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Ab initio–driven trajectory-based nuclear quantum dynamics in phase space
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We derive a Bohmian trajectory-based quantum dynamics approach for the calculation of adiabatic and
nonadiabatic quantum effects in ab initio on-the-fly molecular dynamics simulations. The method is designed
for calculations in the full, unconstrained, phase space of molecular systems described within density functional
theory and time-dependent density functional theory. The problem of solving quantum hydrodynamic equations
using trajectories in high dimensions is addressed using an expansion of the nuclear amplitude in atom centered
Gaussians that are propagated along the quantum trajectories. In this work, we investigate the adiabatic limit
of this theory, even though the full nonadiabatic case is derived. The method is first tested on the H2 molecule
and then applied to the study of the proton transfer dynamics in the phase space of the molecular complex
(H3N-H-NH3)+.
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I. INTRODUCTION

Ab initio molecular dynamics (AIMD) [1] has become
a valid predictive tool in molecular physics, chemistry, and
biology thanks to the availability of highly efficient electronic
structure methods like Kohn-Sham (KS) density functional
theory (DFT) [2]. Initially restricted to a single adiabatic
state (Born-Oppenheimer dynamics), DFT-based molecular
dynamics was recently extended to the nonadiabatic regime
[3–5] becoming an important tool for the study of photo-
physical and photochemical processes. However, the use of
classical trajectories in mixed quantum-classical approaches
[6] (like, for instance, Tully’s trajectory surface hopping
[7] (TSH), and quantum-classical Liouville dynamics [8])
poses serious limitations to the possibility of describing pure
quantum phenomena such as wave-packet bifurcation [9] and
interference [8], (de)coherence, and tunneling effects. As an
alternative to trajectory-based approaches, quantum dynamics
methods use an in principle exact treatment of both electronic
and nuclear wave functions (see, for example, Refs. [10,11]).
The applicability of these methods is, however, hampered
by their high computational costs, which limit the number
of accessible nuclear degrees of freedom. In addition, these
approaches usually require the fitting of the relevant electronic
potential energy surfaces (PESs) prior to propagation. Finally,
path integral approaches represent a valid alternative for the
investigation of quantum effects in molecular simulations.
Ab initio path integral sampling techniques [12] and their
extensions to quasiclassical dynamics [13] (centroid AIMD
[14] and ring-polymer AIMD [15]) have been applied with
success in the study of hydrogen-bonded liquids and solids at
finite temperatures [16].

An alternative formulation of quantum dynamics derived
from the trajectory-based solution of the quantum hydrody-
namics equations was proposed by Wyatt in 1999 [17]. In
this approach named quantum trajectory method (QTM), the
nuclear wave packet is split into fluid elements (FEs) that
represent volume elements of the configuration space. These
are associated with a nuclear quantum amplitude and a phase
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that describes the time evolution of the FEs according to a
Newton-like equation of motion augmented by a quantum
potential (QP) [18]. The resulting quantum trajectories become
correlated through the QP and can describe all quantum
nuclear effects that are missing in classical trajectory-based
approaches.

More recently, several multistate variants of the original
QTM dynamics have been proposed [18–21], which mainly
differ in the way the electronic PESs are described (diabatic
versus adiabatic representation). Despite the enormous poten-
tial of these nonadiabatic QTM approaches, three main diffi-
culties are limiting their successful application to molecular
systems: (i) the lack of reliable electronic structure methods
to couple with the on-the-fly propagation of the nuclear
amplitude, (ii) the extension of QTM to the full, unconstrained,
multidimensional configuration space, and (iii) the instabilities
associated with the calculation of the quantum potential.
To our knowledge only the approach in Ref. [18], named
nonadiabatic Bohmian dynamics (NABDY), is suited for the
on-the-fly calculation of all electronic structure properties
(PESs, classical and quantum forces [22], and nonadiabatic
couplings [5,23–25]) required for the propagation of the
quantum trajectories. In NABDY, the nonadiabatic QTM
equations are formulated in Cartesian coordinates while DFT
and time-dependent density functional theory (TDDFT) are
used to solve the electronic structure at each time step. Despite
the success of this approach for the description of the quantum
dynamics of small molecules, its extension to systems made
of more than a few atoms remains questionable due to the
difficulties encountered with points (ii) and (iii) above.

In this article, we develop a quantum trajectory approach
to perform quantum dynamics in the high-dimensional, un-
constrained, phase space of large molecular systems. The
main challenge we face is the calculation of the phase space
derivatives of the quantum potential and nuclear amplitudes,
which are best performed analytically. To this end, we
introduce a decomposition of the nuclear wave packet into a
sum of Gaussian functions, which are then propagated in time
using a set of differential equations derived from quantum
hydrodynamics equations. Within this numerical approxima-
tion, the phase space derivatives used in the calculation of the
quantum potential can be performed analytically providing
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therefore a solution to the instability problem mentioned in
point (iii).

The main target of this explorative work is to provide a
theoretical framework to describe adiabatic and nonadiabatic
quantum dynamics using Bohmian trajectories in phase space.
The applications are, however, restricted to the adiabatic
case, which well illustrate the theoretical and numerical
challenges associated with this type of dynamics and its level of
accuracy without introducing additional complications related
to nonadiabaticity. The extension to the nonadiabatic case will
require further numerical efforts that are beyond the scope of
this work.

This paper is organized in the following way. After the
derivation of the main working equations, we will first test
the dynamics on molecular hydrogen for which we will
compute the first vibrational wave function. Finally, we will
demonstrate the quality and the efficiency of this approach by
studying the proton transfer dynamics in the (54 dimensional)
phase space of the molecular complex (H3N-H-N H3)+.

