O(γ ) O(γ 2) O(γ ) O(γ 2) O(γ ) O(γ 2)

|0,0,0,0〉εp,εs

ind 5.783 186 2.596 −0.96
|0,1,0,−1〉εp,εs

ind 14.681 971 3.322 −0.70 0.903 −0.08
|1,0,0,0〉εp,εs

ind 18.127 224 3.120 −0.61 1.660 −0.09
|0,2,0,−2〉εp,εs

ind 26.374 616 2.747 −0.26 1.207 −0.05
|1,0,1,0〉εp,εs

ind 30.471 262 2.481 −0.35
|1,1,0,−1〉εp,εs

ind 31.950 213 3.921 −0.49 1.908 −0.07 1.908 −0.09 1.178 -0.03
|2,0,0,0〉εp,εs

ind 40.335 096 2.815 −0.36 1.923 −0.08
|0,3,0,−3〉εp,εs

ind 40.706 466 2.510 0.05 1.323 −0.04
|1,2,0,−2〉εp,εs

ind 48.612 308 3.136 −0.27 1.636 −0.06 1.636 −0.04 1.351 -0.03
|1,1,1,−1〉εp,εs

ind 49.218 456 3.279 −0.40 1.134 −0.03
|2,0,1,0〉εp,εs

ind 52.679 135 3.092 −0.08 1.658 0.00
|0,4,0,−4〉εp,εs

ind 57.582 941 2.380 0.18 1.388 −0.02
|2,1,0,−1〉εp,εs

ind 59.090 712 3.533 −0.29 2.193 −0.07 2.193 −0.09 1.250 -0.03
|1,3,0,−3〉εp,εs

ind 67.992 019 2.797 0.12 1.539 −0.01 1.539 −0.02 1.395 -0.02
|1,2,1,−2〉εp,εs

ind 70.849 999 2.743 −0.75 1.427 −0.03
|3,0,0,0〉εp,εs

ind 72.411 735 2.693 0.06 2.032 −0.08
|2,0,2,0〉εp,εs

ind 74.887 007 2.439 −0.28
|2,1,1,−1〉εp,εs

ind 76.358 955 4.084 −0.34 2.001 −0.02 2.001 −0.03 1.238 -0.01
|0,5,0,−5〉εp,εs

ind 76.938 928 2.299 0.57 1.432 −0.01
|2,2,0,−2〉εp,εs

ind 80.697 663 2.833 −0.06 1.823 −0.05 1.823 −0.04 1.438 -0.03
|3,0,1,0〉εp,εs

ind 84.755 773 2.812 0.10 1.901 0.01
|1,4,0,−4〉εp,εs

ind 90.005 368 2.602 0.25 1.497 0.01 1.497 0.01 1.414 -0.01
|1,3,1,−3〉εp,εs

ind 95.277 573 2.509 −0.95 1.519 −0.03
|3,1,0,−1〉εp,εs

ind 96.101 369 3.363 0.59 2.328 −0.07 2.328 −0.09 1.235 -0.02
|0,6,0,−6〉εp,εs

ind 98.726 272 2.243 0.21 1.466 0.01
|2,2,1,−2〉εp,εs

ind 102.935 354 3.329 −0.62 1.743 −0.07 1.743 −0.01 1.436 -0.01
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where we take κ = 0.1 in our model calculations. We present
numerical results for this potential in Table IV. For all cases the
singlet state has higher energy than the corresponding triplet
state, except for pairs of odd parity. We can thus conclude that
the alternating rule is followed by all presented states in the
full potential.

As a limiting case for confinement with positive-power-law
potentials we consider the planar hard-wall potential, which in
modified units reads

Vbilliard(r) =
{

0 |r| < 1,

∞ |r| � 1.
(21)

The radial solutions of the one-particle system are Bessel
functions of the first kind,

ψn,m(r) = Nn,m Jm (z(m,n + 1) r) , (22)

where z(m,n) is the nth zero of Jm(r) and Nn,m is a properly
defined normalization factor. The corresponding eigenenergies
are given by En,m = 1

2 [z(m,n + 1)]2. The matrix elements,

ind〈|n1,m1,n2,m2| 1

|r1 − r2| |n
′
1,m

′
1,n

′
2,m

′
2〉ind, (23)

can be calculated via the multipole expansion of the Coulomb
term. For each matrix element we calculate approximately 40
terms of the multipole expansion and estimate the remainder
as described in Ref. [34]. With the equally symmetrized basis,
as for the quartic potential case, Eq. (18), we evaluate the
first- and second-order corrections. We consider all states
for m = 0 from the ground state up to the quadruplet of
states with degenerate unperturbed eigenenergy equal to E =
102.935354 m.u. (see Table V). We compare the energies for
full Coulomb interaction (γ = 1). For mixed- and even-parity
pairs singlet states are higher in energy than the corresponding
triplet states, while for odd-parity pairs this behavior is
reversed. Again, we can conclude, that all considered states
follow the alternating rule.

