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Long-distance entanglement in one-dimensional quantum systems under sinusoidal deformation
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We investigate entanglement generation in one-dimensional quantum spin systems with the sinusoidal
deformation. In the system, the energy scale of each local term in the Hamiltonian is modified according to
a position-dependent function sinα[ π

N
(x − 1

2 )], where x is the position of the local term and N is the length of
the system. We show that at zero temperature the system with α � 2 is able to generate a sizable entanglement
between two spins at open edges, even when the two spins are infinitely far apart. This long-distance entanglement
is rather robust against thermal fluctuations and survives up to a temperature that decays with the system size
slowly, in an algebraic form.
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I. INTRODUCTION

Entanglement is an essential resource in quantum infor-
mation tasks [1]. In particular, the generation of a large
entanglement between two parties located far away from each
other is a crucial ingredient in quantum information processing
such as quantum computation and quantum teleportation. One
possible way to create an entanglement between distant parties
is to connect them by a one-dimensional (1D) quantum many-
body system including quantum spin chains and correlated
fermion or boson systems. Such a quantum system which is
able to sustain a sizable entanglement between qubits at a
distance has been sought under the concept of long-distance
entanglement (LDE) [2–14].

The realization of LDE is a challenging task, since entangle-
ment in a system with short-range interactions usually decays
quite rapidly. However, the considerable efforts in recent years
have revealed that there are some systems which can generate
LDE. A typical example of the systems exhibiting LDE is
the spin-1/2 bond-alternating chain with two additional spins
weakly coupled to the open ends [2,4]. The ground state of
the system consists of entangled pairs of spins (singlet pairs,
in the words of quantum magnetism) in the bulk and two
effectively free spins at the open edges. At a sufficiently low
temperature, the edge spins form a singlet pair across the bulk
spins and realize LDE. A similar mechanism applies also to
other systems with gapful excitations [2,5–7]. Setups utilizing
1D critical and 2D spin systems [2–4,8] and bosons in a 1D
optical lattice [9] to mediate LDE between edge qubits as well
as dynamical setups to generate LDE [9–14] have also been
proposed.

In this paper, we propose a new class of 1D systems
which exhibit LDE, that is, the systems under the sinusoidal
deformation (SD) [15–21]. The SD is introduced as follows.
First, we consider a Hamiltonian consisting of local terms,

H0 =
∑

x

hx, (1)

where x denotes the center position of the local Hamiltonian.
For instance, x = (l + l′)/2 for the exchange term between
the spins at the lth and l′th sites, hx = Sl · Sl′ . Then, in the
system under SD, the energy scale of the local Hamilto-
nian at the position x is modified according to a rescaling

function, namely,

HSD =
∑

x

f (α)
x hx, (2)

with

f (α)
x = sinα

[
π

N

(
x − 1

2

)]
, (3)

where N is the number of sites in the system. The energy
scale is a maximum at the center of the system, x = (N +
1)/2, decreases smoothly as the position x goes away from the
center, and becomes zero at the open edges, x = 1/2,N + 1/2
(see Fig. 1).

Employing an analytic argument as well as numerical
methods, we study the entanglement between two spins at
the open ends of the systems under SD. We show that in
the ground state of the systems with α � 2 the entanglement
between the edge spins remains finite, even at the limit of an
infinitely long system, that is, LDE is realized. In particular,
for α = 2 the emergence of LDE can be proven exactly. The
amount of LDE in the ground state increases with α. We also
examine how robustly the LDE survives at finite temperatures.
It is found that the LDE becomes more fragile against thermal
fluctuations as α is larger. In the N -site system with α � 2,
the temperature at which the entanglement between edge spins
vanishes decreases with N in the scaling form ∼N−α . Our
results provide materials for finding the optimal α to maximize
the amount of LDE at the lowest temperature one can reach.

The paper is organized as follows. The definition of models
considered in this paper is presented in Sec. II A. In Sec. II B,
we review known results for the systems under SD with α = 2
and show that LDE between edge spins is realized in the ground
state of the systems. We then present our numerical results for
the ground state and finite temperatures in Secs. III A and III B,
respectively. Section IV contains the summary and concluding
remarks.

