
PHYSICAL REVIEW A 87, 042332 (2013)

Non-Hermitian quantum annealing in the ferromagnetic Ising model
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We developed a non-Hermitian quantum optimization algorithm to find the ground state of the ferromagnetic
Ising model with up to 1024 spins (qubits). Our approach leads to significant reduction of the annealing time.
Analytical and numerical results demonstrate that the total annealing time is proportional to ln N , where N is the
number of spins. This encouraging result is important in using classical computers in combination with quantum
algorithms for the fast solutions of NP-complete problems. Additional research is proposed for extending our
dissipative algorithm to more complicated problems.
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I. INTRODUCTION

Quantum annealing (QA) algorithms can be useful for
solving many hard problems related to finding the global
minimum of multivalued functions, cost functions, optimal
configurations of complex networks, and the ground states
of the corresponding Hamiltonians. The main idea of QA is
to utilize the collective quantum tunneling effects enabling
complex systems to tunnel during the slow time evolution from
local minima to the global ground state. Although many useful
results have been obtained in this field, many problems still
need to be resolved. The main challenge is to accelerate the
speed of QA algorithms so that the annealing time grows not
exponentially but polynomially with the size of the problem
[1–10].

There are many approaches to finding the ground state of
the Hamiltonian, H0, using QA algorithms [1–7]. One of these
approaches is based on introducing a time-dependent Hamil-
tonian, H(t) = H0 + �(t)H1, where H0 is the Hamiltonian
to be optimized, H1 is an auxiliary (“initial”) Hamiltonian,
and [H0,H1] �= 0. The term �(t)H1 provides the nontrivial
quantum dynamics required during annealing. The external
time-dependent field, �(t), is a control parameter that de-
creases from a large enough value to zero during the evolution.
The ground state of H1 is the initial state. If �(t) decreases
sufficiently slowly, the adiabatic theorem guarantees finding
the ground state of the main Hamiltonian, H0, at the end of
computation.

The main obstacles in implementation of QA algorithms
in a classical computer are as follows: (i) The efficiency
of the QA algorithm is limited by the exponential small
energy gap between ground and excited states. For instance, in
the commonly used quantum optimization m-qubit models
the minimal energy gap is gm ≈ 2−m/2 [2,4,11–13]. This
causes the annealing time to increase exponentially with the
size of the system. (ii) Direct simulations are limited to
small-size problems, since they require tracking the amplitudes
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of all possible classical configurations, whose number grows
exponentially with system size. To overcome this problem one
may use, for instance, the quantum Monte Carlo method to
simulate some stochastic dynamics to reach a ground state [4].

In Ref. [14] we proposed an alternate adiabatic quantum
optimization algorithm based on the non-Hermitian quantum
mechanics. Recently, we applied this non-Hermitian quantum
annealing (NQA) algorithm to Grover’s problem of finding a
marked item in an unsorted database [15]. We showed that a
search time depends on the chosen relaxation parameters and
is proportional to the logarithm of the number of qubits.

In this paper we apply the NQA algorithm to study real-time
dynamics in the one-dimensional dissipative ferromagnetic
Ising spin chain. We assume that the dissipation vanishes
at the end of evolution. So, after the annealing is finished,
the system is governed by the Hermitian Hamiltonian. We
show that a dissipation significantly increases the probability
for the system to remain in the ground state. In particular, a
comparison with the results of the Hermitian QA reveals that
the NQA reaches the ground state of H0 with much larger
probability, if we use the same annealing scheme. We show
that the NQA has a complexity of order ln N , where N is
the number of spins. This is much better than the quantum
Hermitian adiabatic algorithm yielding the complexity of
order N2.

A dissipative term which we use corresponds to a tunneling
of the system to its own continuum, as usually happens
when one applies a Feshbach projection method on intrinsic
states in nuclear physics and quantum optics. In our case,
the intrinsic states are the states of the quantum computer.
So, the absolute probability of our quantum computer to
survive during the NQA can be small. That is why we use
a ratio of two probabilities—the probability for the system
to remain in the ground state to the probability of survival
of the quantum computer. This relative probability (we call
it “intrinsic” probability) is well defined, and remains finite
during the NQA. So, our approach cannot be directly used
in the experiments on QA, but rather as a combination of
classical computer and NQA to significantly decrease the time
of annealing. Also, a dissipative term which we use in this
paper is rather artificial in the sense that it has no a direct
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relation to a real physical dissipative mechanisms. At the
same time, we note that our dissipation term corresponds,
in principal, to the tunneling effects in the superconducting
phase qubits if tunneling is realized mostly from the lowest
energy levels. Our hope is that a reduction of the calculation
annealing time can help to boost solution of the NP-complete
problems by using combination of classical computers and
NQA algorithms.

This paper is organized as follows. In Sec. II, the generic
adiabatic quantum optimization (AQO) algorithm based on
non-Hermitian QA is discussed. In Sec. III, we introduce a
lossy one-dimensional Ising system in a transverse magnetic
field governed by a non-Hermitian Hamiltonian. In Sec. IV,
we study the quench dynamics of our system using both
analytic and numerical methods. We conclude in Sec. V with a
discussion of our results. In the Appendices we present some
technical details.

II. NON-HERMITIAN QUANTUM ANNEALING:
PRELIMINARIES

The generic adiabatic quantum optimization problem based
on the QA algorithm can be formulated as follows [3]. Let H0

be the Hamiltonian whose ground state is to be found, and
H1 be an auxiliary “initial” Hamiltonian. We consider the
following time-dependent Hamiltonian:

Hτ (t) = H0 + g(t)H1, (1)

where [H0,H1] �= 0. The function g(t) is monotonic and
satisfies the relation g(τ ) = 0. It is assumed that H1 is
dominant at the initial time t = 0, and, since g(τ ) = 0, the
Hτ (t) → H0 as t → τ .

The evolution of the system is determined by the
Schrödinger equation:

i
∂

∂t
|ψ(t)〉 = Hτ (t)|ψ(t)〉. (2)

The initial conditions are imposed as follows: |ψ(0)〉 = |ψg〉,
where |ψg〉 is the ground state of H1. The adiabatic theorem
guarantees that the initial state, |ψg〉, evolves into the final
state of |ψg(τ )〉, which is the ground state of the Hamiltonian,
H0, as long as the instantaneous ground state of Hτ (t) does
not become degenerate at any time.

