
PHYSICAL REVIEW A 87, 042325 (2013)
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Previous analyses of conditional ϕNL-phase gates for photonic qubits that treat cross-phase modulation (XPM)
in a causal, multimode, quantum field setting suggest that a large (∼π rad) nonlinear phase shift is always
accompanied by fidelity-degrading noise [J. H. Shapiro, Phys. Rev. A 73, 062305 (2006); J. Gea-Banacloche,
ibid. 81, 043823 (2010)]. Using an atomic ∨ system to model an XPM medium, we present a conditional phase
gate that, for sufficiently small nonzero ϕNL, has high fidelity. The gate is made cascadable by using a special
measurement, i.e., principal-mode projection, to exploit the quantum Zeno effect and preclude the accumulation
of fidelity-degrading departures from the principal-mode Hilbert space when both control and target photons
illuminate the gate. The nonlinearity of the ∨ system we study is too weak for this particular implementation to be
practical. Nevertheless, the idea of cascading through principal-mode projection is of potential use to overcome
fidelity-degrading noise for a wide variety of nonlinear optical primitive gates.
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I. INTRODUCTION

In optical quantum logic, qubit states are usually encoded
using the presence or absence of a single photon in one
of the many modes of the quantum electromagnetic field.
We refer to this special information-carrying mode as the
principal mode. Logic gates can be high-fidelity only if
they map input principal modes to output principal modes.
Gates can be cascaded successfully if the input and output
principal modes are the same. In either the dual-rail [1] or
polarization [2] architectures, high-fidelity, cascadable single-
qubit gates can be readily implemented using linear optics
(beam splitters and phase shifters). A significant challenge to
implementing optical quantum information processing is the
faithful realization of a deterministic and cascadable universal
two-qubit photonic logic gate.

Cross-phase modulation (XPM)—a nonlinear process in
which one electric field affects the refractive index seen by
another—has often been proposed [1,3–5] as a nonlinear
optical process that might be used to construct such a universal
gate, i.e., the conditional π -phase gate. (Other fundamentally
different photonic two-qubit gates have been designed, e.g.,
[6,7], which involve only single-photon+atom interactions;
such gates will not be discussed here.) While a single-mode
analysis of XPM-based gates is encouraging, in recent years
multimode efforts [8–10] that treat photons as excitations of
a quantum field with continuously many degrees of freedom
have been somewhat more foreboding.

In [8,9], the problem was studied using a quantized version
of the solution to the classical coupled-mode equations for
XPM. The XPM material was required to have a noninstanta-
neous response, as an instantaneous response in the quantum
theory does not reproduce classical behavior for coherent-
state mean fields. It was then shown that if the material
response is noninstantaneous and causal, then noise terms
necessary to preserve commutation relations cause the error
probability (infidelity) |ε|2 of conditional ϕNL-phase gates to be
prohibitively large when ϕNL ∼ π . (See [10] for a comparative
model study and [11] for experimental observation of this noise
in optical fiber.)

A second difficulty with XPM is obtaining a cross-phase
shift uniformly distributed over the control and target
pulse profiles. Several authors have proposed conditional
phase gate designs that avoid this trouble by allowing one pulse
to propagate through the other [12–18]. As some point out [12],
however, it is not clear that realizations of these proposals
would be free from the causality-induced phase noise
discussed above.

In the present paper, we offer a different approach to
solving problems associated with quantum XPM. Rather than
trying to achieve a high-fidelity π -phase shift all at once,
we show that a high-fidelity conditional ϕNL-phase gate can
be constructed for small ϕNL, and that these gates can be
cascaded to yield a significant nonlinear phase shift with
high fidelity. Indeed, showing that a conditional phase gate
can be constructed with small nonlinear phase much larger
than its error probability, |ε|2 � ϕNL � 1, is relatively easy.
Cascading these gates, however, is nontrivial. The error, which
results from a slight deformation of the principal modes, can
be coherently amplified as the gate is cascaded, preventing the
straightforward construction of a conditional π -phase gate.
This difficulty can be avoided by performing a measurement
after each primitive conditional ϕNL-phase gate that projects
onto the principal-mode subspace, exploiting the quantum
Zeno effect as an error-preventing mechanism [19–21]. For
a particular choice of principal modes, we suggest one way
that such a measurement could be realized.

