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We propose quantum receivers with optical squeezing and photon-number-resolving detectors (PNRDs) for the
near-optimal discrimination of quaternary phase-shift-keyed coherent state signals. The basic scheme is similar
to the previous proposals [e.g., Izumi et al., Phys. Rev. A 86, 042328 (2012)] in which displacement operations,
on-off detectors, and electrical feedforward operations were used. Here we study two types of receivers, one
of which installs optical squeezings and the other uses PNRDs instead of on-off detectors. We show that both
receivers can attain lower error rates than that in the previous scheme. In particular, we show the PNRD-based
receiver has a significant gain when the ratio between the mean photon number of the signal and the number of
the feedforward steps is relatively high, in other words, when the probability of detecting two or more photons
at each detector is not negligible. Moreover, we show that the PNRD-based receiver can suppress the errors due
to dark counts, which the receiver with the on-off detector cannot do with a small number of feedforwards.
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I. INTRODUCTION

Coherent states are known as the best signal carriers in
optical communication owing to their loss-tolerant property.
Coherent states propagating through a lossy channel remain
in a pure coherent state with decreased amplitude while
more exotic states such as photon number states easily lose
their purity in a lossy channel. In fact, the ultimate channel
capacity in a lossy bosonic channel can be attained by using
coherent state carriers, appropriate classical encoding, and
quantum mechanically optimal decoding (measurement) over
a sequence of coherent states [1].

Implementation of such kind of quantum collective de-
coding is still challenging. Currently, attention is paid to
implementing quantum receivers for detecting each coherent
pulse separately at a smaller error rate than the conventional
limit(standard quantum limit, SQL) which is attained by
homodyne or heterodyne receivers. The quantum mechanical
bound of the minimum error rate is called the Helstrom
bound and is known to be significantly lower than the SQL.
Physical implementations of the optimal quantum receiver to
achieve the Helstrom bound were studied theoretically in the
1970s by Kennedy and Dolinar [2–4] and recently further
investigated from a more practical point of view [5–10].
Experimentally the super-SQL performances, even without
compensating for imperfections, were demonstrated for both
on-off keying (OOK) [11,12] and binary phase-shift keying
(BPSK) [13,14].

More recently, attention also has been paid to the M-
ary signal with M > 2 where one can encode the message
in pulses more densely [15–21]. Bondurant [15] extended
Dolinar’s optimal binary signal discrimination scheme and
proposed near-optimal receivers for quaternary phase-shift
keying (QPSK), which consists of a local oscillator, an
on-off detector (which distinguishes only zero or nonzero
photons), and an infinitely fast feedback operation. Later, more
practical schemes assuming a finite number of feedforward

steps have been studied [16,17], and very recently super-
SQL performance was experimentally demonstrated [18].
As another approach, the QPSK discrimination by a hybrid
receiver of homodyne and on-off detections was also proposed
[19]. In addition, the near-optimal discrimination was also
demonstrated for the pulse-position coding [22,23]. In all
of these schemes, the near-optimal performance is achieved
by inducing effective optical nonlinearities via an on-off
detection and the ultrafast electrical feedback (or feedforward)
operation.

In this paper, we theoretically show that additional optical
nonlinear processes, squeezing and photon-number-resolving
detection (PNRD), are also useful for the QPSK coherent state
discrimination. For the binary case, it was shown that the
squeezing can slightly improve the error rate performance [9].
We show that a similar effect can be observed by installing
squeezers into the QPSK receiver scheme we proposed
previously [17].

PNRD is also known as an attractive device for inducing
an effective optical nonlinearity in optical quantum informa-
tion processing [24]. For the coherent state discrimination
task, PNRD has been applied to implement a generalized
(nonprojective) measurement of discriminating binary states
with an inconclusive result [25,26]. Furthermore, a benefit
of employing PNRD for M-ary coherent state discrimination
was also implied in Ref. [16]. Here we apply PNRD into
the QPSK receiver based on Ref. [17] and show that it can
achieve the near-optimal error performance even if the number
of feedback steps is relatively small. In other words, PNRDs
can decrease the number of feedforward steps to attain the
same performance. In addition, we show that this scheme is
highly robust against the dark counts.

In Sec. II, we propose and analyze the QPSK receiver with
the squeezing operation. The receiver with PNRD is proposed
and numerically simulated in Sec. III. Section IV concludes
the paper.
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FIG. 1. (Color online) Displacement receiver with three-port
detection structure without feedforward operations. The squeezing
operations are applied to the displaced signals.