The validity of the adiabatic theorem requires∑
m�=n

∣∣∣∣ 〈ψm|∂Hτ /∂t |ψn〉
(Em − En)2

∣∣∣∣ � 1. (3)

This restriction is violated near the degeneracy in which
the eigenvalues coalesce. In the common case of double
degeneracy with two linearly independent eigenvectors, the
energy surfaces form the sheets of a double cone. The apex of
the cones is called the “diabolic point,” and since, for a generic
Hermitian Hamiltonian, the codimension of the diabolic point
is three, it can be characterized by three parameters [16,17].
For the quantum optimization governed by the Hamiltonian of
Eq. (1), the requirement (3) can be written as [3,4]

τ � τ0 = max |〈ψe|∂Hτ /∂s|ψg〉|
min |Ee − Eg|2 , (4)

where s = t/τ , and Ee is the energy of the first excited state,
|ψe〉. Thus, if at the time τc < τ the gap �E = |Ee − Eg| is
small enough, the time required to pass from the initial state
to the final state becomes very large, and the AQO loses its
advantage over thermal annealing.

Recently [14], we proposed a generic non-Hermitian
adiabatic quantum optimization. Here we consider a particular
case of the NQA. Let H0 be a Hamiltonian whose ground state
is to be found, and let

H̃1(t) = g(1 − t/τ )H1 − iδ(1 − t/τ )H2 (5)

be the non-Hermitian auxiliary “initial” Hamiltonian.
Consider the following time-dependent Hamiltonian:

H̃τ (t) = H0 + H̃1(t), (6)

where [H0,H1(0)] �= 0. We impose the initial conditions as
follows: |ψ(0)〉 = |ψg〉, so that H̃1|ψg〉 = Eg|ψg〉 with Eg

being the energy of the ground state of the auxiliary non-
Hermitian Hamiltonian H̃1. At the end of evolution the total
Hamiltonian H̃τ (τ ) = H0, and the adiabatic theorem provides
that the final state be the ground state of H0, if the evolution
was slow enough.

We denote by |ψn(t)〉 and 〈ψ̃n(t)| the right and left instan-
taneous eigenvectors of the total Hamiltonian: H̃τ (t)|ψn(t)〉 =
En(t)|ψn〉, 〈ψ̃n(t)|H̃τ (t) = 〈ψ̃n(t)|En(t). We assume that these
eigenvectors form a bi-orthonormal basis, 〈ψ̃m|ψn〉 = δmn

[18].
For the non-Hermitian quantum optimization problem

governed by the Hamiltonian (6), the validity of adiabatic
approximation requires

τ � max |〈ψ̃e| ˙̃Hτ (t)|ψg〉|
min |Ee(t) − Eg(t)|2 , (7)

where the dot denotes the derivative with respect to the
dimensionless time, s = t/τ . This restriction is violated near
the ground-state degeneracy, where complex energy levels
cross. The point of degeneracy is known as the exceptional
point, and it is characterized by a coalescence of eigenvalues
and their corresponding eigenvectors, as well. Therefore,
studying the behavior of the system in the vicinity of the
exceptional point requires a special care [19–21].

In the vicinity of the level crossing point, only the two-
dimensional Jordan block, related to the level crossing, makes
the most considerable contribution to the quantum evolution.
Then, the multidimensional problem can be described by the
effective two-dimensional Hamiltonian, acting in the subspace
spanned by the ground state and the first excited state of the
total non-Hermitian Hamiltonian, H̃τ [14].

III. DESCRIPTION OF THE MODEL

In this section, we consider the one-dimensional Ising
model in a transverse magnetic field with dissipation governed
by the following non-Hermitian Hamiltonian:

H = −J

2

N∑
n=1

(
gσx

n + σ z
nσ z

n+1 + i2δσ−
n σ+

n

)
, (8)

with periodic boundary condition, σN+1 = σ 1. The external
magnetic field is associated with the parameter g, the rate of
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decay is described by the parameter δ, and σ±
n = (σ z

n ± iσ
y
n )/2

are the spin raising and lowering operators.
In principle, this model can be realized in a chain of

the superconducting phase qubits with the tunneling to the
continuum mostly from the lowest energy levels, and by
applying the standard Feshbach projection method to obtain
effective non-Hermitian Hamiltonian. To get the Hamiltonian
of Eq. (8) one needs to make rotation along the axes y by π/2
radians.

We apply the standard Jordan-Wigner transformation, and
the following procedure outlined in Refs. [22–25],

σx
n = 1 − 2c†ncn, (9)

σy
n = i(c†n − cn)

∏
m<n

(1 − 2c†mcm), (10)

σ z
n = −(cn + c†n)

∏
m<n

(1 − 2c†mcm), (11)

in which cn are fermionic operators that satisfy anticom-
mutation relations: {c†m,cn} = δmn and {cm,cn} = {c†m,c

†
n} = 0.

Then, we obtain H = P +H+P + + P −H−P −, where

P ± = 1

2

[
1 ±

N∏
n=1

(1 − 2c†ncn)

]
(12)

denote the projectors onto the subspaces with even “+” and
odd “−” numbers of quasiparticles [22,26], and

H± = −J

2

N∑
n=1

(c†ncn+1 + cn+1cn + g̃ + iδ

− 2g̃c†ncn + c
†
n+1cn + c†nc

†
n+1), (13)

in which g̃ = g + iδ.
The Hamiltonian H− is related to cn’s with the periodic

boundary conditions, cN+1 = c1, while in H+ the operators
cn obey the following (“antiperiodic”) boundary conditions:
cN+1 = −c1. Since the parity of quasiparticles is conserved,
one can consider only either H+ or H−. Further we consider
only quasiparticles with the even parity.

Applying the Fourier transformations with the antiperiodic
boundary condition, cN+1 = −c1,

cn = e−iπ/4

√
N

∑
k

cke
inϕk , (14)

ϕk = 2πk

N
, k = ±1

2
,±3

2
, . . . ,±N − 1

2
, (15)

we obtain H+ = ∑
k Hk , where

Hk = J

2
[2(g̃ − cos ϕk)c†kck − g̃ − iδ

+ sin ϕk(c†kc
†
−k + c−kck)]. (16)

The Hamiltonian H+ can be diagonalized by using the
generalized Bogoliubov transformation:

ck = cos
θk

2
bk + sin

θ−k

2
b
†
−k, (17)

c
†
k = cos

θk

2
b
†
k + sin

θ−k

2
b−k, (18)

bk = cos
θk

2
ck + sin

θk

2
c
†
−k, (19)

b
†
k = cos

θk

2
c
†
k + sin

θk

2
c−k, (20)

where

cos θk = g̃ − cos ϕk√
g̃2 − 2g̃ cos ϕk + 1

, (21)

sin θk = cos ϕk√
g̃2 − 2g̃ cos ϕk + 1

, (22)

with θk being a complex angle.
There are two eigenstates for each k,

|u+(k)〉 =
(

cos θk

2

sin θk

2

)
, 〈̃u+(k)| =

(
cos

θk

2
, sin

θk

2

)
,

(23)

|u−(k)〉 =
(

−sin θk

2

cos θk

2

)
, 〈̃u−(k)| =

(
− sin

θk

2
, cos

θk

2

)
,

(24)

with the complex energies ε±(k) = −ε0(k) ± εk , where
ε0(k) = J cos ϕk + iJ δ, and εk = J

√
g̃2 − 2g̃ cos ϕk + 1.