We derive these results using a single ∨-type atom placed
within a one-sided cavity as a microscopic model for XPM.
While the nonlinearities present in a ∨ atom are not as strong
as those in, for example, the giant Kerr effect [22,23], the ∨
system is simple enough that it yields readily to an analysis in
terms of quantum fields. After solving for the evolution of our
system in the one- and two-photon subspaces, we investigate
fidelity and cascadability. It turns out that while cascading
small phase shifts with projective measurements interleaved
can produce a high-fidelity gate in principle, the number of
cascades needed is impractically large when the ∨ system’s
weak nonlinearity is used to provide XPM. Nevertheless, the
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idea of cascading through principal-mode projection is of
potential use to overcome fidelity-degrading noise for a wide
variety of nonlinear optical primitive gates.

II. THE FIELDS AND THEIR INTERACTION

In this section, we describe our encoding of qubit states
in one-dimensional quantum fields, then consider how these
fields evolve when interacting with an optical cavity con-
taining an atomic ∨ system. Following the approach used
in [7,24,25], this is described by a Hamiltonian HNL for
the fields + cavity + atom system. The Hamiltonian-based
approach we use is essentially the basis for an alternative
description in terms of the input-output formalism [26].

The atomic system mediates an XPM-like interaction that
is a central component in the conditional phase gates discussed
later. Determining the nonlinear phase shift and error induced
by the atomic interaction will be of the utmost importance
in evaluating these gates. To this end, one- and two-photon
propagators for this system [24] are introduced.

A. Qubit encoding

In our gate, qubit states are encoded using two quasi-
monochromatic, positive-frequency, photon units optical fields
hz(τ ) and vz(τ ) [27] (for convenience, τ ≡ ct is used to
measure time). We take +z as the propagation direction and
ignore the transverse character of these fields throughout. The
horizontally polarized field hz(τ ) and the vertically polarized
field vz(τ ) are independent and have a nontrivial commutator,
[hz(τ ),hz′(τ )†] = [vz(τ ),vz′(τ )†] = δ(z − z′).

Logical qubit states are encoded as excitations of two
principal modes h and v, defined by

h† ≡
∫

dzψ(z)h†
z, v† ≡

∫
dzψ(z)v†

z, (1)

where operators without explicit time dependence are in the
Schrödinger picture. With the normalization

∫
dz|ψ(z)|2 = 1,

h† and v† are interpreted, respectively, as creating horizontally
and vertically polarized photons with wave function ψ(z).
We refer to all modes orthogonal to h and v as auxiliary, or
bath, modes and assume that the auxiliary modes are initially
unexcited. In this case, the correspondence between logical
qubit states and field states reads

|00〉L ↔ |vac〉, (2a)

|01〉L ↔ |H 〉 ≡ h†|vac〉, (2b)

|10〉L ↔ |V 〉 ≡ v†|vac〉, (2c)

|11〉L ↔ |HV 〉 ≡ v†h†|vac〉, (2d)

where |vac〉 is the multimode vacuum. Equation (2) could
describe either a dual-rail or polarization encoding, where
fields not participating in our gate have been dropped for
convenience.