II. DISPLACEMENT RECEIVER WITH
SQUEEZING OPERATION

In this section, we apply the squeezing operations into the
displacement receiver proposed in Ref. [17]. The signals to be
discriminated are M-PSK coherent states defined as

|αm〉 = |α um〉, u = e2πi/M, (1)

where m = 0,1, . . . ,M − 1 and α is chosen to be real without
loss of generality. Throughout this paper, we fix M = 4 and
assume equal a priori probabilities, i.e., pm = 1/M for all m.

A schematic of the receiver is depicted in Fig. 1. It consists
of beam splitters, displacement operations, squeezing, and
on-off detectors. The QPSK signal is split into three ports via
two beam splitters having reflectance R1 and R2, respectively.
At each port, the displacement operation is applied. The
operator is given by D̂(γ ) = exp[(γ â† − γ ∗â)], which shifts
the amplitude of the coherent state as D̂(γ )|β〉 = |β + γ 〉.
It is widely known that D̂(γ ) is realized by a beam splitter
with transmittance τ ≈ 1 and relatively strong local oscillator
|γ /

√
τ 〉. In our scheme it is applied such that one of the four

symbols is displaced to be close to the vacuum state (signal
nulling). The previous works [9,12–14,17,19,22,23] showed
that the optimal displacement minimizing the average error is
slightly different from the exact nulling, which is taken into
account in here as well. The target signals to be nulled at port
A, B, and C are m = 0, 2, 1.

The displaced signal at each port is then squeezed by the
squeezing operation Ŝ(ξ ) = exp[(ξ ∗â2 − ξ â†2)/2], where ξ =
reiφ is the complex squeezing parameter, and then detected
by an on-off detector, which distinguishes if the signal is
the nulled one or not. The on-off detection process at three
ports are described by an appropriate set of three-mode
measurement operators {	̂i} (i = 0,1,2,3) and the correct
detection probabilities are then given by

P (i|i) = 〈
i |	̂i |
i〉. (2)

From them, we obtain the average error probability as

Pe = 1 − 1

4

3∑
i=0

P (i|i). (3)

FIG. 2. (Color online) Average error rates for QPSK signal
discrimination without applying the feedforward. The optimized
displacements and squeezings receiver (green [light gray] line) and
the optimized displacements receiver (red [dark gray] line). η = 1 and
ν = 0. Throughout this paper, the Helstrom bound and the heterodyne
limit are represented by black dashed and dotted lines respectively.

The parameters of the beam splitters, the displacements,
and the squeezings are numerically optimized to minimize
Pe. Details of the derivation of Eq. (3) and the optimized
parameters are described in the Appendix.

In Fig. 2, we plot the average error rate of the proposed
receiver, which is compared with that of the receiver without
squeezing [17], heterodyne receiver, and the Helstrom bound.

We observe an improvement of the performance by in-
troducing squeezing operations in the small photon number
region |α|2 � 4. However, the improvement is extremely small
and thus it is expected that the gain would disappear when the
system imperfections are taken into account. To observe a
significant gain in this approach, one may need higher order
nonlinear optical processes.

III. DISPLACEMENT RECEIVER WITH
PHOTON-NUMBER-RESOLVING DETECTORS

According to Ref. [17] the error rate for QPSK can
be drastically improved by employing and repeating the
feedforward that is based on the binary information from
the on-off detector, which allows us to set the value of
the displacement at the j th branch D̂j (·) depending on the
outcome from the (j − 1)th branch. Additionally, the error
rate performance of the feedforward receiver can be further
increased by refining the feedforward rule by adopting the
maximization of a posteriori probabilities. However, the a
posteriori probabilities can be more precisely estimated by
replacing the conventional on-off detectors with the PNRDs,
because the amplitudes of signals are different from each other.

In this section, we study the displacement receiver, allowing
the use of PNRDs instead of on-off detectors and the feed-
forwards based on the Bayesian updating. The measurement
operator of the PNRD for the n-photon detection is described
by Ref. [27],

	̂n = e−ν

n∑
l=0

∞∑
k=n−l

νl

l!
Ck

n−lη
n−l(1 − η)k−(n−l) |k〉 〈k| , (4)
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FIG. 3. (Color online) The displacement receiver consisting of
N -step feedforward operations. The nulling symbol mj on the j th
stage is determined by the a posteriori probabilities on the (j − 1)th
stage.

where Ck
n−l is the binomial coefficient. The probability of

detecting n photons for the coherent state input |β〉 is thus
given by

P (n|β) = 〈β| 	̂n |β〉 = e−ν−η|β|2 (ν + η |β|2)n

n!
. (5)