II. SINUSOIDAL DEFORMATION

A. Model Hamiltonian

We study the spin-1/2 antiferromagnetic XXZ chain under
the sinusoidal deformation [15–21]. The model Hamiltonian
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FIG. 1. (Color online) Rescaling function f (α)
x of the sinusoidal

deformation, Eq. (3), with α = 1,2, and 3. f (α)
x is maximum at the

center of the system, x = (N + 1)/2, and becomes zero at open edges,
x = 1/2,N + 1/2.

is given by

H = J

N−1∑
l=1

f
(α)
l+1/2

(
Sx

l Sx
l+1 + S

y

l S
y

l+1 + �Sz
l S

z
l+1

)
, (4)

where Sl = (Sx
l ,S

y

l ,Sz
l ) is the spin-1/2 operator at the lth

site and � is the parameter of the exchange anisotropy. The
rescaling function f (α)

x is defined in Eq. (3). In this paper, we
consider the cases of the Heisenberg chain (� = 1) and the
XY chain (� = 0). Note that the spin-1/2 XY chain is mapped
to the 1D system of free spinless fermions by Jordan-Wigner
transformation.

B. Long-distance entanglement by sine-square deformation

The SD was originally introduced in Ref. [15] as an
improved version of a smooth boundary condition [22,23] to
suppress open boundary effects. In particular, for the SD with
α = 2, which is called the sine-square deformation, an interest-
ing phenomenon was found. Despite the presence of the open
boundaries, the boundary oscillations in local quantities were
suppressed completely [15]. Subsequently, it was found that a
1D critical (gapless) system with the sine-square deformation
had the ground state which was identical in the level of the
wave function to the one of the same uniform system under
the periodic boundary condition [16,24]. The equivalence of
the ground-state wave functions was proven rigorously for
several systems including 1D free-fermion system [equivalent
to the XY chain, Eq. (4) with � = 0], the transverse-field
Ising model at criticality, and the Gaussian model of the
c = 1 conformal-field theory [17,18,21]. Furthermore, it was
found numerically that the same phenomenon occurred in
a wide variety of 1D models with gapless excitations such
as the spin-1/2 XXZ chain and two-leg ladder in magnetic
field [16] and the (extended) Hubbard chain in a metallic
phase [19]. These results suggest that the equivalence of the
ground state between systems under the periodic boundary
condition and the sine-square deformation is a generic feature
of 1D critical systems belonging to the universality class of
Tomonaga-Luttinger liquid.

In relation to LDE, the above observation immediately leads
to an intriguing conclusion: In the ground state of the system
with the sine-square deformation, the spins at the open edges,
which are at a distance of the length of the system, behave in
completely the same way as the nearest-neighboring spins

in a periodic system. Since the entanglement between the
neighboring spins in the periodic chain remains finite even
in the thermodynamic limit, it follows that the edge spins in an
open chain with the sine-square deformation also sustain the
same finite amount of entanglement. It is thereby concluded
that the system under the sine-square deformation exhibits the
LDE. We will show later that the model (4) for α � 2 also
realizes the LDE in the ground state.

III. NUMERICAL RESULTS

In this section, we present our numerical results of the
entanglement between edge spins in the spin chain under
the sinusoidal deformation. To evaluate the entanglement
between two end spins, we calculate the concurrence defined
as follows [25,26].

We start from the density matrix (DM) for the whole system,
i.e., ρ = |�0〉〈�0| at T = 0 (|�0〉 is the ground state) and ρ =
1
Z

exp(− H
kBT

) for finite temperatures T > 0 (Z is the partition
function and kB is the Boltzmann constant). The reduced DM
for the edge spins S1 and SN is obtained as ρ1N = Tr1Nρ,
where Tr1N denotes the trace for the bulk spins at l = 2,...,N −
1. The concurrence for the edge spins is then defined as

C(ρ1N ) = max(0,λ1 − λ2 − λ3 − λ4), (5)

where λi (λ1 � λ2 � λ3 � λ4) are the square roots of the
eigenvalues of the non-Hermitian matrix ρ1N ρ̃1N . Here, ρ̃1N ,
called the spin-flipped state, is defined by

ρ̃1N = (
σ

y

1 ⊗ σ
y

N

)
ρ∗

1N

(
σ

y

1 ⊗ σ
y

N

)
, (6)

where σy is the y component of the Pauli matrix. The
concurrence is equal to 1 for the maximally entangled state
while it is 0 for a separable state.