Here we denote by |u±(k)〉 (〈̃u±(k)|) the right (left) eigen-
vectors.

With help of Eqs. (17)–(20) we obtain the diagonalized
Hamiltonian as a sum of quasiparticles with half-integer
quasimomenta,

H+ = −1

2

∑
k

ε0(k) +
∑

k

εk

(
b
†
kbk − 1

2

)
= −

∑
k>0

ε0(k) +
∑
k>0

εk(b†kbk − b−kb
†
−k). (25)

Its spectrum contains only states with even number of
quasiparticles.

The ground state of the Hamiltonian (25) is a state |ψg〉
annihilated by all quasiparticles annihilation operators bk , so
that bk|ψg〉 = 0. One can show that the ground state can be
written as a product of qubit-like states:

|ψg〉 =
⊗

k

(
cos

θk

2
|0〉k|0〉−k − sin

θk

2
|1〉k|1〉−k

)
, (26)

〈ψ̃g| =
⊗

k

(
cos

θk

2
〈0|k〈0|−k − sin

θk

2
〈1|k〈1|−k

)
, (27)

where |0〉k is the vacuum state of the mode ck , and |1〉k is the
excited state: |1〉k = c

†
k|0〉k .

Since for each k, the ground state lies into the two-
dimensional Hilbert space spanned by |0〉k|0〉−k and |1〉k|1〉−k ,
it is sufficient to project Hk on this subspace. For a given value
of k, both of these states can be represented as a point on
the complex two-dimensional sphere, S2

c . In this subspace the
Hamiltonian Hk takes the form

Hk = −ε0(k)1 + J

(
g̃ − cos ϕk sin ϕk

sin ϕk −g̃ + cos ϕk

)
. (28)

For |g̃| � 1, the ground state is paramagnetic with all
spins oriented along the x axis, and from Eq. (21) we obtain

042332-3



NESTEROV, ZEPEDA, AND BERMAN PHYSICAL REVIEW A 87, 042332 (2013)

FIG. 1. (Color online) Absolute value of difference, |�ε|, of the
eigenvalues of the Hamiltonian (28) as function of g and ϑ . Left
panel: δ = 0. Right panel: δ = 0.25.

cos θk → 1 as |g̃| → ∞. Thus, the south pole of the complex
Bloch sphere corresponds to the paramagnetic ground state.
On the other hand, when |g| � 1 there are two degenerate
ferromagnetic ground states with all spins polarized either up
or down along the z axis. The real part of the complex energy
reaches its minimum at the point defined by cos θk = −1, and,
hence, the north pole of the complex sphere is related to the
pure ferromagnetic ground state with the broken symmetry in
which all spins have orientation either up or down. However,
in the thermodynamic limit the system passing through the
critical point ends in a superposition of up and down states
with finite domains of spins separated by kinks [23].

In the thermodynamic limit the absolute value of the
difference between the two eigenvalues of the Hamiltonian
(28) is given by

|�ε| = 2J |
√

g̃2 − 2g̃ cos ϑ + 1|, (29)

where ϕk → ϑ as N → ∞. As one can see in Fig. 1, the energy
gap vanishes at the critical point,

ϑc = arccos
√

1 − δ2, (30)

gc = √
1 − δ2. (31)

The difference between the Hermitian QA and non-Hermitian
QA is that, while in the first case the gap vanishes for long-
wavelength modes (ϑc = 0), in the second case the minimal
gap shifts to short-wavelength modes (ϑc = arccos

√
1 − δ2).

In the thermodynamic limit the ground-state energy per spin
can be written as

εgs = − 1

2π

∫ π

0
[ε0(ϑ) + J

√
g̃2 − 2g̃ cos ϑ + 1] dϑ. (32)

Performing the integration, we obtain

εgs = − iJ δ

2
− J (g̃ + 1)

2π
E(2

√
g̃/(g̃ + 1)), (33)

where E(z) denotes a complete elliptic integral of the second
kind.

IV. QUENCH DYNAMICS

In this section, we consider the NQA for the time-dependent
Hamiltonian of Eq. (8) written as

H̃τ (t) = H0 + H1(t), (34)

where

H0 = −J

2

N∑
n=1

σ z
nσ z

n+1, (35)

H1(t) = −J

2

N∑
n=1

[
g(t)σx

n + i2δ(t)σ−
n σ+

n

]
. (36)

We start with the ground state of the auxiliary Hamiltonian,
H1(0), as the initial state, which is a “paramagnetic” with all
spins oriented along the x axis. For g � 1 the Hamiltonian
Hτ (0) is dominated by H1(0), and the ground state of the
total Hamiltonian H̃τ is determined by the ground state of
H1(0). The H1 term causes quantum tunneling between the
eigenstates of the Hamiltonian H0. At the end of NQA we
obtain H̃τ (τ ) = H0. If the quench is slowly enough, the adi-
abatic theorem guarantees reaching the ground state of the
main Hamiltonian H0 at the end of computation.

As shown in Sec. III, the total Hamiltonian H̃τ (t) in
the momentum representation splits into a sum of indepen-
dent terms, H̃τ (t) = ∑

k Hk(t). Each Hk acts in the two-
dimensional Hilbert space spanned by |k1〉 = |1〉k|1〉−k and
|k0〉 = |0〉k|0〉−k . The wave function can be written as |ψ〉 =∏

k |ψk〉, where

|ψk(t)〉 = c0(k,t)|k0〉 + c1(k,t)|k1〉. (37)

Choosing the basis as |k1〉 = ( 1
0 ) and |k0〉 = ( 0

1 ), we find
that the Hamiltonian Hk(t) projected on this two-dimensional
subspace takes the form

Hk(t) = −ε0(t)1 + J

(
g̃(t) − cos ϕk sin ϕk

sin ϕk −g̃(t) + cos ϕk

)
,

(38)

where ε0(t) = J cos ϕk + iJ δ(t) and g̃(t) = g(t) + iδ(t). Fur-
ther we assume linear dependence of g̃(t) on time:

g̃(t) =
{

γ (τ − t), 0 � t � τ,

0, t > τ,
(39)

where γ = (g + iδ)/τ , and g, δ are real parameters.

