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Measurement of a weak transition moment using two-pathway coherent control
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We present a technique based upon two-pathway coherent control for the measurement of a weak transition
moment. In our approach, we use two coherent optical beams, one the second harmonic of the other, to drive
a transition by means of three distinct optical interactions. The interference between these interactions allows a
determination of one moment relative to another. In this work, we demonstrate the approach by applying it to an
experimental determination of the magnetic dipole moment for the 6s 2S1/2 → 7s 2S1/2 transition in atomic cesium.
Our results are in excellent agreement with previous single-beam measurements. We also discuss prospects for
extending this measurement technique to a new determination of the weak-force induced parity-nonconserving
moment on this same transition.
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The exchange of the weak neutral Z0 boson between the
nucleons and electrons in atomic systems can induce a very
weak parity nonconserving (PNC) transition moment between
atomic eigenstates [1,2]. Precise measurements of these mo-
ments can then provide a sensitive means of investigating the
weak force at low momentum exchanges. Atomic cesium has
played a central role in these measurements [3–6], including
the most precise measurement of the weak-charge-induced
transition moment EPNC [6]. PNC moments have also been
measured in thallium [7–10], ytterbium [11,12], lead [13,14],
and bismuth [15], and several groups are actively pursuing
PNC measurements in various atomic systems. To date,
however, the precision of neither the measurements nor of
the atomic structure calculations in any of these other systems
have reached the level of those of cesium.

Motivated by the need to resolve long-standing questions
regarding the large nuclear spin dependence of EPNC reported
in Ref. [6], and also by recent improvements of the atomic
structure calculations in cesium [16–18], we have recently
begun development of a technique, based upon two-pathway
coherent control, for the measurement of extremely weak
optical transitions in atomic systems. In the present study, we
demonstrate this technique with a new determination of the
magnetic dipole moment of the 6s 2S1/2 → 7s 2S1/2 transition
in cesium.

We previously observed [19,20] an interference between
two-photon absorption and a Stark-induced transition on the
6s 2S1/2 → 8s 2S1/2 transition in cesium. We now show how
this interference can be used to measure the ratio of one
weak moment relative to another. We note that most previous
determinations of weak transition moments also use the
interference between the weak transition and a much stronger
interaction on the same transition. Our technique differs,
however, in that we apply not one, but two, coherent laser fields
to the atoms. The first field component εω1 , at a wavelength of
λ = 540 nm, is resonant with the transition directly, and drives
the interaction through linear interactions (magnetic dipole
and Stark-induced electric dipole). A critical requirement for
the measurement technique is that the amplitudes for these
linear interactions differ in phase by π/2, causing these two
terms to add in quadrature. The second field component εω2 ,
whose frequency is half that of the first, at a wavelength

λ = 1079 nm, drives the same atomic transition by way of
a two-photon interaction (2P ). This additional laser field
presents us with several advantages over previous techniques:
(1) The continuous control of the phase difference between the
strong two-photon amplitude and the various weaker transition
amplitudes provides us our primary means of reversing the
interference; so (2) precise reversal of large dc fields is
not necessary; and (3) we employ linearly polarized laser
fields.

The total transition rate W for the excitation of the
6s 2S1/2,F,m → 7s 2S1/2,F

′,m′ transition is proportional to
the square of the sum of the amplitudes for the transition

W ∝ |A2P + ASt + AM1 |2, (1)

where the terms A represent the transition amplitudes for
the various interactions. F , m, F ′, and m′ represent the total
angular momentum, including nuclear spin, and its projection
onto the z axis, of the ground 6s state, and the excited 7s state,
respectively. These amplitudes depend on the polarization
of the optical fields and the orientation of the static electric
and magnetic fields E = Ey ŷ and B = Bz ẑ that we apply to
the atoms. We follow the notation of Gilbert and Wieman
[21] for explicit forms of these moments, and select the
specific experimental geometry that allows us to measure
M1. For �m = 0 transitions, the transition amplitude of the
Stark-induced transition amplitude is

ASt = [
αE · εω1δF,F ′ + iβ(E × εω1 )zC

F ′,m
F,m

]
eiφω1

, (2)

the magnetic dipole amplitude is

AM1 = (k̂ × εω1 )zM1C
F ′,m
F,m eiφω1

, (3)

and the two-photon interaction driven by the 1079-nm laser
beam is

A2P = α̃ (εω2 eiφω2 )2. (4)

In these expressions, α and β are the scalar and vector
polarizabilities, which characterize the transition amplitude
induced by E when this static field is parallel to (α) or perpen-
dicular to (β) the laser polarization εω1 . The polarizabilities α

and β are each purely real parameters. For this transition,
the most precise determination of the scalar polarizability
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is α = −269.7 (11) a3
0 [22], and for the vector polarizability