Using relations between the matrix elements of the reduced
DM ρ1N and expectation values of edge-spin operators, a
useful expression of the concurrence has been obtained [27],

C(ρ1N ) = 2 max
[
0,2|Cx

1N | −
√(

1
4 + Cz

1N

)2 − M2
]
, (7)

where M = 〈Sz
1〉 = 〈Sz

N 〉 and Ca
1N = 〈Sa

1 Sa
N 〉 (a = x,z). We

calculate numerically the correlation functions Cx
1N and Cz

1N

at zero and finite temperatures (note that M = 0 in our
model without external magnetic field), and then evaluate the
concurrence using Eq. (7).

A. Ground state

In Fig. 2 we show our numerical data of the end-to-end
concurrence in the ground state (T = 0) of the SD systems
with up to N = 64 spins. The data for N � 24 were obtained
by the exact-diagonalization method, while those for N � 28
were calculated by the density-matrix renormalization group
(DMRG) method [28,29]. Figures 2(a) and 2(b) show the
system-size dependence of the concurrence for the Heisenberg
(� = 1) and XY (� = 0) cases, which exhibit essentially the
same behavior. It is clear that for α � 2 the concurrence takes
a finite value even at the thermodynamic limit N → ∞. For
α = 4, we could not obtain the data for N � 28, since the
DMRG calculation did not converge the true ground state
due to the extremely small energy scale around open edges.
However, the exact-diagonalization results for N � 24 are
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FIG. 2. (Color online) End-to-end concurrence C(ρ1N ) in the
ground state of the system with the sinusoidal deformation [Eq. (4)]
as functions of system size N : (a) Heisenberg case (� = 1) and (b)
XY case (� = 0). Estimates of C(ρ1N ) at N → ∞ are shown in (c)
as functions of α. Lines are guides for the eye.

enough to suggest the convergence of the data to a finite large
value at N → ∞. For α < 2, on the other hand, the end-to-end
concurrence decreases slowly, presumably in a power law, with
the system size N . We note that the concurrence for α = 1.9
decreases very slowly but monotonically with N . From the
results, we conclude that the system with α � 2 realizes the
LDE.

Figure 2(c) shows the end-to-end concurrence in the
thermodynamic limit for the LDE regime as a function of
α. As estimates of the concurrence at N → ∞, C(ρ1N ) for
N = 64 (N = 24) is plotted for α � 3.0 (α = 4.0). The figure
suggests that the end-to-end concurrence in the ground state
is monotonically increasing with α. This is consistent with an
intuitive argument that the correlation between an edge spin S1

(SN ) and the neighboring spin S2 (SN−1) becomes weaker as
the ratio of the edge bond to the bond next to the edge is smaller,
which results in a larger entanglement between the edge spins
from the monogamy condition. We note that for α = 2 the end-
to-end concurrence at T = 0 is equivalent to the concurrence

between the nearest-neighboring spins in a uniform periodic
system as discussed in Sec. II B. Indeed, the numerical results
for α = 2 coincide with the exact value obtained from the
nearest-neighbor spin correlations in the infinite uniform spin
chain: limN→∞ C(ρ1N ) = 0.386 3... for the Heisenberg chain
(� = 1) and limN→∞ C(ρ1N ) = 0.339 3... for the XY chain
(� = 0).

B. Finite temperatures

In the previous section, we have shown that the SD system
with α � 2 exhibits the LDE. The end-to-end concurrence in
the ground state increases with α, suggesting that larger α is
preferable for achieving a larger amount of LDE. However,
since the SD with large α leads to a small energy scale
around the open edges, it is naturally expected that the system
with large α becomes fragile against thermal fluctuations.
Therefore, it is important to examine how robustly the LDE
in the system with SD survives at finite temperatures. To this
end, we have calculated the end-to-end concurrence at finite
temperatures by the quantum–Monte Carlo method based on
the directed-loop (worm) algorithm [30–32].

In Fig. 3, we present the numerical data of the end-to-end
concurrence at finite temperatures for N = 24 as a typical
example. For all the cases of α and � calculated, we have
observed qualitatively the same behavior: When T increases
from zero, the concurrence remains at almost the same value as
that for T = 0 for some temperature range, and then decreases
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FIG. 3. (Color online) Temperature dependence of the end-to-end
concurrence C(ρ1N ) in the system under the sinusoidal deformation
[Eq. (4)] with N = 24 spins: (a) Heisenberg case (� = 1) and
(b) XY case (� = 0). All data are plotted with error bars, but most of
them are smaller than the symbol size. Lines are guides for the eye.
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FIG. 4. (Color online) Temperature T ∗ at which the end-to-end
concurrence vanishes as functions of system size N : (a) Heisenberg
case (� = 1) and (b) XY case (� = 0). Lines show the fits to an
algebraically decaying form kBT ∗/J = AN−η with fitting parameters
η and A. (c) Decay exponent η as functions of α. The dotted line
represents the relation η = α. All data are plotted with error bars.