II. TRAJECTORY-BASED QUANTUM DYNAMICS

The starting point of our derivation is the time-dependent
Schrödinger equation,

Ĥmol�mol(r,R,t) = ih̄
∂

∂t
�mol(r,R,t), (1)

where R = (R1,R2, . . . ,RNn
) is the collective vector of the

nuclear positions in R3Nn and r = (r1,r2, . . . ,rNel
) the one of

the electrons. In Eq. (1), Ĥmol is the molecular Hamiltonian,

Ĥmol(r,R) = −
∑

α

h̄2

2Mα

∇2
α −

∑
i

h̄2

2me

∇2
i +

∑
i<j

e2

|r i − rj |

−
∑
α,i

e2Zα

|Rα − r i | +
∑
α<ζ

e2ZαZζ

|Rα − Rζ |

≡ −
∑

α

h̄2

2Mα

∇2
α +

∑
α<ζ

e2ZαZζ

|Rα − Rζ | + Ĥel(r,R),

(2)

and �mol(r,R,t) the total wave function of the nuclear and
electronic degrees of freedom. Here and in the following
equations we use e for the electron charge, Zα for the
atomic number of atom α, and ∇i and ∇α for ∇r i

and ∇Rα
,

respectively. We will derive equations of motion for the nuclear
and electronic degrees of freedom using what is known as a
trajectory-based approach: The electrons are described at a
quantum mechanical level (using DFT and TDDFT), while
the nuclear wave packet is discretized into an ensemble of
fluid elements (FEs) in the phase space and then propagated
along Bohmian quantum (instead of classical) trajectories.

The Born-Oppenheimer MD equations can be derived
starting from the Born-Huang representation of the molecular
wave function,

�mol(r,R,t) =
∞∑

j=0

�j (R,t)�j (r; R). (3)

In this equation, {�j (r; R)} describes a complete set of
orthonormal electronic wave function solution of the time-

independent Schrödinger equation,

Ĥel(r; R)�j (r; R) = Eel,j (R)�j (r; R), (4)

with 〈�j |�i〉 = δij and where “; R” denotes the parametric
dependence of the electronic Schrödinger equation from the
position of the atoms. Note that only the nuclear wave function
depends explicitly on time, while Ĥel(r; R) and �j (r; R) only
depend on t through the implicit time dependence of R, R(t).

Inserting Eq. (3) into the time-dependent Schrödinger
equation [Eq. (1)] we obtain (after multiplying by �∗

k (r; R)
from the left-hand side and integrating over d r)

ih̄
∂

∂t
�k(R,t) =

[
−
∑

α

h̄2

2Mα

∇2
α + Eel,k(R)

]
�k(R,t)

+
∑

l

Fkl�l(R,t). (5)

The quantities Fkl(R),

Fkl(R)

=
∫

d r �∗
k (r; R)

[
−
∑

α

h̄2

2Mα

∇2
α

]
�l(r; R)

+
∑

α

1

Mα

{∫
d r �∗

k (r; R) [−ih̄∇α] �l(r; R)

}
[−ih̄∇α],

(6)

are the nonadiabatic couplings, with a contribution from
the nuclear kinetic energy operator and a second from the
momentum operator.

Using the polar representation of the nuclear amplitude
�j (R,t),

�j (R,t) = Aj (R,t) exp

[
i

h̄
Sj (R,t)

]
, (7)

we obtain the following equations for the phase and the
amplitude (both real):

∂

∂t
Sj (R,t)

= h̄2

2

∑
α

M−1
α

∇2
αAj (R,t)

Aj (R,t)

− 1

2

∑
α

M−1
α [∇αSj (R,t)]2

−
∑

i

Hji(R)Ai/j (R,t)Re
[
e[ i

h̄
Si−j (R,t)]

]

− h̄2

2

∑
αi

M−1
α Dα

ji(R)Ai/j (R,t)Re
[
e[ i

h̄
Si−j (R,t)]

]

+ h̄2
∑
α,i �=j

M−1
α dα

ji

∇αAi(R,t)

Aj (R,t)
Re
[
e[ i

h̄
Si−j (R,t)]

]

− h̄
∑
α,i �=j

M−1
α dα

jiAi/j (R,t)∇αSi(R,t)Im
[
e[ i

h̄
Si−j (R,t)]],

(8)
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h̄
∂

∂t
Aj (R,t)

= −h̄
∑

α

M−1
α ∇αAj (R,t)∇αSj (R,t)

− h̄

2

∑
α

M−1
α Aj (R,t)∇2

αSj (R,t)

+
∑

i

Hji(R)Ai(R,t)Im
[
e[ i

h̄
Si−j (R,t)]]

+ h̄2

2

∑
αi

M−1
α Dα

ji(R)Ai(R,t)Im
[
e[ i

h̄
Si−j (R,t)]

]
− h̄2

∑
α,i �=j

M−1
α dα

ji∇αAi(R,t)Im
[
e[ i

h̄
Si−j (R,t)]

]

− h̄
∑
α,i �=j

M−1
α dα

jiAi(R,t)∇αSi(R,t)Re
[
e[ i

h̄
Si−j (R,t)]

]
,

(9)

where Ai/j (R,t) = Ai (R,t)
Aj (R,t) , Si−j (R,t) = Si(R,t) − Sj (R,t),

and

Dα
ji = −

∫
d r �∗

j (r; R)
[∇2

α�i(r; R)
]
, (10)

dα
ji =

∫
d r �∗

j (r; R) [∇α�i(r; R)], (11)

Hji(R) =
∫

d r �∗
j (r; R)Ĥel�i(r; R) = δjiEi. (12)

In Eqs. (8) and (9) Re and Im are the symbols for the real and
imaginary parts, respectively.

The differential equation for the phase, Eq. (8), can be
interpreted as the Hamilton-Jacobi dynamics of a system
governed by the action Sj (R,t) on the j th PES. Within this
formalism, we can solve Eq. (8) by means of its characteristics,
which correspond to trajectories in the phase space [26].
Without loss of generality, we restrict the following analysis
to two surfaces. Multiplying Eq. (8) from the left by (−∇Rβ

)
we get

∇β

∂S1(R,t)

∂t
= −∇β

(
−h̄2

2

∑
α

M−1
α

∇2
αA1(R,t)

A1(R,t)

)
− ∇β

1

2

∑
α

M−1
α [∇αS1(R,t)]2 − ∇βH11(R)

−∇β

h̄2

2

∑
αi

M−1
α Dα

12(t)A2/1(R,t)Re
[
e[ i

h̄
S2−1(R,t)]

]+ ∇βh̄
2
∑

α

M−1
α dα

12(t)
∇αA2(R,t)

A1(R,t)
Re
[
e[ i

h̄
S2−1(R,t)]

]
−∇βh̄

∑
α

M−1
α dα

12(t)A2/1(R,t)∇αS2(R,t)Im
[
e[ i

h̄
(S2−1(R,t)]

]
, (13)

in the adiabatic representation of the electronic PESs, Hij = 0 (i �= j ). The gradient ∇β acts in the R3 space of the
nucleus β, and Nn equivalent equations can be written for each nucleus. A similar equation can be derived for S2(R,t).