B. Qubit evolution and interaction Hamiltonian

At the input to our gate, the fields are prepared in some
superposition |ψin〉 of the basis states in Eq. (2). This state is
localized in a noninteracting input region [Fig. 1(a)]. It then
propagates in the +z direction toward a region where both

vz, hzinput
region

output
region

z < 0

z > 0

atom

|0

|1 2

Ω1HV

(a)

(b)

(c)

atom

input

output

optical
circulator

FIG. 1. (a) The external fields vz(τ ) and hz(τ ) interact with an
atom placed within a one-sided cavity at position z = 0. (b) An optical
circulator could be used to separate input and output fields in practice.
(c) Three-level atom used as an XPM medium. Vertical light (V )
drives the 0 ↔ 1 transition, while horizontal light (H ) drives the
0 ↔ 2 transition. In the lossy-cavity regime, γ3D � g � κ , the cavity
fields can be adiabatically eliminated, yielding an effective coupling
directly between the external fields and the ∨ system at strengths

H (V ) = 4g2

H (V )/κH (V ).

fields interact, evolving under a nonlinear total Hamiltonian
HNL which couples these fields to a three-level atomic ∨
system. (Here “nonlinear” means that the total Hamiltonian
HNL generates nonlinear Heisenberg equations of motion,
which is a necessary condition for HNL to effect a two-qubit
gate that does not factorize into a product of one-qubit gates.)
Much later, the atom has returned to its ground state and the
photonic qubits are in a state |ψ1〉, which is localized in a
noninteracting output region. Working in an interaction picture
with respect to the free-field Hamiltonian Hfields, the scattering
matrix connects the states |ψin〉 and |ψ1〉:

|ψ1〉 = SNL|ψin〉, SNL ≡ lim
τ→∞ eiHfieldsτ/h̄ce−iHNLτ/h̄c. (3)

In interacting with the atom, a single horizontally polarized
(vertically polarized) photon acquires a phase shift ϕH (ϕV ),
and may undergo some amount of pulse deformation. When
both a horizontal and a vertical photon are incident upon the
atom at the same time, however, the presence of the horizontal
photon frustrates the interaction of the vertical photon with the
atom, and vice versa, i.e., the atom cannot absorb both photons
simultaneously. As a result, the pair of photons picks up an
extra phase shift ϕNL. In this way, the ∨ system models a Kerr
medium and can be used to construct conditional phase gates.

To describe this interaction, we use the same Hamiltonian
HNL as in [24]: both fields hz and vz couple to a one-sided
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cavity containing an atomic ∨ system. For z < 0, these fields
are interpreted as propagating toward the cavity, while for
z > 0, they are interpreted as propagating away from the cavity
[Fig. 1(a)]. As shown in Fig. 1(b), an optical circulator could
be used in practice to achieve this separation of input and
output fields. Figure 1(c) shows the ∨ system’s level structure.
All cavity modes are ignored, except a horizontally polarized
mode aH and a vertically polarized mode aV , both of which are
resonant with the atomic transitions at frequency �1. The total
Hamiltonian HNL = H0 + Hfields-cav + Hcav-atom is the sum of
a noninteracting Hamiltonian H0 and two interaction pieces.
In terms of k-space field operators ṽk ≡ ∫

dzvze
−ikz and h̃k ≡∫

dzhze
−ikz, which annihilate photons with definite frequency,

the noninteracting Hamiltonian H0 is

H0 = Hfields + Hcav + Hatom, (4a)

Hfields =
∫

dk

2π
h̄ωk (̃h†

kh̃k + ṽ
†
kṽk), (4b)

Hcav = h̄�1c(a†
V aV + a

†
HaH ), (4c)

Hatom = h̄�1c(σ11 + σ22), (4d)

wherein σmn ≡ |m〉〈n| and ωk = ck [28]. Under H0, the
Heisenberg-picture field operators propagate towards +∞,
e.g., e−iH0τ/h̄chze

iH0τ/h̄c = hz−τ .
The interactions between the cavity, free-field, and atom

are taken within the rotating wave approximation, so that the
total Hamiltonian HNL is

HNL = H0 + Hfields-cav + Hcav-atom, (5a)

Hfields−cav = ih̄cκ
1/2
V (v0a

†
V − v

†
0aV )

+ ih̄cκ
1/2
H (h0a

†
H − h

†
0aH ), (5b)