A. Diabatic basis

The general wave functions |ψk〉 and 〈ψ̃k| satisfy the
Schrödinger equation and its adjoint equation

i
∂

∂t
|ψk〉 = Hk(t)|ψk〉, (40)

−i
∂

∂t
〈ψ̃k| = 〈ψ̃k|Hk(t). (41)

Presenting |ψk(t)〉 as a linear superposition,

|ψk(t)〉 = [uk(t)|k0〉 + vk(t)|k1〉]ei
∫

ε0(t)dt , (42)

and inserting expression (42) into Eq. (40), we obtain

iu̇k = J [−(g̃ − cos ϕk) uk + sin ϕk vk], (43)

iv̇k = J [sin ϕk uk + (g̃ − cos ϕk) vk]. (44)

042332-4



NON-HERMITIAN QUANTUM ANNEALING IN THE . . . PHYSICAL REVIEW A 87, 042332 (2013)

The solution can be written in terms of the parabolic cylinder
functions, D−iνk

(±z) (for details see Appendix A):

Uk(zk) = BkD−iνk
(zk) − i

√
iνkAkDiνk−1(izk), (45)

Vk(zk) = AkDiνk
(izk) −

√
iνkBkD−iνk−1(zk), (46)

in which we introduced new functions uk(t) = U (zk), vk(t) =
V (zk), and

zk(t) = eiπ/4

√
2J

γ
[γ (τ − t) − cos ϕk], (47)

νk = J sin2 ϕk

2γ
. (48)

The constants Ak and Bk in Eqs. (45) and (46) are determined
by the initial conditions.

In what follows we assume that the evolution of the spin
chain starts at t0 = 0 in the “ground” state. This implies
that for each k the evolution of the corresponding two-level
system (TLS) starts from the state |ψ(0)〉 = |k0〉. Then, the
following initial conditions should be imposed: uk(0) = 1
and vk(0) = 0. The related boundary condition are zk(0) =
eiπ/4√2J/γ

(
γ τ − cos ϕk

)
. Using these conditions, we obtain

the solution of the Schrödinger equation as follows (see
Appendix A for details):

Uk(zk) = BkD−iνk
(zk), (49)

Vk(zk) = −
√

iνkBkD−iνk−1(zk), (50)

where Bk = eπνk/2Diνk
(izk(0)).

It is assumed that a quantum measurement will determine
the state of the quantum system at t > τ , when the external
field g̃(t) = 0. We denote the final state of the system, at t = τ ,
as |ψτ 〉 = ∏

k |ψk(τ )〉. The probability, Pn(k), of finding the
TLS in a given state, |kn〉 (n = 0,1), can be written as

Pn(k) = |〈kn|ψτ 〉|2
|〈ψτ |ψτ 〉|2 . (51)

Since for non-Hermitian systems the norm of the wave
function is not conserved, we define the (intrinsic) probability
of transition |k0〉 → |k1〉 as

Pk(t) = |vk(t)|2
|uk(t)|2 + |vk(t)|2 . (52)

Using the functions U (zk) and V (zk), we recast (52) as

Pk(t) = 1

1 + |D−iνk
(zk (t))|2

|√iνk D−iνk−1(zk (t))|2
. (53)

To calculate Pk(t) at the end of evolution (t = τ ) we use
asymptotic formulas of the Weber functions. For large values
of the argument, |zk(τ )| = |√2J/γ cos ϕk| � 1, one can apply
the asymptotic formulas for parabolic cylinder functions to
estimate the probability of transition. For τ � 1 the modulus
of this argument is large for most k, except near ϕk = ±π/2.

For wavelength modes with ϕk � π/4, using the asymp-
totic formulas for the Weber functions, we obtain

D−iνk
(zk(τ ))√

iνk D−iνk−1(zk(τ ))
≈ e−πνk/2e−z2

k (τ )/2�(1 + iνk)√
2πiνk

. (54)

Inserting (54) into Eq. (53), we obtain

Pk(τ ) = 1

1 + |�(1+iνk )|2
2π |νk | e−πRe νk−Re z2

k (τ )
. (55)

For δ � g we can approximate �(1 + iν) ≈ �(1 + iRe ν).
Next, using the relation [27]

|�(iy)|2 = π

y sinh πy
, (56)

for real y, we obtain

Pk(τ ) = 1 − e−2πRe νk

1 − e−2πRe νk + e−2πRe νk−Re z2
K (τ )

. (57)

In the case of the Hermitian QA (δ = 0), one has Re z2
k(τ ) =

0, and Eq. (55) leads to the Landau-Zener (LZ) formula
[28,29],

Pk(τ ) = 1 − e−(πJτ/g) sin2 ϕk . (58)

To calculate the transition probability for ϕk ≈ π/2 we use the
expansion for small value of the argument of Weber function,
|zk| � 1 [see Eq. (A44)]. The computation yields

Pπ/2(τ ) = 1

1 + |�( iνk
2 )|2

|�( 1+iνk
2 )|2

. (59)

For the Hermitian QA this gives

Pπ/2(τ ) = tanh πν/2

1 + tanh πν/2
, (60)

in which ν = Jτ/(2g). From Eq. (60) it follows that for τ �
g/J the probability Pπ/2(τ ) � 1/2.

In Fig. 2 we present the results of our numerical simulation
for N = 1024 qubits. As one can see, for long-wavelength
modes with ϕk � π/4 (blue and red lines), the NQA shows
better performance than the Hermitian QA. For ϕk = π/2 the
probability of transition is Pπ/2(τ ) � 1/2 for both schedules,
either Hermitian QA or non-Hermitian QA (orange line).

B. Adiabatic basis

A widely used opinion is that for slow enough evolution
only the long-wavelength modes become excited (see, e.g.,
[23]). However, as was shown in the Sec. IV A, even for

FIG. 2. (Color online) The probability of transition |k0〉 → |k1〉
as a function of the scaled time, s = t/τ (J = 0.5, g = 10, τ = 103,
N = 1024, k = p − 1/2). Left panel: Hermitian QA (δ = 0). From
bottom to top: p = 1,256,16,64. Right panel: NQA (δ = 0.5). From
top to bottom: p = 1,16,256,64.
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the Hermitian QA, the transition probability Pk ≈ 1/2 for
k ≈ π/2. Thus, it is not clear what is the contribution of
the short-wavelength modes (k ∼ π/2) to the probability of
the whole system to stay in the ground state. To respond
to this question we consider the expansion of the wave
function |ψ〉 = ∏

k |ψk(t)〉 in the adiabatic basis, formed by
the instantaneous eigenvectors.