The second term on the right-hand side of Eq. (13) can be interpreted as a kinetic term and can be rewritten in the following
way:

∇β

1

2

∑
α

M−1
α [∇αS1(R,t)]2

= 1

2

∑
α

M−1
α ∇β[∇αS1(R,t)]2 =

∑
α

M−1
α ∇αS1(R,t)∇β∇αS1(R,t) =

∑
α

M−1
α ∇αS1(R,t)∇α∇βS1(R,t). (14)

Rearranging Eq. (13) we obtain[
∂

∂t
+
∑

α

M−1
α ∇αS1(R,t)∇α

]
∇βS1(R,t) = −∇β[Q1(R,t) + H11(R) + d[12](R,t) + D[12](R,t)], (15)

with

Q1(R,t) = −h̄2

2

∑
α

M−1
α

∇2
αA1(R,t)

A1(R,t)
,

d12(R,t) = h̄2
∑

α

M−1
α dα

12(t)
∇αA2(R,t)

A1(R,t)
Re
[
e[ i

h̄
S2−1(R,t)]

]− h̄
∑

α

M−1
α dα

12(t)A2/1(R,t)∇αS2(R,t)Im
[
e[ i

h̄
S2−1(R,t)]

]
,

D12(R,t) = h̄2

2

∑
αi

M−1
α Dα

12(t)A2/1(R,t)Re
[
e[ i

h̄
S2−1(R,t)]

]
. (16)

Finally, using ∇βS1(R,t)/Mβ = Ṙβ,1 and the definition for the derivative in the Lagrangian frame,

∂

∂t
+
∑

α

M−1
α ∇αS1(R,t)∇α ≡ d

dt
, (17)
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we obtain the Newton-like equation for the characteristics (or trajectories) associated with the partial differential equation
Eq. (15),

Mβ

d

dt
Ṙβ,1(t) = −∇β [Q1(R(t),t) + H11(R(t))

+ d12(R(t),t) + D12(R(t),t)] , (18)

which drives the time evolution of the fluid elements in the configuration space. In the same moving frame, the time evolution of
the amplitudes becomes [27]

h̄
d

dt
Aj (R(t),t) = −h̄

2

∑
α

M−1
α Aj (R(t),t)∇2

αSj (R(t)) +
∑

i

Hji(R(t))Ai(R(t),t)Im
[
e[ i

h̄
Si−j (R(t))]]

+h̄2

2

∑
αi

M−1
α Dα

ji(R(t))Ai(R(t),t)Im
[
e[ i

h̄
Si−j (R(t))]]− h̄2

∑
α,i �=j

M−1
α dα

ji∇αAi(R(t),t)Im
[
e[ i

h̄
Si−j (R(t))]]

−h̄
∑
α,i �=j

M−1
α dα

jiAi(R(t),t)∇αSi(R(t))Re
[
e[ i

h̄
Si−j (R(t))]]. (19)

III. QUANTUM DYNAMICS IN THE PHASE SPACE:
THE GAUSSIAN EXPANSION

We start by approximating the total nuclear amplitude with
the product:

A(R1(t),R2(t),R3(t), . . . ,RN (t),t)

= �1(R1(t),t)�2(R2(t),t)�3(R3(t),t) . . . �N (RN (t),t),

(20)

where �α(Rα(t),t) is given by a sum of Gaussians centered at
R(i)

α (t) ∈ R3,

�α(Rα(t),t) =
M∑
i=1

φ̃(i)
α

(
Rα(t) − R(i)

α (t); a(i)
α (t),σ (i)

α (t)
)

=
M∑
i=1

φ(i)
α

(
Rα(t); R(i)

α (t),a(i)
α (t),σ (i)

α (t)
)
,

(21)

and

φ(i)
α

(
Rα(t); R(i)

α (t),a(i)
α (t),σ (i)

α (t)
)

= a(i)
α (t)

(2π )3/2
(
σ

(i)
α (t)

)3 e
− (Rα (t)−R(i)

α (t))2

2(σ (i)
α (t))2

= a(i)
α (t)

N (i)
α (t)

e
− (Rα (t)−R(i)

α (t))2

2(σ (i)
α (t))2 . (22)

The solution of Eq. (19) with the product amplitude given in
Eqs. (21) and (22) is still computationally very unpractical.
Therefore, we tentatively propose a dynamics in which the
centers of the Gaussians follow the time evolution of the char-
acteristics of Eq. (15), i.e., Eq. (18), while the amplitudes of
the Gaussians obey Eq. (19). This approach can be formalized
using a (coarsed-grained) configuration-space representation

of the amplitude [28,29]:

A(R,t) =
∏
α

M∑
i=1

A
(
R(i)

α ,t
)
δ
(

Rα − R(i)
α

)
, (23)

where the R(i)
α are uniformly distributed points in the config-

uration space with associated amplitude A(R(i)
α ,t) and evolve

according to Eq. (18). The residual, explicit, dynamics of
A(R,t) is described by Eq. (19). For computational purposes,
we introduce a broadening of the Dirac-delta function and
work with the representation,

A(R,t) =
∏
α

M∑
i=1

A
(
R(i)

α ,t
)
g(i)

α

(
Rα − R(i)

α

)
, (24)

where g(i)
α (Rα − R(i)

α ) stays for a Gaussian of the form given
in Eq. (22) (that gives a Dirac delta function in the limit of
σα(i) going to zero), and the centers of the Gaussians, R(i)

α ,
evolve—once more—along the characteristics of Eq. (15).
The Gaussians appearing in Eq. (24) have nothing in common
with the Gaussians wave packets used in previous works (see,
for instance, Ref. [30]) and are not individual solutions of
the original time-dependent Schrödinger equation, but they
mainly serve as support for the amplitude dynamics given in
Eq. (19).