Hcav−atom = ih̄cgV (aV σ10 − a
†
V σ01)

+ ih̄cgH (aHσ20 − a
†
H σ02). (5c)

We have taken z = 0 as the cavity’s position.
As in [24], we consider the lossy-cavity regime in which

the cavity decay rates κ , cavity-atom couplings g, and rate γ3D

of spontaneous emission into free space satisfy κ � g � γ3D.
In this regime, cavity decay dominates spontaneous emission,
and cavity operators can be adiabatically eliminated in favor
of the external field [24,29], i.e., in the lossy-cavity regime, the
atom couples directly to the one-dimensional input and output
fields. The dynamics of the atom+external field system are
then identical (up to an inconsequential phase shift resulting
from reflection off the one-sided cavity’s perfect mirror) to
those generated by an effective Hamiltonian H′

NL in which the
fields are directly coupled to the atom,

H′
NL = H0 + ih̄c


1/2
H (v0σ10 − v

†
0σ01)

+ ih̄c

1/2
V (h0σ20 − h

†
0σ02), (6)

where the effective coupling is 
H (V ) = 4g2
H (V )/κH (V ). In this

paper, dynamics are derived exclusively from the effective
Hamiltonian H′

NL. To ensure that the gate treats both qubits
symmetrically, we will later set 
H = 
V , but temporarily
retain subscripts for pedagogical clarity.

C. Evolution of one- and two-photon states

To determine how the one- and two-photon states in Eq. (2)
that encode the computational basis evolve under the scattering
matrix SNL, it suffices to know the one- and two-photon
propagators (the vacuum state evolves trivially). Labeling
states |atom; field〉, these are

GH (x,y) ≡ 〈0; vac|hxSNLh
†
y |0; vac〉, (7a)

GV (x,y) ≡ 〈0; vac|vxSNLv
†
y |0; vac〉, (7b)

GHV (xH ,xV ,yH ,yV ) ≡ 〈0; vac|hxH
vxV

SNLh
†
yH

v†
yV

|0; vac〉.
(7c)

The time-dependent propagators—matrix elements of
e−iH′

NLτ/h̄c instead of SNL—are given in [24].
The single-photon propagator GH (x,y) gives the long-time,

interaction-picture amplitude for a photon initially at position
y to propagate to position x. We will always assume that y < 0
so that every photon can interact with the atom, located at the
origin. In this case,

GH (x,y) = δ(x − y) − 

1/2
H RH (y − x), (8)

where



−1/2
H RH (τ ) ≡ θ (τ )〈1; vac|e−iH′

NLτ/h̄c|1; vac〉
= θ (τ )e−(i�1+
H /2)τ (9)

is the amplitude for the atom, excited by a horizontally
polarized impulse at time zero, to still be excited at a time
τ later. Here θ (τ ) is the Heaviside step function, equal to
1 for τ > 0 and 0 for τ < 0. The Fourier-space propagator
G̃H (k,q) ≡ 〈0; vac|̃hkSh̃

†
q |0; vac〉 is also useful. Using Eq. (8),

it is

G̃H (k,q) =
∫

dxdyGH (x,y)eiqy−ikx

= 2πδ(k − q)
k − �1 − i
H /2

k − �1 + i
H /2
. (10)

Analogous results hold for GV (x,y).
If the atomic system were linear, it could absorb multiple

photons before emitting any. In this case, the two-photon
propagator GHV (xH ,xV ,yH ,yV ) would just be a product of
single-photon propagators. Instead, it is

GHV (xH ,xV ,yH ,yV ) = GH (xH ,yH )GV (xV ,yV ) − 

1/2
H 


1/2
V

×RH (yH − xH )RV (yV − xV )

× θ (min[yH ,yV ] − max[xH ,xV ]).

(11)

Here the second piece removes from GH (xH ,yH )GV (xV ,yV )
exactly those terms that correspond to two absorptions before
any emissions. This causes two-photon output states to be
antibunched.