β = 26.99 (5) a3
0 [22–26], where a0 is the Bohr radius, and the

number in parentheses is the uncertainty. The terms C
F ′,m′
F,m are

related to the Clebsch-Gordon coefficients, and are tabulated
for this transition in Ref. [21]. Ordinarily, one can disregard
the optical phases φω1 and φω2 of the laser fields, but we must
retain these terms here to properly determine the interference
between the linear amplitudes and the two-photon transition
amplitude. M1 is the magnetic dipole transition moment. To
first order, this transition is magnetic-dipole forbidden, but
mixing due to configuration interactions and relativistic effects
relaxes this restriction [27,28].

The two-photon moment α̃ has a form similar to that of the
scalar polarizability α, except the energy denominator differs
to reflect the detuning of the laser frequency from single-
photon resonances with intermediate states [2]. Since the two
photons are of a single frequency in our measurements, ω2 =
ω1/2, and the two-photon process can excite only �F = 0,
�m = 0 transitions [29–31]. This feature allows us to ignore
�m = ±1 transitions via the M1 or Stark-induced moments,
which greatly simplifies our experimental determination.

Without loss of generality, we define the y direction to be
aligned with k̂, the propagation direction of the 540-nm beam,
such that the y component of the electric field εω1 associated
with this beam must vanish for a plane wave or a weakly
focused beam. This beam is linearly polarized primarily along
the x axis. With the laser frequency tuned to the �F = 0
transition, the sum of the transition amplitudes is

∑
A = A2P + α

(
Exε

ω1
x + Ezε

ω1
z

)
eiφω1

−{iβEy + M1}εω1
x eiφω1

C
F,m
F,m, (5)

where C
4,m
4,m = −C

3,m
3,m = m/4 [21]. The primary terms in this

expression are the dominant two-photon term A2P , the Stark
term iβEy εω1

x , and the magnetic dipole term M1 εω1
x . The latter

two terms differ in phase by π/2. From our measurements,
described later, we estimate that A2P ≈ 104 AM1 , while ASt

varies from 0 to ∼3 AM1 . The two terms proportional to the
scalar polarizability α are small for our experimental geometry.
We will retain the αExε

ω1
x term to properly account for the

misalignment of the fields. As we vary the optical phase
difference �φ ≡ 2φω2 − φω1 , the excitation rate W modulates
sinusoidally, with the signal proportional to

W ∝
∣∣∣
∑

A

∣∣∣
2

≈ |A2P |2 − K(Ey) cos{�φ − δφ(Ey)}, (6)

where we have omitted the negligibly small term that is
second order in εω1

x . This signal consists of a nonvarying term
due to the two-photon interaction alone, and a modulating
term resulting from the interference between the two-photon
amplitude and the weaker Stark-induced and magnetic-dipole
amplitudes. The amplitude of the modulation is

K(Ey) = 2 |A2P | εω1
x C

F,m
F,m η

×
√(

M1 − αEx/C
F,m
F,m

)2 + (βEy)2, (7)

where η, whose maximum value is 1, accounts for the spatial
overlap and alignment between the ω1 and ω2 beams [19,20].

The phase δφ(Ey) is

δφ(Ey) = tan−1
[
βEy

/(
M1 − αEx

/
C

F,m
F,m

)]
. (8)

The amplitude K(Ey) is minimized when Ey ≈ 0, and grows
with increasing |Ey | as a hyperbolic function.

Our measurement of M1, then, is carried out by applying
a static field Ey to the atoms and measuring the amplitude
K(Ey) and phase δφ(Ey) of the modulation of the signal as
we vary the optical phase difference �φ. Note that, while
the two-photon process is integral to the interference, the
measurement of the amplitude of the modulation versus Ey

provides a direct determination of M1/β, and is insensitive to
the two-photon amplitude. Careful matching of the wavefronts
of the two optical beams helps produce the largest amplitude
of the modulation signal (i.e., η → 1), but a perfect match is
not required, nor is a calibration of the two-photon transition
rate. This feature is critical to the measurements.