VII. CONCLUSION

The extraordinary property of the harmonic confinement
potential to be separable in COM and relative coordinates
for any kind of interaction between the particles makes this
model so simple and successful in the description of quantum
dots. Recent investigations [16,21] consider the validity of the
extension of HFR to excited states in a planar two-electron
quantum dot model with harmonic confinement. For the
application of HFR it is a necessary condition that the singlet
and triplet states compared arise from symmetrization of the
same one-electron orbitals. Our analysis shows, that in contrast
to assumptions in these works, HFR rule is in general not
applicable.

Entanglement witnesses in the noninteracting limit have
revealed that the effect of the interaction is twofold. By
the choice of a particular symmetry class the interaction
induces entanglement for various states, already in the limit
of vanishing interaction strength. Secondly, turning on the
interaction further entangles the states as described in recent
investigations [23,24,31]. The offset entanglement can be
calculated for the noninteracting model solely by imposing
the correct symmetrization of the state. As a consequence

it can at least qualitatively explain several effects reported
in the recent literature: (i) the nonvanishing entanglement in
the noninteracting limit in harmonically confined two-electron
quantum dot structures [24]; (ii) the different saturation limit
for the entanglement in these models in comparison with
helium [24,26]; (iii) the minimum in the linear entropy linked
with the transition from cylindrical to spherical symmetry
in the model involving a magnetic field [31]. For the last
case it would be particularly interesting to investigate the
entanglement for excited states. We expect the entanglement
in the noninteracting limit to depend discontinuously on the
magnetic field.

We have shown the concept of fermionic entanglement
witnesses to be a proper tool to investigate the applicability of
HFR. The entanglement witnesses were calculated analytically
in the noninteracting system by choosing an appropriate
basis. Only four states, arising from the degenerate levels of
E = 3 m.u. for the noninteracting case can be compared at all.
Analyzing these states, we found that the original explanation
by Slater generally holds for these states. That is, the difference
in the Coulombic interparticle interaction term is responsible
for the higher energy of the singlet state. Furthermore, the
angular momentum quantum number in relative coordinates is
found to be the origin of the Fermi hole and has provided us
with a deeper understanding of the difference in the interaction
energy.

At first sight, the behavior for the quartic confinement
potential appeared to be peculiar, since HFR is reversed
for pairs of odd-parity states with zero angular momentum.
Nevertheless it turns out that this behavior is the expected one,
which was already well known for atomic systems [3]. For the
lowest quadruplet of degenerate states in all four symmetry
classes we have shown approximate quantum numbers in
COM and relative coordinates to be a meaningful concept
in order to understand the origin of the alternating rule in the
quartic confinement potential. The localization of the wave
functions is in agreement with the shape of the effective
potentials according to the approximate quantum numbers.
This is again the origin of the difference in the Coulomb
interaction energy, which follows the same trend as the total
energy in all considered cases.

First-order perturbation theory proved to give meaningful
results for the harmonic and the quartic confining potentials
considered in this work. Our results for the billiard case
resemble those for the quartic confinement and the alternating
rule is again valid, up to second-order perturbation theory.

The shell filling for few-electron quantum dots with a
quartic potential perturbing the harmonic confinement has
been considered in Ref. [20] and Hund’s rules were found
to be valid. This is true for the ground states of a quantum
dot with a varying number of electrons. Nevertheless, in the
two-electron case, the extended application of HFR to excited
states holds only for even parity, while for odd parity the more
general alternating rule needs to be applied and we have shown
strong evidence that it is extensively valid.