In the adiabatic basis the wave function |ψk(t)〉 can be
written as follows:

|ψk(t)〉 = αk(t)|u−(k,t)〉 + βk(t)|u+(k,t)〉. (61)

We assume that the evolution begins from the ground state that
implies αk(0) = 1 and βk(0) = 0. At the end of evolution at
t = τ , when g̃ = 0, we have

|ψk(τ )〉 = αk(τ )|u−(k,τ )〉 + βk(τ )|u+(k,τ )〉, (62)

where

|u+(k,τ )〉 =
(

sin ϕk

2

cos ϕk

2

)
, (63)

|u−(k,τ )〉 =
(− cos ϕk

2

sin ϕk

2

)
. (64)

By presenting

αk(t) = ak(t) e−i
∫ t

0 ε−(k,t)dt , (65)

βk(t) = bk(t) e−i
∫ t

0 ε+(k,t)dt , (66)

one can show that the coefficients ak(t) and bk(t) satisfy the
following asymptotic conditions:

ak(τ ) = 1 + O(1/τ ), (67)

bk(τ ) = O

(
exp

(
2τ Im

∫ zc

0
εk(z)dz

))
, (68)

where the critical point zc lies on the first Stokes line in the
lower complex line defined as

Im
∫ zc

0
εk(z)dz < 0. (69)

Here the critical point zc is determined as a solution of
the equation εk(zc) = 0, in the complex plane obtained by
analytical continuation, t → z [30–38].

Similarly, if initially the system was in the excited state,
|ψk(0)〉 = |u+(k,0)〉, so that αk(0) = 0 and βk(0) = 1, the
result of integration yields

bk(τ ) = 1 + O(1/τ ), (70)

ak(τ ) = O

(
exp

(
2τ Im

∫ zc

0
εk(z)dz

))
. (71)

The intrinsic probability to remain in the ground state at the
end of the adiabatic evolution is given by

P
gs

k (τ ) = |αk(τ )|2
|αk(τ )|2 + |βk(τ )|2 . (72)

With help of Eqs. (65) and (66) we obtain

P
gs

k (τ ) = 1

1 + |bk (τ )|2
|ak (τ )|2 e4Im

∫ τ

0 εk (t)dt
. (73)

From here it follows that for any 0 � t � τ , the adiabatic
evolution should be performed along the path corresponding
to Im εk(t) � 0. In the exact solution, given by

αk(τ ) = −Bke
−δτ/2

(
D−iνk

(zk(τ )) sin
ϕk

2

+
√

iνkD−iνk−1(zk(τ )) cos
ϕk

2

)
, (74)

βk(τ ) = Bke
−δτ/2

(
D−iνk

(zk(τ )) cos
ϕk

2

−
√

iνkD−iνk−1(zk(τ )) sin
ϕk

2

)
, (75)

it manifests itself in the choice of phase in the argument of the
Weber function, when we apply the asymptotic expansion.

The probability for the whole system to stay in the
ground state at the end of the evolution is given by Pgs =∏

k P
gs

k (τ ). For long-wavelength modes with ϕk � π/4, using
the asymptotic formulas for the Weber functions with the large
value of its argument, we find that P

gs

k (τ ) = Pk(τ ), where
Pk(τ ) is the transition probability of spin flip given by Eq. (55).
For the Hermitian QA this yields the LZ result

Pk(τ ) = 1 − e−(πJτ/g) sin2 ϕk ≈ 1 − e−π3Jτk2/(gN2). (76)

And in the case of the NQA (for δ � g) we obtain

Pk(τ ) = 1 − e−2πRe νk

1 − e−2πRe νk + e−2πRe νk−Re z2
k (τ )

, (77)

where

Re νk ≈ (Jτ/2g) sin2 ϕk, (78)

Re z2
k(τ ) ≈ (2δJ τ/g2) cos2 ϕk. (79)

For short-wavelength modes, approximately with π/4 <

ϕk � π/2, employing the large-order asymptotics for Weber
functions, we obtain P

gs

k (τ ) = 1 + O(1/
√|νk|). (See Ap-

pendix A.)
Our theoretical predictions are confirmed by numerical cal-

culations performed for N = 1024 qubits. (See Figs. 3 and 4.)
One can observe that while short-wavelength excitations are

FIG. 3. (Color online) The probability, P
gs

k , of TLS to remain
in the ground state as a function of the scaled time, s = t/τ , for
the Hermitian QA (δ = 0, J = 0.5, g = 10, τ = 103, N = 1024,
k = p − 1/2). From bottom to top: p = 1,2,4,16,32,64.
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FIG. 4. (Color online) The probability, P
gs

k , of TLS to remain
in the ground state as a function of the scaled time, s = t/τ , for the
NQA (δ = 0.5, J = 0.5, g = 10, τ = 103, N = 1024, k = p − 1/2).
From bottom to top: p = 1,2,4,16.

essential at the critical point, at the end of evolution their
contribution to the transition probability from the ground state
to the first excited state is negligible.

V. PERFORMANCE CHARACTERIZATION OF THE
QUANTUM ANNEALING

During the QA the system does not stay always at the
ground state at all times. At the critical point, the system
becomes excited, and its final state is determined by the number
of defects (kinks). To evaluate the efficiency of QA one can
calculate the number of defects. Then, computational time is
the time required to achieve the number of defects below some
acceptable value.

Following [23], we define the operator of the number of
kinks as

N̂ = 1

2

N∑
n=1

(
1 − σ z

nσ z
n+1

) =
∑

k

b
†
kbk. (80)

The number of kinks, being equal to the number of quasipar-
ticles excited at g̃ = 0 (final state), is given by

N = 〈ψτ |N̂ |ψτ 〉. (81)

Equation (81) can be recast as follows: N = Eres/J , where
Eres is the residual energy defined as the difference between
the solution obtained by QA and the exact one [3,5,39],

Eres = 〈ψτ |H0|ψτ 〉 − Egs. (82)

This leads to an alternative (equivalent) way to evaluate the
efficiency of QA by calculating Eres. Note that for more
complicated systems that include disorder, the residual energy
may not have a simple link with the density of defects
[40].

Using Eq. (62), we can calculate the number of kinks as
follows:

N =
∑

k

[
1 − P

gs

k (τ )
]
, (83)

where P
gs

k (τ ) is given by Eq. (72). In the thermodynamic limit
the sum in Eq. (83) can be replaced by integral, and we obtain

FIG. 5. (Color online) Density of kinks as function of the
dissipation parameter, δ (τ = 103, J = 0.5, g = 10, N = 1024). Blue
line: exact result. Red dashed line: asymptotic formula of Eq. (86).

for the density of kinks the following expression:

n = lim
N→∞

N
N

= 1

π

∫ π

0
dϑ[1 − P gs(ϑ,τ )]. (84)

As was shown in the previous section, during slow evolution
only long-wavelength modes can be excited. So one can use the
Gaussian distribution by replacing sin ϕk ≈ ϕk and cos ϕk ≈ 1.
In the limit

√
2Jτ/g � 1, we can employ Eqs. (77)–(79) to

calculate the number of kinks as

n = 1

π

∫ π

0

e−2πRe ν−Re z2
dϑ

1 − e−2πRe ν + e−2πRe νRe z2 . (85)

Performing the integration with Re ν = Jτϑ2/(2g) and
Re z2 = 2δJ τ/g2, we obtain [51]

n = n0e
−2δτJ/g2

�
(
1 − e−2δτJ/g2

, 1
2 ,1

)
, (86)

where

n0 = 1

2π

√
g

Jτ
(87)

denotes the density of kinks for the Hermitian LZ problem [23],
and �(x,a,c) is the Lerch transcendent [41].