smoothly down to zero. As α is larger, the concurrence is
larger at T → 0 but starts to decrease at a lower temperature,
as expected [33]. On the other hand, when α is small, the
concurrence is rather small at T → 0 but can survive up to
high temperatures. Therefore there is a tradeoff between the
amount of LDE achievable at T = 0 and the temperature range
for which the LDE is sustainable. For a practical purpose, one
may choose α to maximize the amount of LDE at temperatures
achievable. Our data may serve as a basis for this judgment.

To evaluate the robustness of LDE more quantitatively,
we examine the temperature T ∗ at which the end-to-end
concurrence C(ρ1N ) vanishes. Figures 4(a) and 4(b) show the

system-size dependence of T ∗. The data clearly suggest that T ∗
decreases with N algebraically, kBT ∗/J ∼ N−η. The decay
exponent η obtained from the fitting is plotted in Fig. 4(c) as a
function of α. For α � 2, the exponent obeys a relation η = α.
This behavior is not trivial but can be understood from the
fact that the energy scale at edge bonds, which should give the
energy scale of the excited state localized around the edges,
changes as sinα(π/N ) ∼ N−α . For α < 2, on the other hand,
the decay exponent η is larger than α. While this numerical
observation indicates the presence of low-energy excitations,
which have an excitation energy smaller than that of the edge
states, it is not clear how to construct such an excited state.
This question for α < 2 is open for future research.

IV. CONCLUDING REMARKS

We have studied the long-distance entanglement between
edge spins of one-dimensional spin systems under the SD.
In the systems, the energy scale of the local Hamiltonian
is modified smoothly from a maximum at the center of the
system to zero at open edges according to a rescaling function
Eq. (3). When the exponent in the rescaling function is α = 2,
it was shown that the ground state of the system was equivalent
to the one of the corresponding uniform periodic system.
Therefore the system under SD with α = 2 generates an
entanglement between edge spins whose strength is the same as
that between nearest-neighboring spins in the periodic chain.
The system thereby realizes the long-distance entanglement,
a finite entanglement between edge spins infinitely far apart
from each other, in the ground state.

We have investigated numerically the entanglement be-
tween the edge spins in the SD system for various α. Using the
exact diagonalization and DMRG methods, we have calculated
the end-to-end concurrence in the ground state. It is then
found that the SD with α � 2 generates LDE. The amount
of the entanglement is larger as α is larger. We have also
examined how robust the LDE is against thermal fluctuations.
The numerical data of the end-to-end concurrence at finite
temperatures obtained from the quantum–Monte Carlo method
suggest that when temperature increases, the concurrence
keeps the value at T = 0 for some range of low temperatures,
and then disappears smoothly. The temperature T ∗ at which
LDE vanishes decays with the system size N in a power law,
kBT ∗/J ∼ N−η. For α � 2, the decay exponent η is found
to be equal to α. Our numerical results thus indicate that
large α is preferable for generating a large LDE at T = 0
but disadvantageous in sustaining LDE at finite temperatures.
For a practical purpose, one may select the optimal α in the
energy deformation considering the amount of LDE required
and the lowest temperature which can be achieved.

A characteristic feature of SD is that it realizes a “true”
LDE in the ground state in the sense that the entanglement
between edge spins remains finite even at the infinitely long
chain. Furthermore, the LDE can survive up to a rather
high temperature; the temperature T ∗ at which LDE vanishes
decays quite slowly, in a power law, with the system size.
The latter point is in contrast with the LDE mediated by
systems with gapful excitations, for which T ∗ typically decays
exponentially with system size. We also emphasize that our
results are not restricted to the spin-1/2 chains but applicable to
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general 1D critical systems belonging to the universality class
of Tomonaga-Luttinger liquid. These properties of SD would
make it be of wide application in entanglement engineering
using quantum-correlated systems.

The realization of a system with SD in laboratory is an
intriguing and challenging problem. The systems of ultracold
atoms in optical lattices, for which hopping amplitudes and
interatomic couplings can be tuned [34–36], should be a
promising candidate.
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