The schematic of the receiver is shown in Fig. 3, which
is similar to those described in Refs. [16,17] except that the
on-off detectors are replaced by the PNRDs. The input signal
is equally split into N ports via N − 1 beam splitters. We
denote the nulling symbol on the j th stage as mj . The nulling
symbol at the first port is set to be m1 = 0 while the symbols
mj (j � 2) are chosen to have the maximum a posteriori
probability. The a posteriori probability for after detecting nj

photons at the j th stage is given by

(αm|nj ) = (αm|nj−1)P
(
nj

∣∣(αm − αmj

)/√
N

)

∑M
l=0 (αl|nj−1)P

(
nj

∣∣(αl − αmj

)/√
N

)

= pm	
j

h=1P
(
nh|

(
αm − αmh

)/√
N

)

∑M
l=0 pl	

j

h=1P
(
nh

∣∣(αl − αmh

)/√
N

) , (6)

where pm denotes the a priori probability.
We first derived an analytical expression of the average error

rate assuming ν = 0. In this case, once photons are detected
from the signal in which mj is nulled, we have (αmj

|nj ) = 0
and thus Eq. (6) is drastically simplified.

Figure 4 shows the error rates of the N -step feedforward
receivers (N = 3,4,5,10) with ideal PNRDs (ν = 0, η = 1,
solid lines) and on-off detectors (dot-dashed lines). Remark-
ably low error rates are obtained for the PNRD-based receiver
in the region of small N . For larger N , the performance
of both receivers almost coincide since multiuse of on-off
detectors at feedforward effectively resolves the number of
photons in the original signal. The error rates for the PNRD
receiver show steplike curves. At each feedforward step,

FIG. 4. (Color online) The displacement receiver consisting of
N -step feedforward operations. Solid and dot-dashed lines denote the
error probabilities for the PNRD detection and the on-off detection
respectively.

with a given outcome n, we chose αm which maximizes
(αm|n) as the next nulling signal. In other words, the
feedforward behavior highly depends on the classification
{n|(αm|n) � (αl|n) (l �= m)}. Due to the discrete nature of
photon number, such a classification varies discretely as a
function of |α|2, resulting in the steplike curves on the averaged
error performance.

For nonzero ν, on the other hand, the analytical derivation
of the error rate is almost intractable since all (αmj

|nj ) could
remain finite even after the j th stage. We therefore evaluate
the error performance with nonideal detectors by Monte Carlo
simulations. Figures 5(a) and 5(b) show the error rates for the
on-off detectors and the PNRDs, respectively. We examined
the performance for various ν with η = 1 and N = 3. For
the on-off detectors [Fig. 5(a)], the error rates are saturated
at Pe ≈ ν, which implies that the dark counts seriously
limit the performance of the receiver. On the other hand,
the PNRD-based receiver is clearly free from the saturation
problem [Fig. 5(b)]. Since PNRD can discriminate incident
photon numbers, it can exclude the events for dark counts
from those for real signals to a certain extent, especially in
the region where |α|2 	 ν. This reflects the robustness of the
PNRD-based receiver against the dark counts.

Apparently, this is impossible by on-off detectors that have
the same number of feedforward steps. Note that the robustness
against the dark counts could be observed even with the on-off
detectors if one allows large N since it effectively provides the
number-resolving ability as mentioned above.

We also evaluate the dependence on the detector efficiency η

with ν = 10−3 and N = 3. Figure 6(a) shows that the detector
efficiency 90% is at least required for the on-off detector to
obtain the performance beyond the heterodyne limit; however,
the requirement for the detector efficiency can be decreased
to 70% by employing the PNRDs in place of the on-off
detectors.

IV. CONCLUSIONS

We proposed two quantum receivers for M-ary coherent
state discrimination. The first one consists of displacements,
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FIG. 5. (Color online) Degradation of the error rates depending
on the dark count probability ν for (a) on-off detector, and (b) PNRD.
The feedforward steps and the detection efficiency are fixed at
N = 3 and η = 1 in both figures. Each plot is given by a Monte
Carlo simulation with 105 trials. Non-monotonic fluctuations of the
plots at relatively high |α|2 are due to the statistical errors of the
simulation.

on-off detectors, and squeezers without feedforward (or
feedback) operations. The theoretical results showed that
squeezing operation can slightly increase the performance
at the weak-signal region compared to the scheme without
feedforward or squeezing, presented in Ref. [17].

The second one consists of displacements, PNRDs, and
feedforward operations. We numerically demonstrated that,
for the fixed number of feedforward steps, the PNRD-based
receiver shows sufficiently better performance than the re-
ceivers based on on-off detectors [16–18]. In other words,
PNRD can decrease the number of feedforward steps. It
was also shown that the PNRD receiver is robust against
the dark count which strictly limits the performance of
photon-counting-based receivers in a relatively higher photon
number regime. Though our analyses are concentrated on the
QPSK signals, we emphasize that we can generalize these
receivers to the M-ary signals (M > 4) in a straightforward
way.