In Figs. 5–7 we present the results of numerical simulation
for the density of defects. In Fig. 5 the density of kinks as a
function of δ is depicted. In Fig. 6 we show the dependence
of the density of defects as a function of the decay parameter
δ and annealing time τ in the thermodynamic limit. This is
consistent with the results of numerical simulation presented
in Ref. [42] for the Hermitian LZ problem.

FIG. 6. (Color online) Density of kinks as function of the
dissipation parameter δ and annealing time τ .

042332-7



NESTEROV, ZEPEDA, AND BERMAN PHYSICAL REVIEW A 87, 042332 (2013)

FIG. 7. (Color online) Density of kinks as function of the
dissipation parameter, δ (J = 0.5, g = 10, τ = 103, N = 1024). Blue
solid shows the exact result. Dashed color lines present contribution of
the first k modes (k = p − 1/2). From bottom to top: p = 1,8,16,32.

The final state of the system is a ferromagnetic state with
the finite domains of spins (pointed up or down), separated by
kinks. The magnetization Nmz is defined from the expression
for the total energy of the ground state: Egs = −NJm2

z . In the
thermodynamic limit, we obtain

mz = lim
N→∞

√
|Egs |
JN

= √
1 − 2n. (88)

In Fig. 8 the density of magnetization as function of the
annealing time τ is depicted. As one can see, even moderate
dissipation essentially decreases the number of defects in the
system.

Due to the symmetry of the problem with respect to k →
−k, and since for each k there is independent evolution, the
probability of the whole system to remain in the ground state
at the end of evolution is the product

Pgs =
∏
k>0

P
gs

k (τ ). (89)

In the long-wavelength approximation one can take into
account only ϕk = π/N , and estimate Pgs as

Pgs ≈ 1 − e−2πRe ν

1 − e−2πRe ν + e−2πRe ν−Re z2(τ )
, (90)

where Re z2(τ ) = 2δJ τ/g2 and Re ν = τ/τ0. Here we denote
τ0 = 2gN2/(π2J ).

In Figs. 9 and 10, the results of numerical simulation are
demonstrated. As one can see, for the probability Pgs ≈ 1 the
asymptotic formula of Eq. (90) is in a good agreement with the
exact formula (89). We also performed numerical simulations
to demonstrate that for any N the contribution of the first N/64

FIG. 8. (Color online) Density of magnetization, mz, as function
of the annealing time, τ . From bottom to top: δ = 0,0.25,0.5,1 (J =
0.5, g = 10).

FIG. 9. (Color online) Probability to stay in the ground state,
Pgs , as function of the dissipation parameter, δ (J = 0.5, g = 10,
τ = 103, k = p − 1/2). Left panel: Solid curves present the exact
result. Dashed lines present the contribution of the first mode (p = 1).
Right panel: Solid curves are the contribution of all modes. Dashed
lines are the contribution of the first p = 1,2, . . . ,N/64 modes. From
top to bottom: N = 64,128,256,512,1024.

modes yields essentially the same result as the exact formula
(89). (See Fig. 9.) We find that even moderate dissipation
boosts the transition probability.

For the Hermitian QA (δ = 0), Eq. (90) yields the Landau-
Zener formula [28,29]

Pgs = 1 − e−2πτ/τ0 . (91)

From here it follows that Pgs ≈ 1, if τ � τ0. Thus, the
computational time for the Hermitian QA should be of order
N2.

For the NQA, assuming τ � τ0, we obtain

Pgs ≈ 1

1 + τ0
2πτ

e−2Jδτ/g2 . (92)

From here, in the limit of δ → 0, we obtain

Pgs → 1

1 + τ0
2πτ

� 1. (93)

The obtained result is expected, as in this case, the time
of the Hermitian annealing, τ , is small with respect to the
characteristic time, τ0: τ � τ0.

Next, assuming

2Jδτ

g2
− ln

τ0

2πτ
� 1, (94)

FIG. 10. (Color online) The transition probability, Pτ , as function
of a scaled decay rate, δ∗ = δτ0/g

2, and scaled annealing time, τ∗ =
τ/τ0.
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FIG. 11. (Color online) Annealing time, τ , as a function of N for
NQA (J = 0.5, g = 10). Solid lines present the exact result. Dashed
lines are the asymptotic formula of Eq. (96). From top to bottom:
δ = 0.05,0.1,0.25,0.5,1.

we obtain

Pgs ≈ 1 − τ0

2πτ
e−2Jδτ/g2

. (95)

As one can see, Pgs ≈ 1, if the conditions of Eq. (94) are
satisfied. From Eq. (94) we obtain the following rough estimate
of the computational time for NQA: τ ≈ (g2/2Jδ) ln N .

To find the annealing time from the exact formula (90)
we impose the following condition on the probability: Pτ =
0.999. Then, we solved numerically Eq. (90). The results
of numerical calculations are presented in Fig. 11. We find
that the best fit of the asymptotic expression to the exact
result is given by the following asymptotic formula (see
Fig. 11):

τ ≈ g2

2Jδ
ln

N

π
. (96)

In Fig. 12, the annealing time τ as a function of the number
of spins is depicted for NQA (left panel) and Hermitian QA
(right panel). The comparison shows that for large number
of spins (N ∼ 1000) and for δ � 0.25, the annealing time of
NQA is ≈103 times smaller than for Hermitian QA.

The obtained results indicate that the characteristic time of
non-Hermitian annealing, even for small but finite δ �= 0, is
defined not only by the number of spins, N (as in Hermitian
annealing), but mainly by the dissipation rate, δ. [See Figs. 9,
10 and Eq. (92).] Thus, the non-Hermitian quantum annealing
has complexity of order ln N , which is much better than the

FIG. 12. (Color online) Annealing time, τ , as function of N .
Left panel. Hermitian QA, δ = 0 (J = 0.5, g = 10). Right panel.
Non-Hermitian QA, from top to bottom: δ = 0.05,0.1,0.25,0.5,1.

quantum Hermitian (global) adiabatic algorithm. Also, this
complexity is certainly better than one of the adiabatic local
annealing algorithm which has a total running time of order
N [43].