The corresponding two-photon Fourier-space propagator is

G̃HV (kH ,kV ,qH ,qV ) = G̃H (kH ,qH )G̃V (kV ,qV )

+ i
H 
V (2π )δ(kH + kV − qH − qV )

× 1

δ̃
(H )
kH

1

δ̃
(V )
kV

(
1

δ̃
(H )
qH

+ 1

δ̃
(V )
qV

)
, (12)
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wherein δ̃
(H/V )
k ≡ k − �0 + i
H/V /2. The Fourier-space

propagators G̃H ,G̃V , and G̃HV enable the gate fidelity cal-
culations reported in Sec. III C.

III. A PRIMITIVE CONDITIONAL PHASE GATE

In this section, we describe a conditional phase gate based
on the interactionSNL described above. We first discuss how the
unnecessary and undesirable linear evolution can be removed.
We then consider the fidelity of this primitive (noncascaded)
gate with an ideal conditional phase gate.

A. Removing linear evolution

In interacting with the atomic ∨ system, both the one- and
two-photon states that encode the computational basis [Eq. (2)]
evolve nontrivially:

|H 〉 SNL−→ (1 − |εH |2)1/2eiϕH |H 〉 + εH |eH 〉, (13a)

|V 〉 SNL−→ (1 − |εV |2)1/2eiϕV |V 〉 + εV |eV 〉, (13b)

|HV 〉 SNL−→ (1 − |εHV |2)1/2ei(ϕH +ϕV +ϕNL)|HV 〉 + εHV |eHV 〉.
(13c)

Here all kets are normalized, {ϕH ,ϕV } are the single-photon
(linear) phase shifts, and the various ε terms represent errors
that occur because of photons evolving out of the principal
modes.

The linear phase shifts {ϕH ,ϕV } are not only irrelevant
to the construction of conditional logic gates, but come also
with some amount of fidelity-degrading evolution out of
the principal-mode subspace. In order to build high-fidelity
gates, it would be useful to remove completely the linear
evolution that causes these effects. Removing linear evolution
is also theoretically appealing because it allows one to study
the fundamental limitations of the ∨ system’s capacity for
quantum XPM.

Formally, linear evolution is removed by evolving backward
in time under a linearized Hamiltonian HL(�1) in which
the atomic lowering operators σ01 and σ02 are replaced by
independent harmonic-oscillator annihilation operators bV and
bH [cf. Eq. (6)],

HL(�1) = Hfields + h̄c�1(b†V bV + b
†
H bH )

+ ih̄c

1/2
H (v0b

†
V − v

†
0bV )

+ ih̄c

1/2
V (h0b

†
H − h

†
0bH ). (14)

This Hamiltonian, which we have explicitly parametrized by
the cavity frequency �1 for later convenience, is linear in the
sense that the equations of motion which it generates for the
field operators hz(τ ) and vz(τ ) are linear differential equations.
Application of the corresponding inverse scattering matrix
S†

L(�1) ≡ limτ→∞ e−iHfields(�1)τ/h̄ce+iHL(�1)τ/h̄c then removes
linear evolution from SNL.

This useful form of error correction can, in principle, be
implemented using linear optics. Figure 2(a) shows an optical
circuit that removes linear evolution from input photons with
center wave number k0 by simulating time-reversed evolution
under Eq. (14). The idea is to run the photons through HL

backwards: first, the baseband modulation of the input photon

vz, hz

I

I Ω2

k0

(a)

Phase 
modulator

Phase 
modulator

DispersionDispersion
Input: Output:

eik zΨ(z) eik zΨ(−z)

z

(b)

Diffraction

Input:

ff

Diffraction

Lens Lens
Output:

(c)

FIG. 2. (a) Optical circuit to simulate time-reversed evolution
under Eq. (14). The cavity frequency �2 is chosen so that k0 − �1 =
−(k0 − �2). (b) Temporal imaging system to realize inversion I
about center frequency k0, using two dispersive delay lines and
two quadratic phase modulators. (c) The analogous spatial imaging
system using free-space diffraction and thin lenses.

pulses is inverted (I); the pulses then interact with empty one-
sided cavities; finally, the baseband modulation is reinverted.

