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Comparison of error probability bounds in quantum state discrimination
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In quantum discrimination, the value of the minimum error probability and the set of measurement operators
which achieve this minimum are often difficult to derive. Here we present a comparison of the performance
obtained by the optimal solution and by the available bounds, namely the square root measurement (SRM) and the
Chernoff bound. Applied to some Gaussian states, namely to coherent states with thermal noise, it is shown that the
SRM provides a much tighter bound with respect to the Chernoff bound, with a comparable numerical complexity.
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I. INTRODUCTION

In the discrimination of quantum states, not only is it
difficult to derive the set of measurement operators achieving
the minimum error probability, but in many cases it is difficult
to derive also the actual value of the error probability. Closed-
form expressions can be obtained only in the cases of pure
states with high-symmetry properties. Also, Helstrom’s bound
for the binary case, in the general case of mixed quantum states,
requires a singular value decomposition for the determination
of the positive eigenvalues of the difference matrix (Helstrom
matrix) needed for the evaluation of the error probability. In
many other cases, the optimal measurement set is not known
and only numerical solutions are available, requiring one to
resort to a heavy convex optimization problem [1] to determine
the measurement operators.

However, suboptimal bounds can be derived, in particular
the square root measurement (SRM) [2,3], which obtains the
set of measurement operators from the Gram operator or
from the Gram matrix, and the quantum Chernoff bound,
which recently received a great deal of attention, especially
for Gaussian quantum states [4], as a simple way to estimate
the performance of quantum discrimination [5–7]. Applied
to Gaussian states, other bounds are derived in [8] for
binary hypothesis testing by fixing one of the conditional
error probabilities and minimizing the other conditional error
probability.

The Chernoff quantum is limited in that it can only
be applied to binary quantum systems, and in this work
we compare the SRM and the Chernoff bounds with the
optimum error probability in terms of both performance gap
and complexity. In fact, we notice that several studies in the
literature considered the bounds separately and when possible
evaluated their relation to the optimum value. In this paper, we
will make a systematic comparison of the two bounds. It can
be seen that, applied to coherent states with thermal noise, the
SRM provides a tighter bound to the error probability than the
Chernoff bound with comparable computational complexity.
Also, the SRM is available easily also for the M-ary case and
has the additional advantage of providing the optimal solution
when the states are pure and exhibit geometrical uniform
symmetry [9].
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II. QUANTUM DISCRIMINATION

A general M-ary quantum system with mixed states is
described by M density operators {ρ0, . . . ,ρM−1} in an N -
dimensional Hilbert space H, where N may possibly be
infinite. The eigenvalues of the operators span a subspace
U ⊆ H.

Quantum discrimination is the operation of choosing
among the possible density operatorsρi , i = 0,1, . . . ,M − 1,
performed by applying a positive operator valued measurement
(POVM) set, that is, a set of M positive semidefinite operators
�0, . . . ,�M−1 with the condition

M−1∑
i=0

�i = PU , (1)

where PU is the projector operator onto U . In other words, �i

must give a resolution of the identity in the subspace U . The
probability that the detection outcome is j , provided that the
density operator is ρi , i.e., the transition probability p(j |i), is
given by

p(j |i) = Tr(ρi�j ), i,j = 0,1, . . . ,M − 1, (2)

and the corresponding error probability in the detection
becomes

Pe = 1 −
M−1∑
i=0

qi p(i|i) = 1 −
M−1∑
i=0

qi Tr(ρi�i), (3)

where qi, i = 0, . . . ,M − 1, are the a priori probabilities.
For the binary case, the optimum solution is available by

the decomposition of the difference operator D = q1ρ1 − q0ρ0

[10], obtaining the Helstrom bound [11] for the minimum error
probability achievable,

Pe = q1 −
∑
ηk>0

ηk, (4)

where ηk are the eigenvalues of D and the sum extends over
the positive ones.

In the following, for simplicity, we assume that all the states
are equiprobable, that is, qi = 1/M, i = 0, . . . ,M − 1.

Apart for the binary case, the optimal detection set of
POVM can be obtained by convex semidefinite programming
(CSP) [9], while suboptimal solutions are achievable by square
root measurement (SRM) [3] or by the Chernoff bound, both
giving an upper bound to the error probability. The conditions
for the optimum POVM set in [12,13] lead to a convex
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semidefinite problem with an equivalent “dual problem” as
follows [9]. Given the M density operators ρi , find the positive
semidefinite Hermitian operator Y with the constraint Y � ρi

for each i, such that Tr(Y ) is minimum. The minimum trace
gives the maximum correct decision probability, and by the
equations (Y − ρi)�i = 0 one gets the optimal �i .

III. SQUARE ROOT MEASUREMENT

A more straightforward, albeit not optimal, approach to
the problem is given by the SRM. The approach has been
proposed for pure states by Hausladen et al. [2] and thoroughly
investigated by Eldar and Forney [3]. The generalization to
mixed states is due to Eldar et al. [9]. Cariolaro and Pierobon
[14,15] applied the SRM technique systematically to evaluate
the performance of the most popular quantum communication
systems. In [3] it is thoroughly shown that the underlying
principle of SRM is the least mean square (LMS), in which
the set of orthogonal measurement vectors is sought which
minimize the quadratic error with respect to the set of state
vectors.