According to the factorizability of the many-body wave
functions, the Ansatz in Eq. (20) implies physical (and
statistical) independence of all nuclei [31]. In the following, the
particle statistics is neglected because, in the most general case,
molecules are made of distinguishable atom types. In addition,
the statistics is unimportant as far as the thermal wavelength
of the particles (with mass M) λT =

√
h̄2/(2πMkBT ) is

smaller than the interparticle distance that is roughly propor-
tional to the inverse cube root of the density, d ∼ ρ−1/3. As
a consequence, for temperatures well above the degeneracy
temperature Td = ρ2/3h̄2/(2πMkBT ) particles can safely be
considered distinguishable (Bolzmannions). A generalization
of the Ansatz in Eq. (20) is possible but its investigation is
beyond the purpose of this article.
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It is important to stress that while the nuclear quantization is
initially done atom-wise, the fundamental units of the dynam-
ics are the phase space fluid elements [FEs with coordinates
(R(i)

1 ,R(i)
2 , . . . ,R(i)

N ) ∈ R3N ] associated with the arrays of
amplitudes (a(i)

1 ,a
(i)
2 , . . . ,a

(i)
N ), each value a(i)

α corresponding to
a Gaussian amplitude linked to a different atom α in the system
[according to Eq. (21)]. When analyzed in terms of the FEs, the
total nuclear amplitude �(R) =∑i �

FE
i (R(i)

1 ,R(i)
2 , . . . ,R(i)

N )
is no longer a simple product of amplitudes associated with
the different fluid elements [32] and therefore it naturally
includes correlation [as revealed in the final result for the
dynamics of the Gaussian amplitudes in Eq. (39), where the
sum over all atoms on the right-hand side implies correlation
among the FEs]. The change from atomic, �α(Rα), to fluid
element amplitudes, �FE

i (R(i)
1 ,R(i)

2 , . . . ,R(i)
N ), is at the same

time necessary and crucial to this development because
the electronic structure is computed for a whole molecule
(represented by a FE inR3N ) and not atom-wise (for each atom
separately).

The product Ansatz for the nuclear wave function �(R(t))
implies

S(R1(t), . . . ,RN (t)) = S1(R1(t)) + · · · + SN (RN (t)), (25)

for the phases.

A. The dynamics of the fluid elements

The following notation will be used throughout the paper:
N refers to number of nuclei that are labeled with the letter
α = 1, . . . ,N ; M is the number of Gaussians per nucleus and
corresponds to number of quantum trajectories [labeled with
(i), with i = 1, . . . ,M], and finally [i] are used to label the
different electronic states.

The FE trajectories are the characteristics of the differ-
ential equations for the phases for given initial conditions
S[i](R[i]

0 ,t0) on each PES [i] [18]. A trajectory on a PES [j ],
R(i)[j ](t), is a 3N dimensional array with elements R(i)[j ](t) =
{R(i)[j ]

1 (t), . . . ,R(i)[j ]
α (t), . . . ,R(i)[j ]

N (t)} ∈ R3×N evolving ac-
cording to [18]

Mβ

d

dt
Ṙ

[i]
β (t) = −∇β

⎡
⎣H[i](R(t)) + Q[i](R(t)) +

∑
[j ]

d[ij ](R(t) + D[ij ](R(t))

⎤
⎦ . (26)

As discussed above, the dynamics is “restricted” to the centers
of the Gaussians with coordinates R(i)

α (t) and, potentially, to
their widths.

1. The quantum potential and forces

The evaluation of Eq. (26) requires the calculation of the
derivatives of the quantum potential with respect to the nuclear
positions [18]. Here and in the following equations we drop
the subscripts for the labeling of the surfaces as well as the
explicit time dependence of the position vectors Rα(t). The
quantum forces become

−∇βQ(R) = −∇β

(
−h̄2

2

∑
α

M−1
α

∇2
αA(R,t)

A(R,t)

)

=
(

h̄2

2
M−1

β

∇β

∑
i ∇2

βφ
(i)
β (Rβ,t)∑

i φ
(i)
β (Rβ,t)

)
, (27)

which gives

−∇βQ
(
R(l)

β

) =
(

h̄2

2
M−1

β

∇βf g − f ∇βg

g2

∣∣∣∣
Rβ→R(l)

β

)
, (28)

with

g =
∑

i

φ
(i)
β

(
Rβ ; a(i)

β (t),σ (i)
β (t)

)
, (29)

f =
M∑

k=1

a
(i)
β (t)

(2π )3/2(σ (i)
β (t))5

e
− (Rβ −R(k)

β
)2

2(σ (k)
β

)2

[
3 −

(
Rβ − R(k)

β

)2
(
σ

(k)
β

)2
]

,

(30)

and

∇βf =
M∑

k=1

1(
σ

(i)
β

)4 a
(i)
β (t)

N (i)
β (t)

e
− (Rβ −R(k)

β
)2

2(σ (k)
β

)2

× (Rβ − R(k)
β

) [ 1(
σ

(k)
β

)2 (Rβ − R(k)
β

)2 − 5

]
, (31)

∇βg =
M∑

k=1

−1(
σ

(k)
β

)2 a
(k)
β (t)

N (k)
β (t)

e
− (Rβ −R(k)

β
)2

2(σ (k)
β

)2
(
Rβ − R(k)

β

)
. (32)

B. Time evolution of the amplitudes

Using the Gaussian expansion in Eq. (20), the differential
equation for the amplitude on surface [j ], A[j ], becomes

∑
α

�̇[j ]
α (Rα,t)

∏
β �=α

�
[j ]
β (Rβ,t) = −

∑
α

1

2Mα

⎛
⎝∏

β

�
[j ]
β (Rβ,t)

⎞
⎠∇2

αS[j ](R)

+h̄2

2

∑
α,[i]

1

Mα

Dα
[ji](t)

⎛
⎝∏

β

�
[i]
β (Rβ,t)

⎞
⎠ Im

[
e[ i

h̄
Si−j (R(t))]]
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−h̄
∑

α,[i]�=[j ]

1

Mα

dα
[ji](t)

⎛
⎝∏

β �=α

�
[i]
β (Rβ,t)

⎞
⎠∇α�[i]

α (Rα,t)Im
[
e[ i

h̄
S[i−j ](R)]

]

−
∑

α,[i]�=j

1

Mα

dα
[ji](t)

⎛
⎝∏

β

�
[i]
β (Rβ,t)

⎞
⎠∇αS[i](R)Re

[
e[ i

h̄
S[i−j ](R)]]. (33)

Applying the identities,

∫
d Rα�2

α(Rα) = 1,

∫
d Rα∇α�α(Rα) = 0,

∫
d Rα�α(Rα)�̇α(Rα) = 0,

we achieve separation by first multiplying Eq. (33) by
∏

β �=α �
[j ]
β (Rβ,t) and then integrating over

∏
β �=α d Rβ ,

�̇[j ]
α (Rα,t) = − 1

2Mα

�[j ]
α (Rα,t)∇2

αS[j ](R) − �[j ]
α (Rα,t)