Real-space inversion of an optical pulse’s baseband modu-
lation corresponds to inversion about its center wave number
k0 in Fourier space. This transformation,

I†h̃kI = h̃2k0−k, (15)

can be achieved using temporal imaging [30–33]. Temporal
imaging is the longitudinal analog of traditional spatial
imaging: in spatial imaging, a beam’s transverse profile is
manipulated using free-space diffraction and thin lenses;
in temporal imaging, the longitudinal (temporal) profile is
manipulated using dispersive delay lines and quadratic phase
modulation. Figure 2(b) shows a temporal imaging system
for baseband modulation inversion, while Fig. 2(c) shows its
spatial analog.

While this method has not, to our knowledge, been used
to demonstrate pulse inversion with quantum light, we see no
fundamental physical principle preventing its implementation.
Because the scheme to implement I shown in Fig. 2(b)
involves only passive linear field transformations (dispersion
and phase modulation), it behaves identically with respect to
classical fields and few-photon pulses.

After inverting the optical pulses, the fields in Fig. 2(a)
evolve forward in time under the linearized Hamiltonian
HL(�2) with cavity frequency �2. This corresponds to
applying SL(�2) on the field operators. Because the equations
of motion generated by HL(�2) are linear, the mapping of the
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field operators under SL(�2) is analogous to the mapping of
single-photon packets under SNL [Eq. (10)],

S†
L(�2)̃hkSL(�2) = h̃k

k − (�2 + i
H/2)

k − (�2 − i
H/2)
, (16)

and similarly for vk . By picking the pulse center wave number
k0, atomic resonance �1, and cavity resonance �2, such
that photon-atom and photon-cavity detunings are equal and
opposite, viz., k0 − �1 = −(k0 − �2), the combined effect
of pulse inversion, followed by evolution under HL(�2),
followed by pulse inversion, yields time-reversed evolution
under HL(�1):

ISL(�2)I = S†
L(�1). (17)

In this way, the linear portion of SNL can be undone.

B. The primitive gate

The combined effect of nonlinear interaction with the ∨
system and removal of linear evolution is evolution under
S†

LSNL:

|vac〉 S†
LSNL−−−→ |vac〉, (18a)

|H 〉 S†
LSNL−−−→ |H 〉, (18b)

|V 〉 S†
LSNL−−−→ |V 〉, (18c)

|HV 〉 S†
LSNL−−−→ (1 − |ε|2)eiϕNL |HV 〉 + ε|e〉. (18d)

Here |e〉 is a two-photon state whose presence reflects errors
intrinsic to the nonlinear evolution only. We refer to the
Eq. (18) transformation as our primitive conditional ϕNL-phase
gate; this gate is primitive in the sense that it is not built by
cascading simpler logic gates.

It is convenient to describe the primitive gate as transfor-
mation on the logical subspace {|vac〉,|H 〉,|V 〉,|HV 〉} alone.
For nonzero errors ε, the mapping given by Eq. (18) between
input and output field states is not unitary when restricted to
this subspace because of pulse deformation and undesirable
entanglement generated between continuous degrees of free-
dom (e.g., photon momentum). When restricted to the logical
subspace, Eq. (18) corresponds to a trace-preserving quantum
operation Eprim:

Eprim(ρ) = UϕNL
(E1ρE

†
1 + E2ρE

†
2)U †

ϕNL
. (19)

Here ρ is a two-qubit density matrix, Uϕ is the ideal conditional
ϕ-phase gate, and the operation elements {E1,E2} represent
pure amplitude damping of the two-photon state |HV 〉 out of
the logical subspace. In the usual basis,

Uϕ =

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiϕ

⎤
⎥⎥⎥⎦, (20a)

E1 =

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 (1 − |ε|2)1/2

⎤
⎥⎥⎥⎦, (20b)

E2 =

⎡
⎢⎢⎢⎣

0 0 0 ε

0 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦. (20c)

This operator-sum representation of the primitive gate is useful
in determining its fidelity with an ideal conditional phase gate.