Our results show that the PNRD receiver is a feasible
scheme with the current technology and could achieve smaller
error rates with a reduced number of feedforward steps. Fewer
feedforward steps will allow us to detect the shorter pulsewidth

FIG. 6. (Color online) Degradation of the error probabilities
depending on the detection efficiency η for (a) on-off detector and
(b) PNRD. The feedforward steps and the dark count probability are
fixed at N = 3 and ν = 10−3.

or higher repetition rate signals, which are an important figure
of merit toward implementing the practical application of
quantum receivers.

Finally, from a theoretical point of view, an interesting
future issue is to investigate how to fill the gap between
the ideal performance of the feedforward-based receiver
and the exact Helstrom bound for the QPSK signals. It
could be achieved by the additional nonlinear process,
e.g., replacing the beamsplitters with higher order nonlinear
couplings.
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APPENDIX: DISPLACEMENT RECEIVER WITH
SQUEEZING OPERATION: FORMULATION

In this appendix, we describe detailed derivations of |
i〉
and 	i discussed in Sec. II, which are necessary to calculate
Eq. (2). As illustrated in Fig. 1, the signal is split into three
ports and at each port, it is displaced and squeezed before the
on-off detection. Thus the state just before the detection is
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generally in the squeezed coherent state |ξ ; β〉. It is described
in photon number bases as

|ξ ; β〉 = Ŝ(ξ )D̂(β)|0〉

= e
− |β2 |

2 +β2 κ∗
2μ

∞∑
n=0

1√
n!μ

[
κ

2μ

] n
2

Hn

(
β√
2μκ

)
|n〉 ,

(A1)

where Hn is the nth Hermite polynomial, μ = cosh r , and
κ = eiφ sinh r [28]. Let βj and ξj be the displacement
and squeezing parameters, respectively, at port j = A,B,C.
After applying the displacements and squeezings, |αm〉 is
transformed to a three-mode state |
m〉 where

|
0〉ABC = |ξA; βA〉A
⊗ |ξB ;

√
(1 − R1)R2(α0 − α2) + βB〉B

⊗ |ξC ;
√

(1 − R1)(1 − R2)(α0 − α1) + βC〉C,

(A2)

|
1〉ABC = |ξA;
√

R1(α1 − α0) + βA〉A
⊗ |ξB ;

√
(1 − R1)R2(α1 − α2) + βB〉B

⊗ |ξC ; βC〉C, (A3)

|
2〉ABC = |ξA;
√

R1(α2 − α0) + βA〉A ⊗ |ξB ; βB〉B
⊗ |ξC ;

√
(1 − R1)(1 − R2)(α2 − α1) + βC〉C,

(A4)

|
3〉ABC = |ξA;
√

R1(α3 − α0) + βA〉A
⊗ |ξB ;

√
(1 − R1)R2(α3 − α2) + βB〉B

⊗ |ξC ;
√

(1 − R1)(1 − R2)(α3 − α1) + βC〉C.

(A5)

Note that the parameters optimized in Sec. II are R1, R2,
βA–βC , and ξA–ξC .

An on-off detector only discriminates zero or nonzero
photons. Its measurement operators are given by

	̂off = e−ν

∞∑
n=0

(1 − η)n |n〉 〈n| , (A6)

	̂on = Î − 	̂off, (A7)

where ν is the dark count probability and η is the detection
efficiency. In our scheme three on-off detectors are used and
the signal decision is carried out by the following combination
of detection outcomes:

	̂0 = 	̂A
off ⊗ Î B ⊗ Î C,

	̂1 = 	̂A
on ⊗ 	̂B

off ⊗ Î C,
(A8)

	̂2 = 	̂A
on ⊗ 	̂B

on ⊗ 	̂C
off,

	̂3 = 	̂A
on ⊗ 	̂B

on ⊗ 	̂C
on,

where Î is an identity operator. These descriptions allow
us to calculate the probability 〈
i |	j |
i〉. In general, the
probability of having an “off” outcome for the squeezed
coherent state |ξ ; αm〉 is given by

Poff = 〈ξ ; αm| 	̂off |ξ ; αm〉
= e−ν−α2{1−tanh r cos ( 2m+1

2 π−φ)}

×
∞∑

n=0

(1 − η)n

n!μ

[ |κ|
2μ

]n ∣∣∣∣Hn

(
α√
2μκ

)∣∣∣∣
2

. (A9)
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