∑
β �=α

1

2Mβ

(
�

[j ]
β (R),t

)2∇2
βS[j ](R)

+ h̄2

2

∑
[i]

�[i]
α (Rα,t)

⎛
⎝∑

β

1

Mβ

D
β

[ji]

⎞
⎠ [sαGc(0) + cαGs(0)]

− h̄
∑

[i]�=[j ]

⎡
⎣ 1

Mα

dα
[ji]∇α�[i]

α (Rα,t)[sαGc(0) + cαGs(0)] +
∑
β �=α

1

Mβ

dβ

[ji]�
[i]
α (Rα,t)(sαF c + cαF s)

⎤
⎦

−
∑

[i]�=[j ]

�[i]
α (Rα,t)

⎡
⎣ 1

Mα

dβ

[ji]∇βS[i]
α (Rα)[cαGc(0) − sαGs(0)] − cα

∑
β �=α

1

Mβ

dβ

[ji]G
c(1) − sα

∑
β �=α

1

Mβ

dβ

[ji]G
s(1)

⎤
⎦,

(34)

where

cα = cos

(
1

h̄

(
S[i]

α − S[j ]
α

))
, sα = sin

(
1

h̄

(
S[i]

α − S[j ]
α

))
,

Gc(a) =
∫ ⎛⎝∏

γ �=α

d Rγ

(
�[i]

γ �[j ]
γ

)⎞⎠ (∇βS
[i]
β

)a
cos

⎛
⎝∑

γ �=α

i

h̄

(
S[i]

γ − S[j ]
γ

)⎞⎠,

Gs(a) =
∫ ⎛⎝∏

γ �=α

d Rγ

(
�[i]

γ �[j ]
γ

)⎞⎠ (∇βS
[i]
β

)a
sin

⎛
⎝∑

γ �=α

i

h̄

(
S[i]

γ − S[j ]
γ

)⎞⎠,

F c =
∫ ⎛⎝∏

γ �=α

d Rγ

⎞
⎠
⎛
⎝ ∏

γ �=α,β

�[i]
γ �[j ]

γ

⎞
⎠(∇β�

[i]
β

)
�

[j ]
β cos

⎛
⎝∑

γ �=α

i

h̄

(
S[i]

γ − S[j ]
γ,

)⎞⎠,

F s =
∫ ⎛⎝∏

γ �=α

d Rγ

⎞
⎠
⎛
⎝ ∏

γ �=α,β

�[i]
γ �[j ]

γ

⎞
⎠(∇β�

[i]
β

)
�

[j ]
β sin

⎛
⎝∑

γ �=α

i

h̄

(
S[i]

γ − S[j ]
γ

)⎞⎠.

The time dependence of A(R) comes from the time evolution of the fluid elements R(i)
α (which is taken into account by the

evolution of the trajectory) and from the time evolution of the Gaussian amplitudes a(i)
α and widths σ (i)

α .
Equation (33) describes the nonadiabatic time evolution of the Gaussian nuclear amplitudes associated with the different

nuclei α and PESs [j ]. In the following, we restrict our analysis to the adiabatic case setting dα
[ji] = Dα

[ji] = 0. In addition,
in order to simplify the dynamics, we will introduce the frozen Gaussians approximation for which σ̇ (i)

α (t) = 0. Within these
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approximations, Eq. (33) becomes

∑
k

ȧ
(k)[j ]
α (t)√

2π
e
− (Rα−R(k)

α )2

2(σ (k)[j ]
α (t))2 = −

∑
k

1

2Mα

a
(k)[j ]
α (t)

N (k)[j ]
α

e
− (Rα−R(k)

α )2

2(σ (k)[j ]
α (t))2 ∇2

αS[j ](R)

−
(∑

k

a
(k)[j ]
α (t)

N (k)[j ]
α

e
− (Rα−R(k)

α )2

2(σ (k)[j ]
α (t))2

)∑
β �=α

1

2Mβ

⎛
⎝∑

k

a
(k)[j ]
β (t)

N (k)[j ]
β

e
− (Rβ −R(k)

β
)2

2(σ (k)[j ]
β

(t))2

⎞
⎠

2

∇2
βS[j ](R). (35)

The time evolution of the amplitudes a
(k)[j ]
α is obtained

integrating over Rα in Eq. (35). This leads to the following
expressions for the different terms in Eq. (35):

(i) Left-hand side:

∑
k

∫
d Rα

ȧ
(k)[j ]
α (t)

N (k)[j ]
α

e
− (Rα−R(k)

α )2

2(σ (k)[j ]
α (t))2 =

∑
k

ȧ(k)[j ]
α (t), (36)

(ii) First term on the right-hand side:

−
∑

k

1

2Mα

∫
d Rα

a
(k)[j ]
α (t)

N (k)[j ]
α

e
− (Rα−R(k)

α )2

2(σ (k)[j ]
α (t))2 ∇2

αS[j ](Rα)

= − 1

2Mα

∑
k

a
(k)[j ]
α (t)

N (k)[j ]
α

∫
d Rα

(
e
− (Rα−R(k)

α )2

2(σ (k)[j ]
α (t))2

)
∇2

αS[j ](Rα)

= − 1

2Mα

∑
k

∑
l

a
(k)[j ]
α (t)

N (k)[j ]
α

×

⎛
⎜⎝∫ d Rα

∣∣Rα − R(l)
α

∣∣−2
e
− (Rα−R(k)

α )2

2(σ (k)[j ]
α (t))2∑

p

∣∣Rα − R(p)
α

∣∣−2

⎞
⎟⎠∇2

αS[j ]
(
R(l)

α

)

≡ − 1

2Mα

∑
k

∑
l

a
(k)[j ]
α (t)

N (k)[j ]
α

X (k,l)
α ∇2

αS[j ]
(
R(l)

α

)
. (37)

We compute the scalar field ∇2
αS[j ](R) from the curvature

of S[j ](R) along the trajectory. The integral over d Rα in
the third line is evaluated using a Shepard algorithm [33]
with interpolating function r−2 and interpolation points R(l)

α (t)
corresponding to the configurations sampled by all other
trajectories (l �= k) at the same instant of time t .
(iii) Second term on the right-hand side:

−
∑

β

∑
k a(k)

α (t)

2Mβ

×
∫

d Rβ

⎛
⎝∑

k

a
(k)[j ]
β (t)

N (k)[j ]
β

e
− (Rβ −R(k)

β
)2

2(σ (k)[j ]
β

(t))2

⎞
⎠

2

∇2
βS[j ](Rβ)

= −
∑

β

∑
k a(k)

α (t)

2Mβ

∑
l

∫
d Rβ

⎛
⎝∑

k

a
(k)[j ]
β (t)

N (k)[j ]
β

e
− (Rβ −R(k)

β
)2

2(σ (k)[j ]
β

(t))2

⎞
⎠

2

×
∣∣Rβ − R(l)

β

∣∣−2

∑
p

∣∣Rβ − R(p)
β

∣∣−2 ∇2
βS[j ]

(
R(l)

β

)

≡ −
∑

β

∑
k a(k)

α (t)

2Mβ

∑
l

W (l)
β ∇2

βS[j ]
(
R(l)

β

)
. (38)

As in (ii), a Shepard algorithm is used to perform the integral
in d Rβ .