We carry out the measurements in an effusive beam of
Cs atoms, housed inside a vacuum chamber evacuated to a
pressure of ∼2.5 × 10−6 torr. We have constructed the Cs beam
nozzle using an array of stainless steel capillary tubes [32],
producing a high-density, collimated beam of atoms of height
3 mm by width 1 cm. The atomic beam is crossed by laser
beams in three regions, as we show in Fig. 1. We label these
regions the “preparation” region, the “interaction” region,
and the “detection” region, respectively. In the preparation
region, the atoms are optically pumped into a specific sublevel
of the ground state using a pair of external cavity diode
lasers (ECDL) tuned to the Cs 6s 2S1/2 → 6p 2P3/2 level
at 852 nm. We control the polarization of these beams to
drive the ground-state population of the atomic beam to a
single magnetic component. By selecting the frequency and
polarization we can choose any one of the four “extreme”
components of the ground state (the m = ±F component of
the F = 3 or F = 4 hyperfine level) as the initial atomic state
for our measurements of M1/β. In this region, we apply a
dc magnetic field of magnitude B ∼ 2 G in the direction of
the laser propagation k̂. We have determined that, at the high
atomic beam densities (estimated at ∼5 × 109 cm−3) used for
these measurements, ∼92% of the atoms are transferred to
this initial state. This preparation scheme is similar to that
discussed by Wood [33].
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FIG. 1. (Color online) A schematic layout of the measurement
system.
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After the atoms are prepared in the ground state, they travel
to the interaction region of the atomic beam, where they are
driven by the two-frequency (ω1 and ω2 = ω1/2) laser beam.
We generate this beam using a homemade Littrow-style ECDL
operating at λ = 1079 nm, producing an optical power of
about 50 mW. We stabilize this laser frequency to the 6s → 7s

two-photon absorption line in a Cs vapor cell, and amplify this
1079-nm beam using a commercial fiber amplifier system to a
power of 12 W. Using a magnesium-doped periodically poled
lithium niobate (MgO:PPLN) crystal, we frequency double a
portion of this beam, producing more than 800 mW of light
at 539.5 nm. This second harmonic beam is coherent to and
propagating colinear with the 1079-nm beam. We separate the
two components, phase delay the green beam, and recombine
the beams before directing them toward the interaction region
of the atom beam inside the vacuum chamber. We delay the
phase of the green beam using a rotating optical flat mounted
on a galvanometer. We double pass the green beam through this
optical flat to minimize beam displacement. We apply a linear
ramp voltage (∼0.1 Hz) to the galvanometer, sweeping the
galvanometer angle θ , producing a slow, nearly linear variation
of the relative optical phase, which we label �φscan. In
addition, we apply a higher frequency (∼150 Hz) dither signal
to the galvanometer, producing a sinusoidal modulation of the
phase �φmod. The sum of these phases �φ = �φscan + �φmod

gives rise to a modulation in the excitation rate of the 7s state
of the cesium atoms, as given by Eq. (6).

We apply a 7-G magnetic field in the z direction (vertical) to
the atoms in the interaction region, and a variable electric field
in the y direction. We generate the electric field by applying
a potential difference V between a pair of parallel aluminum
plates of dimension 15 × 15 cm, separated by a spacing of
d = 5.338 (7) cm and coated with a thin layer of Aquadag.
A 2.5-mm diameter hole in the center of each plate admits
the interaction laser beams. Through numerical modeling of
the electric field, we have determined that the variation of this
field over the interaction volume is less than 0.05%.

After excitation by the interaction beams, the atoms travel
downstream to the detection region, where they are intersected
by a laser beam tuned to 852 nm. This laser drives the
6s 2S1/2 → 6p 2P3/2 cycling transition, and we detect the
fluorescence scattered by atoms in a scheme patterned after that
developed by the Boulder group [33]. We tune the frequency of
the detection laser to be resonant with the hyperfine line from
the component of the ground state that was initially emptied
by the preparation beam. Atoms that were excited to the 7s

state in the interaction region relax spontaneously to the ground
state, with a significant probability (of order 1/2) of landing in
the hyperfine component that was emptied by the preparation
laser. We detect the fluorescent light scattered by these atoms
as they are driven by the detection laser, with about ten photons
detected per atom passing through this region, using a large
area photodiode placed close to the atom beam. An interference
filter reduces the light levels arising from other sources, and
we amplify the photocurrent in a pre-amplifier. We measure
the component of the 7s excitation rate modulating at 150 Hz
(the dither frequency applied to the galvo plate) as a function
of Ey using a lock-in amplifier for phase-sensitive detection.
We compute the amplitude of the peak of the Fourier transform
of these data to determine the amplitude K(Ey). To reduce the
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FIG. 2. (Color online) The normalized amplitude K(Ey)/K(0) as
a function of Ey . The data points represent our measurements. The
solid line represents a fit of Eq. (7) to the data.