VI. CONCLUSION

Recently, many modifications of quantum annealing al-
gorithms have been proposed [1–6,8–10,44,45]. The main
objective of these publications is to significantly decrease the
time of annealing, so that the solutions of hard optimization
problems could be obtained either by (i) combining classical
computers with quantum algorithms or by (ii) building real
quantum computers. One of the very popular test models is the
Ising spin system which is also useful for practical purposes.
In this case, the quantum annealing algorithms are used to find
the ground state of this system.

In this paper we explored efficiency of NQA algorithm on
a conventional computer, in application to the ferromagnetic
Ising spin chain. We have chosen an auxiliary Hamiltonian in
such a way that the total Hamiltonian is non-Hermitian. This
allowed us to shift the minimal gap in the energy spectrum
in the complex plane in the region of short-wave excitations,
and significantly reduce the time required to find the ground
state.

Our approach leads to the annealing time ∼ln N , where
N is the number of spins, which is much less than the time
of Hermitian annealing (∼N2) for the same problem. But
many serious problems still remain to be considered. One
of them is the application of this dissipative approach to more
complicated Ising-type models with frustrated interactions and
to large-size systems. To overcome the problem of large-size
systems, one may apply the density matrix renormalization
group technique to carry out quantum annealing by real-
time evolution for large systems [3,48]. Another direction
is to use both dissipation and pumping into the system,
as it was done in Refs. [49,50]. This research is now in
progress.
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APPENDIX A: EXACT SOLUTION OF THE
NON-HERMITIAN LANDAU-ZENER PROBLEM

The non-Hermitian Hamiltonian, Hk(t), projected on the
two-dimensional subspace spanned by |k1〉 = ( 1

0 ) and |k0〉 =
( 0

1 ), takes the form

Hk(t) = −ε0(t)1 + J

(
g̃(t) − cos ϕk sin ϕk

sin ϕk −g̃(t) + cos ϕk

)
,

(A1)
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where ε0(t) = J cos ϕk + iJ δ(t) and g̃(t) = g(t) + iδ(t). We
assume a linear dependence of the function g̃(t) on time:

g̃(t) =
{

γ (τ − t), 0 � t � τ,

0, t > τ,
(A2)

where γ = (g + iδ)/τ , and g, δ are real parameters.
The general wave functions, |ψk〉 and 〈ψ̃k|, satisfy the

Schrödinger equation and its adjoint equation

i
∂

∂t
|ψk〉 = Hk(t)|ψk〉, (A3)

−i
∂

∂t
〈ψ̃k| = 〈ψ̃k|Hk(t). (A4)

Presenting |ψk(t)〉 as a linear superposition

|ψk(t)〉 = [uk(t)|k0〉 + vk(t)|k1〉]ei
∫

ε0(t)dt , (A5)

and inserting (A5) into Eq. (A3), we obtain

iu̇k = J [−(g̃ − cos ϕk) uk + sin ϕk vk], (A6)

iv̇k = J [sin ϕk uk + (g̃ − cos ϕk) vk]. (A7)

Let zk(t) = eiπ/4√2J/γ
[
γ (τ − t) − cos ϕk

]
be a new vari-

able. Then, for new functions, uk(t) = Uk(zk) and vk(t) =
Vk(zk), we write Eqs. (A6) and (A7) in the standard Landau-
Zener form [28,29]

d

dzk

Uk = −zk

2
Uk +

√
iνkVk, (A8)

d

dzk

Vk = zk

2
Vk +

√
iνkUk, (A9)

where νk = J sin2 ϕk/2γ , and the complex “time” zk

runs from zk(0) = eiπ/4√2J/γ
(
γ τ − cos ϕk

)
to zk(τ ) =

−eiπ/4√2J/γ cos ϕk .
From Eqs. (A8) and (A9) we obtain the second-order Weber

equation

d2

dz2
k

Uk +
(

1

2
− z2

k

4
− iνk

)
Uk = 0, (A10)

d2

dz2
k

Vk −
(

1

2
+ z2

k

4
+ iνk

)
Vk = 0. (A11)

Solution of the Weber equation is given by the parabolic
cylinder functions D−iνk

(±z), Diνk−1(±iz). We obtain the
solutions of Eqs. (A8) and (A9) in the form

Uk(zk) = BkD−iνk
(zk) − i

√
iνkAkDiνk−1(izk), (A12)

Vk(zk) = AkDiνk
(izk) −

√
iνkBkD−iνk−1(zk), (A13)

where the constants Ak and Bk are determined from the initial
conditions.

If the evolution of TLS starts at t0 = 0 in the “ground”
state, |ψ(0)〉 = |k0〉, the following initial conditions should be
imposed: uk(0) = 1 and vk(0) = 0. Using the identity (A43),
we obtain

Ak =
√

iνke
πνk/2D−iνk−1(zk(0)), (A14)

Bk = eπνk/2Diνk
(izk(0)). (A15)

We assume further that τ � g/J . This implies |zk(0)| �
1. Then, applying the asymptotic formulas for the parabolic
cylinder functions with −3π/4 < arg zk < 3π/4, we obtain

Ak = 0 + O(1/|zk(0)|), (A16)

Bk = [zk(0)]iνk ez2
k (0)/4. (A17)

Similar consideration of the adjoint Schrödinger equation
with the wave function

〈ψ̃k| = [ũk(t)〈k0| + ṽk(t)〈k1|]e−i
∫

ε0(t)dt (A18)

yields

i ˙̃uk = −J [−(g̃ − cos ϕk) ũk + sin ϕk ṽk], (A19)

i ˙̃vk = −J [sin ϕk ũk + (g̃ − cos ϕk) ṽk]. (A20)

For the functions ũk(t) = Ũk(zk) and ṽk(t) = Ṽk(zk), we obtain

d

dzk

Ũk = zk

2
Ũk −

√
iνkṼk, (A21)

d

dzk

Ṽk = −zk

2
Ṽk −

√
iνkŨk. (A22)

From here it follows

d2

dz2
k

Ũk −
(

1

2
+ z2

k

4
+ iνk

)
Ũk = 0, (A23)

d2

dz2
k

Ṽk +
(

1

2
− z2

k

4
− iνk

)
Ṽk = 0. (A24)

The solutions are given by

Ũk(zk) = ÃkD−iνk−1(zk) + B̃kDiνk
(izk), (A25)

Ṽk(zk) = 1√
iνk

ÃkD−iνk
(zk) + i

√
iνkB̃kDiνk−1(izk), (A26)

where

Ãk = νke
πνk/2Diνk−1(izk(0)), (A27)

B̃k = eπνk/2D−iνk
(zk(0)). (A28)

For |zk(0)| � 1 we obtain

Ãk = 0 + O(1/|zk(0)|), (A29)

B̃k = eπνk/2[zk(0)]−iνk e−z2
k (0)/4. (A30)

Finally, the straightforward computation shows that the
obtained solutions satisfy the normalization condition
〈ψ̃k(t)|ψk(t)〉 = 1.