The SRM approach is based on the Gram operator T =
� �∗ and the Gram matrix G = �∗ �. These matrices usually
make reference to pure states |γi〉, where the density operators
are ρi = |γi〉〈γi |, but they can be extended to the mixed states,
the key being the factorization of each density operator in the
form ρi = γi γ

∗
i , e.g., via the eigendecomposition of ρi . If ρi

has rank ki , the state factor (briefly state) γi can be chosen
with dimensions N × ki . Hence, the collection of the M state
factors as block columns gives the (generalized) state matrix
� = [γ0, . . . ,γm−1]. The ith measurement operator with rank
not greater than the rank of ρi is written in the form �i =
μi μ

∗
i , where μi are N × ki matrices. The M measurement

factors μi , collected as block columns, give the (generalized)
measurement matrix M = [μ0, . . . ,μM−1]. Both � and M
have dimensions N × r with r = k0 + · · · + kM−1.

In SRM, the measurement matrix M is given by the two
equivalent expressions [3]

M = T−1/2 �, M = � G−1/2, (5)

where T−1/2 and G−1/2 are the inverse square roots (in the
Moore-Penrose generalized sense) of T and G. From the
measurement matrix M, the operators �i = μi μ

∗
i give

the transition probabilities as

p(j |i) = Tr(ρi�j ) (6)

and the error probability as (3), namely

Pe = 1 −
M−1∑
i=0

qiTr(γi γ
∗
i μiμ

∗
i ). (7)

IV. QUANTUM CHERNOFF BOUND

The Chernoff bound is usually employed in telecommu-
nications and probability theory to establish an upper bound
to the error probability [16] or more in general to bound the
probability that a random variable exceeds a certain quantity,
based on the knowledge of the characteristic function or of
the moments of the random variable. Its application in the
case of classical hypothesis testing (H0 and H1) is considered

in [17], where the maximum a posteriori probability decision
rule is applied to a sequence of n random variables with
conditional probability density functions f0(a) and f1(a). The
Chernoff bound on the error probability over n attempts Pe(n)
is expressed by

1

n
ln Pe(n) � ln

∫
f s

0 (a) f 1−s
1 (a) da, (8)

with 0 � s � 1. Since (8) holds true for any value of s, one
can take its minimum over 0 � s � 1. The extension of the
Chernoff bound to quantum systems, leading to the quantum
Chernoff bound, is considered in several works [4–7,18],
employing the bound as a tool to estimate the error probability
in the discrimination of quantum states, both for single-mode
and multimode states. The Chernoff bound can be seen also as
a distance measure between operators. The Chernoff distance
has been investigated, for example, in [5–7] and related to
other distinguishability measures, such as the fidelity.

For the binary case M = 2, where the states are described by
the density operators ρ0 and ρ1, the quantum Chernoff bound
states that error probability can be bounded by the expression

Pe � 1

2
inf

0�s�1
Tr

[
ρs

0ρ
1−s
1

]
. (9)

The bound requires the minimization with respect to the real
value s. Note, however, that when the Gaussian states have the
same covariance matrix or the same thermal noise component
and no relative displacement, the optimum is attained [7] for
s = 1/2. Note that in this case the square root of the density
operators must be evaluated and the bound becomes

Pe � 1

2
Tr[

√
ρ0

√
ρ1], (10)

derived as Lemma 3.2 in [10]. This bound is also called the
quantum Bhattacharyya bound [19]. Also in the application
example considered in the following of this paper, the
conditions leading to a minimum value for s = 1/2 hold. In
general, a closed-form expression of (9) is not available even
in the case of Gaussian states. Only in the case of GUS with
pure states can a factorization of the operators be derived by
means of the Fourier matrices, as was done in [15].

V. COMPLEXITY COMPARISON

In terms of computational complexity, the evaluation of the
optimum POVM set requires a convex constrained optimiza-
tion procedure, where the optimum operator of size N × N

is searched. The optimization software available to solve this
kind of problem is very sophisticated and typically utilizes
iterative interior-point methods. Note that convex optimization
algorithms convert the matrix constraints into a larger search
matrix, so that for the optimization of measurement operators
of size N × N , dimensions of the order of MN × MN are
obtained. In any case, the algorithms are typically iterative
with a precision parameter determining the stop condition, so
that the numerical complexity can vary a lot not only due to
the optimization package, but also to the required accuracy.
In terms of execution time, we could see that this procedure
requires a time which could be orders of magnitude longer than
that required by the SRM approach or the Chernoff bound.
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The quantum Chernoff bound requires the evaluation of
the fractional power of a matrix of size N × N for all the
values of the minimization parameter s. This requires an
eigendecomposition of the kind

ρi = Ui�iU
∗
i −→ ρs

i = Ui�
s
i U

∗
i . (11)

Therefore, apart from the cases in which the value of s

corresponding to the minimum is known, each value of
s evaluated for minimization requires us to evaluate the
fractional power of N × N matrices, with complexity of the
order O(N3).