Finally, applying Jones’ solution [34] to Eq. (35) we obtain
the following set differential equations for the FEs amplitudes
(see appendix):

ȧ(k)
α (t) = − 1

2Mα

∑
l

a(k)
α (t)(√

2πσ
(k)[j ]
α (t)

)3 X (k,l)
α ∇2

αS
(

R(l)
α

)

−
∑

β

a(k)
α (t)

2Mβ

∑
l

W (l)
β ∇2

βS[j ]
(
R(l)

β

)
−a(k)

α (t)�
({

a(l)
α (t)

})
. (39)

The last term in Eq. (39) arises from the norm conservation of
�α where �({a(l)

α }) = 1/(
∑

l=1 F
a

(l)
α
a(l)

α )(
∑

l=1 Ll({a(l)
α })F

a
(l)
α

),
Ll({a(l)

α }) is the sum of the first two terms of the right-hand side
of Eq. (39), and F

a
(l)
α

is the partial derivative with respect to a(l)
α

of the constraint F ({a(l)
α }) = ∫ d Rα(

∑
l φ

(l)
α )2 − 1 = 0 [34].

C. The numerical algorithm

Equation (26) with Eqs. (28) and (39) constitute the set of
adiabatic Bohmian dynamics (ABDY) equations used for the
numerical implementation of the coupled quantum electron-
nuclear dynamics in phase space. The gradients ∇αS(R(k)

α ) cor-
respond to the momenta P (k)

α , while the Laplacians ∇2
αS(R(k)

α )
are obtained from the curvature of the trajectory (k) evaluated
at time t . To improve the stability of the algorithm, we
introduce a softening of the quantum potential in Eq. (28)
by adding a constant γ to the denominator.

In a typical calculation, we start by distributing a set of
centers, R(k)

α , according to Gaussian distributions centered on
each atom α of the system, where the initial geometry is taken
from an equilibrated classical run at the desired temperature.
The atomic positions sampled in this way are the center of the
frozen Gaussians, φ(k)

α (Rα,a(k)
α ), used to propagate the nuclear

amplitudes, while a molecular FE consists of a collection
of atomic coordinates defining a molecule. The classical
momenta are then redistributed with a spread δ P (k)

α ∼ h/δR(k)
α

(where h is the Plank constant). The softening parameter γ

is chosen within the range [10−11,10−9] and the time step is
typically set to 0.024 fs (but it is reduced by a factor 10 when a
bond between two H atoms is present). The ABDY scheme is
implemented in the plane wave DFT-TDDFT code CPMD [35].

IV. APPLICATIONS

To validate ABDY in the adiabatic (ground-state) regime,
we compute the vibrational wave function of the hydrogen
molecule in its first ground-state vibrational state. In this
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FIG. 1. Ground-state squared vibrational wave function of the
hydrogen molecule computed with an ensemble of 20 Bohmian
trajectories for a total simulation time of 500 fs (circles); a fit with
three Gaussians is also shown (black curve). The ABDY solution is
compared with the numerical solution obtained with finite differences
(dashed line) and with the (unnormalized) classical bond length
distribution (gray dashed curve). The DFT potential curve for H2

is computed with the PBE functional [36] and a plane-wave cutoff of
50 Ry (see left inset). The right inset reports the percentage error in
kinetic energy 〈T̂ 〉 as a function of the number of FEs per atom.

application, each atom is represented by 20 FEs Gaussian
distributed around the “classical” atoms placed at a distance
of 0.8 Å(roughly the turning point of the classical trajectory at
300 K) with a variance of 0.1 Å. The dynamics is performed
with the PBE functional [36] and a plane-wave cutoff of 50 Ry.

Figure 1 shows the results obtained from our dynamics
(black line) together with the numerical solution obtained with
the finite-differences method (dashed black line) applied to
the same DFT-PBE potential, and the classical bond length
distribution at ∼300 K (dashed gray line). The agreement
between the two quantum calculations is very good with just
a deviation of about 1% in the position of the distribution
maxima. It is important to mention that in ABDY we quantized
the single atoms according to the Ansatz in Eq. (20) and not
directly the first bound state of the intramolecular potential.
As a consequence, we do not obtain the exact stationary state
of the system (with all its implications [37,38]) but, more
appropriately, a “quasistationary” state whose time average
is reported in Fig. 1. The convergence of the calculation as
a function of the number of the atomic FEs is shown in the
right inset. Note that the momenta of the FEs can reach higher
values than that associated to the FEs center of mass, while the
quantum kinetic energy 〈T̂ 〉 is in agreement with the reference
calculation. Figure 2 reports a two-dimensional cut through
the molecular phase space showing the projected position
and momenta distributions onto the (R1,P1) plane of the two
hydrogen atoms (R1 and P1 are the first Cartesian coordinate
and momentum of each hydrogen atom [39]). By taking the
classical limit Q → 0 the FEs will behave as uncorrelated
classical systems with an independent time evolution. In this
limit case, all atoms defining a FE will therefore follow
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FIG. 2. (Color online) Projection onto the (R1,P1) plane of
the atomic FE dynamics of the two hydrogen atoms (black dots)
compared to the classical trajectories (red circles). The equilibrium
position is at R1(Hα=1) = 8.73 bohr and R1(Hα=2) = 10.16 bohr.

classical trajectories in the phase space (see red elliptical
trajectories in Fig. 2). It is indeed the presence of quantum
correlation among the FEs that induces the deviation from the
classical behavior and generates the complex (almost chaotic)
FE dynamics shown by the black dotted trajectories in Fig. 2.
In addition, this correlation is also responsible for the correct
quantum distribution of the H2 bond length (black line in
Fig. 1), which in the case of classical dynamics is described by
a bimodal distribution with two maxima at the turning points
(gray dashed line in Fig. 1). This is an indirect proof of the
correct physical nature of the correlation between FEs.