effect of slight drifts in the signal (resulting from variations
in the overlap of the 1079- and 540-nm beams, the power
of the 540- and 1079-nm laser beams, and the density of the
Cs beam), we alternate measurements of the signal with field
Ey applied and zero field. We repeat this at several different
values of Ey , and show a plot of K(Ey)/K(0) in Fig. 2. The
cesium atoms are prepared in the F = 3,m = −3 state for
these data. We show three data points at each field value
Ey , with each data point representing the average of five
measurements of K(Ey)/K(0). Only ∼80 s were required to
acquire each data point. For the data shown, the least-squares
fit to Eq. (7) yields the value |M1/β| = 29.80 (29) V/cm. The
only other adjustable parameter in this fit is the small angle
between E and the propagation direction k̂. We carry out each
measurement four times under the same initial conditions, and
repeat the procedure discussed above after preparation of the
initial ground state in each of four different cases (i.e., F = 3
or 4, with m = ±F ). We illustrate the individual results of the
16 determinations of |M1/β| in Fig. 3. From the variation of
the phase δφ(Ey) as a function of Ey , not shown, we determine
that the value of M1/β is negative.

The primary sources of uncertainty in these measurements
are due to amplitude and frequency fluctuations of the 852-nm
detection laser (15 ppm/

√
Hz), shot noise in the excitation

process (10 ppm/
√

Hz), power noise in the excitation laser
(8 ppm/

√
Hz), and shot noise related to the residual population

in the initially “empty” ground state (5 ppm/
√

Hz). The
effect of pointing instabilities in the interaction beam is
difficult to quantify, but they appear to be well accounted
for in our method of data collection. The combined noise
density of ∼25 ppm/

√
Hz corresponds to a signal-to-noise

ratio of about 3 in 1 s of integration time. This roughly
agrees with our quoted 0.3% uncertainty in M1/β after about
2 × 104 s of data collection time. In addition, we estimate
the following systematic uncertainties in our determination
of the electric field produced by the parallel field plates:
0.14% from the field plate spacing, 0.034% for the uncertainty
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FIG. 3. (Color online) Results of the 16 individual determinations
of M1/β. The (blue) circles represent |M1/β| for initial states in the
F = 3 hyperfine line, while (red) squares are for the initial F = 4
hyperfine line. We use open symbols for results from m = −F initial
states and closed symbols for results from m = +F initial states. The
dashed line and black solid round data point at the right represent the
weighted average of the individual results.

in the voltage measurement, and 0.07% due to instrumental
variations between channels of the data acquisition system.

Our final determination of M1/β is −29.55 (10)stat(5)sys

V/cm, where we give the statistical and systematic uncer-
tainties individually. This is consistent with the previously
measured values by Gilbert, Watts, and Wieman [34] of
M1/β = −29.73 (34) V/cm; M1/β = −29.55 (45) V/cm by
Bouchiat, Guéna, and Pottier [35]; and M1/β = −29.48 (7)
V/cm by Bennett [36]. Using β = 26.99 (5) a3

0 [22–26], our
measurement result for M1 is −4.251 (18) × 10−5 |μB |/c,
where μB = eh̄

2mec
is the Bohr magneton. Agreement with

the latest theoretical result [28] M1 = −3.58 × 10−5 |μB |/c

is reasonable, considering the difficulty of calculating this
moment.

As we stated previously, our long-term goal is an application
of this technique to a measurement of the weak-force-induced
interaction on the same transition, with essentially the same
apparatus. The field configuration for such a measurement
must be altered, with E, B, and εω1 each aligned with the
z axis. Since the magnitude of EPNC is smaller than that of
M1, by a factor of ∼2 × 104, several improvements to our
apparatus will be required. An optical power build-up cavity
to enhance the amplitude εω1 will be necessary. Such a cavity
is also used in other measurements of the PNC amplitude
[6,11,12]. With a Finesse of 104, we can enhance the field
amplitude by ∼102. In contrast to techniques used elsewhere
in which the cavity supports a standing wave mode, we must
use a traveling-wave configuration to maintain the interference
phase across the interaction region. This optical cavity can
also be used to improve the polarization purity of εω1 [37],
which will be necessary to reduce the systematic effects due
to the magnetic dipole amplitude. Further suppression of the
noise on the frequency of the 1079-nm laser and the detection
laser will be necessary for this measurement, as will longer
integration times. With each of these improvements in place,
the application of the two-pathway coherent control scheme
to measurement of the PNC interaction, while challenging,
should be attainable.

We have reported a technique based upon coherent control
ideas for the measurement of weak optical interaction mo-
ments. Our measurement of M1 is in good agreement with
previous measurements. We are extending this technique for
application toward the weak-force-induced amplitude EPNC.
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