The SRM requires an evaluation of a matrix factorization
for each of the density operators ρi , therefore again M singular
value decompositions of matrices of size N × N as (11), each
with complexity O(N3), followed by the square root of the
Gram matrix or the Gram operator, with size r , where r < N ,
and associated complexity O(r3). Moreover, in some cases
such as the case in which the states have geometrically uniform
symmetry (GUS) [9], the complexity could be greatly reduced
by working in an equivalent compressed space [20].

Therefore, in the binary case, where sometimes also the
closed-form optimal solution can be obtained with limited
complexity, the derivation of the SRM solution has a compu-
tational complexity comparable to or lower than the evaluation
of the quantum Chernoff bound, and in the general M-ary cases
the quantum Chernoff bound cannot be applied, while the SRM
has a limited complexity compared to the optimal solution.

VI. PERFORMANCE

We consider as an application example a quantum optical
communication system using coherent states with phase
modulation [phase shift keying (PSK)]. This modulation
consists in preparing the state by a choice among M coherent
states, generated according to the constellation of M complex
numbers (complex envelopes),

αi = |α|ej2π i
M , i = 0, . . . ,M − 1. (12)

In this modulation, all the states have the same average number
of photons per symbol, |αi |2 = |α|2 = Nα .

A. Density operators from Glauber’s theory

According to the well known theory of Glauber [21], a
coherent state, representing the monochromatic radiation of
a laser in the presence of thermal noise, is an element of an
infinite-dimensional Hilbert space. The corresponding density
operator ρ(α) has the Fock representation given by

ρmn(α) = vne− |α|2
N+1

N + 1

√
m!

n!

(
α∗

N

)n−m

Ln−m
m

(
(v − 1)|α|2

N

)
,

m,n = 0,1,2, . . . , (13)

where α is the signal complex envelope, Nα = |α|2 gives the
average number of signal photons, N is the average number
of thermal noise photons, v = N /(1 + N ), and Lk

m(x) are the
generalized Laguerre polynomials. For PSK, the value of the
complex number α is chosen in the set (12).

For practical calculations we need a finite approximation of
the matrix (13) to N terms, where N can be chosen according
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FIG. 1. (Color online) Error probability in 2-PSK vs the average
number of photons per symbol Nα for three values of the thermal
noise parameter N .

to the quasiunitary trace criterion [14] as the smallest integer
such that

∑N
m=0 ρmm(α) � 1 − ε for a given accuracy ε. Once

N is established, the EID of ρ(α) gives the factorization

ρ(α) = γ (α)γ ∗(α) (14)

with γ (α) of dimension N × r , where r is the rank. An
investigation into these approximations was performed in [14],
where the size N is related to the range of error probabilities Pe

that one needs to investigate, showing that the rule ε = Pe/10
is largely adequate. For the range of error probabilities of
interest in quantum communication systems, corresponding
to a few signal photons per symbol and Pe � 10−9, we
see that an adequate value for the size of the operators
is N � 50.

In Fig. 1 we present the case of 2-PSK, that is, M = 2, so
that the states correspond to the complex values ±α. Note that
in this case, since the system is binary, the optimum solution
can be derived by means of the Helstrom theory [11]. The
error probability is presented for three values of the thermal

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

1 2 3 4 5 6 7 8

E
rr

or
pr

ob
ab

ili
ty

P
e

Nα

CSP
SRM

4-PSK

= 0

= 0.1

= 0.2

= 0.5

FIG. 2. (Color online) Error probability in 4-PSK vs the average
number of photons per symbol Nα for three values of the thermal
noise parameter N .
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noise parameter N , showing that in general the bound given
by the SRM solution is very close to the optimum value, while
the Chernoff bound is pessimistic. The optimum obtained
by CSP coincides with the Helstrom bound. The Chernoff
bound results coincide with the ones derived as in [7], as
expected.

In Fig. 2, instead, a multilevel modulation is employed,
considering the 4-PSK modulation. In this case, the optimum
set of measurement POVM can be obtained only by a lengthy
numerical optimization, at least in the presence of thermal
noise. Also in this case it is clear that the SRM method
outperforms the Chernoff bound, apart from when there is an
absence of thermal noise, in which case the bound coincides
with the optimum value. Note, however, that in this case, due
to the geometric uniform symmetry of the states, the SRM
provides the optimum measurement set [9].

VII. CONCLUSIONS

The SRM and quantum Chernoff bound have been con-
sidered in the quantum discrimination of Gaussian states and
compared with the optimal POVM solution, which in most
cases can be derived only by resorting to a heavy numerical
optimization procedure. It is shown that for mixed states the
SRM solution provides a tighter bound than the Chernoff
bound in the binary case and has the advantage that can be
applied also to the general M-ary case.
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