Of particular interest is the use of ABDY in the direct
investigation of dynamical properties of molecular systems
for which nuclear quantum effects play an important role.
In the adiabatic case, the most relevant of such processes is
proton transfer (PT). In the following we first compute the
PT dynamics of an extra proton placed between two ammonia
molecules separated by a fix N to N distance of 2.63 Å,
while in a second simulation we will investigate the same PT
process in the fully unconstrained phase space of the molecular
complex.

The constraint on the N -N distance is imposed to stabilize
the system in a reactive configuration with the aim of
enhancing the probability of proton transfer within the time
scale of our simulation (100 fs). In particular, at this N-N
distance the barrier for classical proton transfer is prohibitively
high, which gives us the opportunity to study a pure quantum
tunneling process. The ABDY dynamics is performed in
the 53-dimensional molecular phase space using electronic
potential and forces computed on-the-fly using DFT with the
PBE functional and a plane-wave cutoff of 70 Ry. Thirty
FEs are used for each atom (Fig. 3, upper left panel). During
the equilibrating Born-Oppenheimer dynamics with classical
nuclei (t < 0 in Fig. 3) the shared proton remains linked to the
same nitrogen atom and no transfer is observed over a period
of more than 10 ps (data not shown). The situation changes
when we switch to quantum dynamics at time t = 0. In average
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FIG. 3. (Color online) (Upper left panel) Ball-and-stick repre-
sentation of the (NH3)2 H+ system. Thirty FEs per atom are used
in the quantum dynamics (small spheres). Large atom-centered
vdW spheres are used to wrap up all atomic FEs (blue, nitrogen;
white, hydrogen). (Upper right panel) Collection of all FE centers
collected along the entire simulation. (Middle panel) Time series of
the two N-H distances with the shared proton; (t < 0), dynamics with
classical nuclei; (t > 0), dynamics with quantum trajectories. Two
representative paths are shown in color to highlight the transition.
(Lower panel) Time series of the Gaussian midpoint amplitudes of
the FEs associated with the different hydrogen atoms (black lines).
In red is highlighted the dynamics of the 30 FE amplitudes of the
“shared” proton.

the two NH distances become shorter and we observe a first
PT event within the first 100 fs of quantum dynamics (Fig. 3,
middle panel). The upper right panel in Fig. 3 shows the entire
set of atomic FE centers collected along the full 0.35-ps-long
simulation. The scattering of the FE “clouds” is due to both the
quantum spread and the statistical sampling (umbrella motion
of the NH3 units). In red (Fig. 3, upper right panel) are shown
the configurations of the central hydrogen atom that are closer
to the “acceptor” nitrogen atom on the left; in the stating
configuration the same H atom was bonded to the “donor”
nitrogen on the right. Finally, in the lower panel of Fig. 3 we
report the time series of the amplitudes of all FEs.

A more realistic description of the proton transfer dynamics
in this complex is obtained when the constraint on the N-N is
released. However, due to the low frequency of the N-N mode
an exhaustive sampling of this additional degree of freedom
is beyond the reach of the present study and therefore here
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FIG. 4. (Color online) (Upper panel) Time series of the average
N-N bond distance for the unconstrained ABDY dynamics of the
(NH3)2 H+ complex. (Lower panel) Time series of the two N-H
distances with the shared proton. Two representative paths are shown
in color to highlight the transitions. Three snapshots represented the
molecular system at times t = 0 (initial configuration), t = 25 (after
the first proton transfer), and t = 35 fs (last frame) are also shown.
(Color code as in Fig. 3).

we will only report the dynamics associated to a single N-N
vibration period.

The simulation is started by assigning collinear antiparallel
velocities to the nitrogen atoms. Figure 4 shows the time
evolution of the quantum averaged N-N distance (upper panel)
together with the corresponding N-H distances computed
for each FE separately (lower panel). We clearly observe
a correlation between the N-N distance and the occurrence
of a PT event, as far as the NH3 molecules remain oriented
face-to-face as shown in the upper panel of Fig. 3. In addition,
this dynamics offers the possibility of investigating the role of
other molecular degrees of freedom in the modulation of the PT
process. In particular, Fig. 5 shows that the PT in the (NH3)2

H+ complex occurs preferentially at large pyramidalization
values of the acceptor molecule and for noncollinear N-H
bonds (i.e., for N-H-N angles between 150◦ and 170◦). We
also observed that this specific choice of the initial velocities
induces a rotation of one ammonia molecule with respect to
the other making a subsequent PT event less favorable (see
inset in Fig. 4, lower panel). It is important to stress that a
full rationalization of the PT dynamics in the unconstrained
configuration space of (NH3)2 H+ will require the collection
of many initial conditions, which is beyond the scope of this
study.

V. DISCUSSION AND CONCLUSIONS

We have presented a approach to perform quantum dy-
namics of molecular systems using Bohmian trajectories and
electronic structure properties computed on-the-fly with DFT.
The dynamics is based on the solution by characteristics
of the differential equation for the action function in the
configuration space. The characteristics are trajectories that
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FIG. 5. (Color online) Time series of the pyramidalization angle
of the acceptor NH3 molecule (upper panel) and of the N-H-N angle
(lower panel) during 35 fs of unconstrained dynamics of the (NH3)2

H+ complex.