The solutions of the Schrödinger equation and its adjoint
equation for |zk(0)| � 1 and the initial conditions uk(0) =
ũk(0) = 1, vk(0) = ṽk(0) = 0 are given by

Uk(zk) = BkD−iνk
(zk), (A31)

Vk(zk) = −
√

iνkBkD−iνk−1(zk), (A32)

Ũk(zk) = B̃kDiνk
(izk), (A33)

Ṽk(zk) = i
√

iνkB̃kDiνk−1(izk), (A34)
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where

Bk = [zk(0)]iνk ez2
k (0)/4, (A35)

B̃k = eπνk/2[zk(0)]−iνk e−z2
k (0)/4. (A36)

1. Some important properties of the Weber functions

The parabolic cylinder functions, D−iνk
(±z), Diνk−1(±iz),

being solution of the linear differential equation

d2U

dz2
+

(
1

2
+ ν − z2

4

)
U = 0, (A37)

satisfy the following derivative and recurrence relations [41]:

d

dzk

(
ez2

k/4D−iνk
(zk)

) = iνke
z2
k/4D−iνk−1(zk), (A38)

d

dzk

(
e−z2

k/4D−iνk
(zk)

) = −e−z2
k/4D−iνk+1(zk), (A39)

D−iνk+1(zk) − zkD−iνk
(zk) + νkD−iνk−1(zk) = 0. (A40)

The Wronskian for these solutions is given by

D−iνk
(zk)

d

dzk

D−iνk
(−zk) − D−iνk

(−zk)
d

dzk

D−iνk
(zk)

=
√

2π

�(iνk)
, (A41)

D−iνk
(zk)

d

dzk

Diνk+1(izk) − Diνk+1(izk)
d

dzk

D−iνk
(zk)

= −ieπνk/2. (A42)

Using Eqs. (A38)–(A42), we obtain

D−iνk
(zk)Diνk

(izk) + νkD−iνk−1(zk)Diνk−1(izk) = e−πνk/2.

(A43)

For small value of the argument one can use the power-
series expansion of the Weber function yielding

D−iνk
(zk) = 2−iνk/2

√
π

�
(

1
2 + iνk

2

) , as |zk| → 0. (A44)

a. Asymptotic expansion for large value of argument

For large value of argument, |zk| � 1, and for |arg zk| <

3π/4 the following asymptotic expansion is valid [41]:

D−iνk
(zk) = z

−iνk

k e−z2
k/4[1 + O

(∣∣z2
k

∣∣−1)]
. (A45)

To find the asymptotics of the Weber functions for other values
of its argument one can use the relations

D−iνk
(zk) = e−πνkD−iνk

(−zk) − i
√

2π

�(iνk)
e−πνk/2Diνk−1(izk).

(A46)

In particular, for −5π/4 < arg zk < −π/4, this yields

D−iνk
(zk) = z

−iνk

k e−z2
k/4

[
1 + O

(∣∣z2
k

∣∣−1)]
+ i

√
2π

�(iνk)
e−πνk z

iνk−1
k ez2

k/4
[
1 + O

(∣∣z2
k

∣∣−1)]
.

(A47)

b. Large-order asymptotics

For large-order value of the Weber functions with a phase
of argument |arg zk| < π/2 the leading terms are [46,47]

D−iνk
(zk) ∼ cos

θk

2
eπνk/4−iη

[
1 + O

(
1√|νk|

)]
, (A48)

D−iνk−1(zk) ∼ 1√
iνk

sin
θk

2
eπνk/4−iη

[
1 + O

(
1√|νk|

)]
,

(A49)

where

η = −νk

2
+ νk ln

[
1

2

(
zke

−iπ/4 +
√

4ν2
k − iz2

k

)]
+ zke

−iπ/4

4

√
4ν2

k − iz2
k, (A50)

and

cos θk = zk√
z2
k + 4iν2

k

. (A51)

APPENDIX B: EQUATION OF MOTION

We consider a two-level system governed by the non-
Hermitian Hamiltonian H̃eff , written as

H̃eff = λ̃0

2
11 + 1

2
�̃(t) · σ , (B1)

where �̃(t) = (�̃x(t),�̃y(t),�̃z(t)) is the complex vector and
λ̃0 = λ0 − i�, where � = (�0 + �1)/2. The qubit states |u(t)〉
and 〈u(t)| satisfy the Schrödinger equation:

i
∂|u(t)〉

∂t
= H̃eff|u(t)〉, (B2)

−i
∂〈u(t)|

∂t
= 〈u(t)|H̃†

eff . (B3)

Employing Eqs. (B2) and (B3), we find that the Bloch vec-
tor, n(t) = 〈u(t)|σ |u(t)〉, satisfies the following generalized
Bloch equation:

dn
dt

= −�n + n Im �̃(t) + Re �̃(t) × n, (B4)

dn

dt
= −�n + Im �̃(t) · n, (B5)

where n =
√

n2
x + n2

y + n2
z . Denoting the real part of the

complex vector �̃ = � + i� as Re �̃ = (�x,�y,�z) and its
imaginary part as Im �̃ = (�x,�y,�z), we obtain

dnx

dt
= −�nx + �xn + �ynz − �zny, (B6)

dny

dt
= −�ny + �yn − �xnz + �znx, (B7)

dnz

dt
= −�nz + �zn + �xny − �ynx, (B8)

dn

dt
= −�n + �xnx + �yny + �znz. (B9)
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In terms of the Bloch vector the qubit-state population of
upper/lower level can be written as follows:

ρ11(t) = 1
2 [n(t) + nz(t)], (B10)

ρ00(t) = 1
2 [n(t) − nz(t)]. (B11)

This yields nz(t) = ρ11(t) − ρ00(t) and n(t) = ρ11(t) + ρ00(t).
Substituting these expressions for nz(t) and n(t) into
Eqs. (B6)–(B9), we obtain

dnx

dt
= −�nx + �x(ρ11 + ρ00) + �y(ρ11 − ρ00) − �zny,

(B12)

dny

dt
= −�ny + �y(ρ11 + ρ00) − �x(ρ11 − ρ00) + �znx,

(B13)

dρ11

dt
= −(� − �z)ρ11 + 1

2
(�xnx + �yny)

+ 1

2
(�xny − �ynx), (B14)

dρ00

dt
= −(� + �z)ρ00 + 1

2
(�xnx + �yny)

− 1

2
(�xny − �ynx), (B15)

dn

dt
= −�n + �xnx + �yny + �z(ρ11 − ρ00). (B16)
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