The harmonic confinement seems to be the exception,
where HFR is applicable for a minority of states only, while
in other systems, lacking the separability in COM and relative
coordinates, the applicability of HFR or the alternating rule is
generally given. Furthermore, we believe that the alternating
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rule, as an extension of HFR to pairs of odd-parity states,
is valid for a wide range of confining potentials, as long as
the correlation effects are to a certain extent weak. We have
shown evidence that for small deviations from the harmonic
confinement, which is a realistic assumption for the description
of quantum dots, the alternating rule is valid. This might be
confirmed experimentally by considering the energy splitting
of odd-parity singlet and triplet states.
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APPENDIX A: MODIFIED UNITS

The Hamiltonian of two electrons of reduced mass m∗ in a
quantum dot reads

H =
2∑

j=1

[
1

2m∗
p̃2

j + Ṽconf(r̃j )

]
+ γ̃ e2

4πεε0|r̃1 − r̃2| . (A1)

Here, the Coulomb repulsion can be adiabatically tuned by
the dimensionless Coulomb parameter γ̃ and it is affected by
the dielectric properties of the confining system manifested
through the dielectric constant ε. The confining potential is
chosen to be one of

Ṽharmonic(r̃) = 1
2m∗ω2 r̃2, (A2)

Ṽquartic(r̃) = κ(r̃2)2, (A3)

Ṽbilliard(r̃) =
{

0 r̃ < R,

∞ r̃ � R.
(A4)

We introduce a natural length scale a0 for each of these
potentials:

a0 =
√

h̄

m∗ω
, (A5)

a0 = 6

√
h̄2

m∗κ
, (A6)

a0 = R, (A7)

respectively. The natural energy scale is thus defined by E0 =
h̄2

m∗a2
0
. Rescaling (A1) with these modified units (m.u.) leads to

the Hamiltonian (1). The following expression is obtained for
the adiabatic Coulomb strength parameter:

γ = e2m∗a0

4πεε0h̄
2 γ̃ . (A8)

A typical harmonic confinement energy is h̄ω ≈ 3meV
[19] with the effective electron mass m∗ = 0.023 me (m∗ =
0.063 me) and dielectric constant ε ≈ 15.15 (ε ≈ 12.9) for
InAs (GaAs) semiconductor quantum dots. The natural length
scale is a0 ≈ 33 nm (a0 ≈ 20 nm) and the Coulomb strength
parameter is γ ∈ [0,1] (γ ∈ [0,1.9]). We also use these values
for the quartic and hard-wall potentials.

APPENDIX B: CALCULATION OF THE ENTANGLEMENT WITNESSES

To be able to perform the partial trace over one particle for the pure-state density matrix |ψ〉〈ψ | =
|nc,mc,nr ,mr〉εp εp 〈nc,mc,nr ,mr | we need to express this quantity in some independent particle basis. Thus, we transform
to a basis associated with Cartesian coordinates |Cx,Cy,Rx,Ry〉εp = |nc,mc,nr ,mr〉εp with nc = min(Cx,Cy), mc = |Cx − Cy |,
nr = min(Rx,Ry), and mr = ±|Rx − Ry | (such that mc + mr = Cx − Cy + Rx − Ry). The Cartesian basis in COM (Cx ,Cy) and
relative (Rx ,Ry) coordinates is defined by

|Cx,Cy,Rx,Ry〉εp =
{

|Cx,Cy,Rx,Ry〉 if Cx = Cy ∧ Rx = Ry,

(|Cx,Cy,Rx,Ry〉 + εp|Cy,Cx,Ry,Rx〉)/
√

2 otherwise.

It is easy to evaluate the transformation into the Cartesian independent particle basis |nx,ny,kx,ky〉 making use of the simple
harmonic oscillator operator algebra and a symmetric coordinate transformation. The transformation matrix elements are given
by

〈nx,ny,kx,ky |Cx,Cy,Rx,Ry〉 =
√

nx!ny!kx!ky!

Cx!Cy!Rx!Ry!

√
1/2

(nx+ny+kx+ky )
F (Cx,Rx,kx)δCx+Rx,nx+kx

F (Cy,Ry,ky)δCy+Ry,ny+ky
, (B1)

with the function F (N,M,k) := ∑min(k,M)
r=max(0,k−N) ( N

k − r )( M
k )(−1)r . With this we can write

|ψ〉〈ψ | = |nc,mc,nr ,mr〉εp εp 〈nc,mc,nr ,mr | = |Cx,Cy,Rx,Ry〉εp 〈Cx,Cy,Rx,Ry |εp

=
∑

nx,ny ,kx ,ky ,ñx ,ñy ,k̃x ,k̃y

|nx,ny,kx,ky〉〈nx,ny,kx,ky |Cx,Cy,Rx,Ry〉εp εp 〈Cx,Cy,Rx,Ry |ñx,ñy,k̃x,k̃y〉〈ñx,ñy,k̃x,k̃y |.

The trace over one of the particles can now be performed easily.
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