propagate phase space volume elements (fluid elements) in
the quantum hydrodynamic representation of the nuclear
dynamics [31,40]. The main challenge in the implementation
of this type of dynamics for molecular systems is related to the
high dimensionality of the problem, which hampers the use of
prepared PESs to guide the nuclear dynamics. To overcome this
problem, we have recently developed a nonadiabatic Bohmian
dynamics scheme (NABDY) that combines the propagation of
quantum trajectories with the on-the-fly calculation of PESs,
forces, and nonadiabatic couplings using DFT and TDDFT
[18]. Building from this work, we derived an ab initio–driven
quantum dynamics scheme that can handle molecular systems
of any dimension. This is accomplished at the cost of some
approximations. The most severe is related to the factorization
of the nuclear wave function given in Eq. (20). In fact, this
product Ansatz implies physical independence of the different
particles, which prevents us from describing entangled, highly
correlated nuclear states. However, the molecular FEs remain
correlated at all times. While this approximation appears
severe in many cases, the corresponding dynamics can still
capture important effects related to the quantum nature of
constituent subsystems (like quantum dots and light ele-
ments in molecules) including nuclear wave-packet splitting,
tunneling, and, possibly, nonadiabatic transitions. Additional
approximations are introduced for numerical purposes; their
effect on the dynamics can in general be tuned through the
settings of corresponding control parameters. Those are (i) the
number of Gaussian functions used in the representation of
the nuclear wave packets, which corresponds to the number
of atomic fluid elements (FEs), (ii) the softening of the
quantum potential, which produces a smoothening of the
forces acting on the FEs and consequently permits the use of
larger time steps in the integration of the equations of motion,
and (iii) the frozen Gaussian approximation, which imposes

the time evolution of Gaussians with constant widths. Most
importantly, the use of the Gaussian expansion for the nuclear
amplitudes has the enormous beneficial effect of making
the calculation of the quantum potential and corresponding
forces analytic [Eq. (28)]. This brings further stability into the
numerical solution of the quantum dynamics.

While this dynamics (named (adiabatic Bohmian dynamics)
is derived for the most general nonadiabatic case, in this
work we restricted its implementation and applications to
the adiabatic limit. We first applied ABDY to the study of
the vibronic wave function of the H2 molecule, which has the
largest quantum effects among all diatomics. The H2 bond
length distribution sampled with the quantum trajectories is
in very good agreement with the “exact” solution obtained
solving by finite differences the time-independent Schrödinger
equation for the same one-dimensional DFT potential (see
Fig. 1). In particular, we found that the results already
converge with 20 FEs per atom and a softening coefficient
γ = 10−9. The analysis of the trajectories reveals how the
sampling of rare classical configurations is achieved; by the
action of the quantum potential FEs are accelerated and move
into regions of the configuration space that are classically
forbidden. However, the FE dynamics has no direct relation to
the molecular kinetic energy, which is now computed as the
expectation value of the kinetic operator.

Finally, we applied ABDY to the investigation of dynamic
nuclear quantum effects in AIMD simulations of molecular
systems and in particular to the study of the proton transfer
dynamics in the molecular complex (H3N-H-NH3)+. Initially,
the quantum dynamics is performed in the full molecular phase
space with the only exception of the N-N distance that is
kept fixed at the value of 2.63 Å in order to better compare
with the classical dynamics that, being simulated on a longer
time scale, would modify substantially this arrangement. We
observed that, while the PT does not occur during several ps

of classical AIMD, it is strongly enhanced when the quantum
description of the nuclear dynamics is switched on (Fig. 3).
Not surprisingly, the larger quantum effects are observed
for the hydrogen atoms, which have the largest spread in
configuration space. In a second step, we released the N-N
distance constraint and we simulated the PT process starting
from collinear antiparallel velocities assigned to the nitrogen
atoms. We observe a faster PT dynamics that occurs for
short values of the N-N distance. However, other molecular
vibrational modes appear to play a role in the process like,
for instance, the pyramidalization of the ammonia molecules
and the misalignment of the N-H-N triad. As shown in this
simple application, ABDY has the potential of emerging as a
valuable complementary scheme to path integral techniques
for the study of nuclear quantum effects in molecules, liquids,
and solids.

Numerically, the ABDY scheme is simple to implement
in any DFT-based molecular dynamics code and due to the
low level of communication between trajectories it can be
efficiently parallelized.

In conclusion, the development presented in this work
together with the results of Ref. [18] provide a complete
theoretical framework for the implementation of a nonadi-
abatic MD scheme based on quantum trajectories. In the
adiabatic case, ABDY constitutes a valuable approach for
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the calculation of nuclear quantum effects in ab initio–driven
AIMD simulations. Finally, it is worth mentioning that,
while the factorization Ansatz of the nuclear wave function
considerably simplifies the equations of motion, it is not
essential to this development. We are currently working on
possible alternative representation of the correlated nuclear
wave function, which will open new perspectives in the study
of entangled quantum dynamics.
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APPENDIX

The coupled system of (linear) differential equations,

ẋi = Li(�x), (A1)

with the initial conditions xi(0) = x0
i and the constraint,

F (�x,t) = c, (A2)

can be rewritten as

ẋi = Li(�x) − xi�(�x,t) , (A3)

where � is

�(�x,t) = 1∑n
j=1 Fxj

xj

(
n∑

i=1

Li(�x)Fxi
+ Ft

)
, (A4)

and Fxi
= ∂F/∂xi , and Ft = ∂F/∂t . In addition, when F (�x) is

homogeneous of order λ in all its variables, F (a�x) = aλF (�x),
then

�(�x,t) = 1

λc

(
n∑

i=1

Li(�x)Fxi
+ Ft

)
. (A5)

Proof. From

Ḟ (�x,t) = 0, (A6)

one gets ∑
i

Fxi
ẋi + Ft = 0, (A7)

and inserting Eq. (A3),∑
i

Fxi
(Li(�x) − xi�(�x,t)) + Ft = 0 (A8)

gives the desired equation for �. �

Algorithm

If Li(�x) is an homogeneous function on all xi , then the
differential equation with constraint [Eq. (A3)],

ẋi = Li(�x) − xi�(�x,t), (A9)

can be recast into the original form,

ẏi = Li(�y), (A10)

by means of the transformation,

xi(t) = yi(t) e− ∫ t

0 dτ�(τ ). (A11)

Proof. Inserting the derivative of Eq. (A11),

ẋi(t) = ẏi(t) f (t) + yi(−�)f (t), (A12)

into the original equation,

ẋi = Li(�x) − xi�(�x,t), (A13)

with f (t) = e− ∫ t

0 dτ�(τ ), one gets

ẏi = Li(�x)
1

f (t)
. (A14)

Assuming that Li(�x) is homogeneous, then [since �y = �x/f (t)]

ẏi = Li(�y) . (A15)

�
Corollary. If F (�x,t) is homogeneous in xi then

c = F (�x,t)

= F (�y f (t),t)

= (f (t))λF (�y,t).

Therefore,

f (t) =
(

c

F (�y,t)

)1/λ

(A16)

and

xi(t) = yi(t)

(
c

F (�y,t)

)1/λ

. (A17)
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