C. Fidelity of a single gate

The fidelity of two states is a measure of how close they
are to one another, increasing from 0 (orthogonal states) to 1
(identical states). The fidelity of a pure state ψ with a mixed
state ρ may be defined as their overlap, F (|ψ〉,ρ) = 〈ψ |ρ|ψ〉.
Gate fidelity extends this idea from states to logical operations
on qubits. The (minimum) gate fidelity of a quantum operation
E with a unitary gate U that E approximates is the fidelity of
E’s output with the target output, minimized over pure state
inputs [34],

F (E,U ) = min
|ψ〉

〈ψ |U †E(|ψ〉〈ψ |)U |ψ〉. (21)

The infidelity 1 − F (E,U ) is the (maximum) probability that
the E fails to effect the desired transformation U .

The fidelity of our gate Eprim with the ideal conditional
phase gate UϕNL

is

F (Eprim,UϕNL
) ≡ min

|ψ〉
〈ψ |U †

ϕNL
Eprim(|ψ〉〈ψ |)UϕNL

|ψ〉

= min
|ψ〉

[|〈ψ |E1|ψ〉|2 + |〈ψ |E2|ψ〉|2]

= 1 − |ε|2. (22)

Here the minimizing state is |11〉L = |HV 〉.
We now consider the relationship between the fidelity

F (Eprim,UϕNL
) and the nonlinear phase shift when the real-space

principal-mode wave function ψ(z) in Eq. (23) is a rising
exponential with center wave number k0 and width γ ,

ψ(z) ≡ eik0z�(z), �(z) = θ (−z)γ 1/2e−γ |z|/2. (23)

This particular principal-mode wave function is chosen
because, as demonstrated in the next section, it is possible to
make a projective measurement that distinguishes excitations
of this principal mode from all other modes by exploiting
the fact that photons with exponential wave functions are
created when excited atoms decay. This fact can also be
used to generate such photons and is the basis of several
microwave-frequency single-photon sources that use artificial
atoms coupled to superconducting resonators [35–37].

Henceforth we specialize to the case in which 
H = 
V ≡

 in order that the qubits are treated symmetrically.

Large phase shifts. If the fidelity F (Eprim,UϕNL
) and phase

shift ϕNL could both be large simultaneously, then the primitive
gate would be an effective conditional phase gate.

It is only when the atomic linewidth 
 is comparable in
size to the pulse bandwidth γ that a large nonlinear phase
shift is possible. If γ � 
, then the pulse is too broadband to
interact significantly with the atom, while if γ � 
, then one
sees from Eq. (11) that the range 
−1 of the nonlinear piece of
the two-photon propagator is negligible in comparison to the
pulse length γ −1.
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FIG. 3. (Color online) (a) Comparison of the fidelity (dashed line)
and nonlinear phase (solid line) when γ = 
 as a function of the
detuning δ. (b) Purity P = tr ρ ′2

H of the horizontal photon’s output
density matrix when the input state is |HV 〉 as a function of δ when
γ = 
.

Figure 3(a) shows the fidelity and nonlinear phase shift as
functions of the detuning δ ≡ k0 − �1 in the particular case
γ = 
. The phase shift ϕNL(δ) has the form of a dispersion
curve, while the infidelity 1 − F mimics an absorption curve.
The figure shows that while large nonlinear phase shifts are
possible for nearly resonant pulses, the fidelity is unacceptably
low in these cases—a conclusion similar to those drawn in
[8,10].

A large contribution to this fidelity degradation is the
entanglement generated between the position (or momen-
tum) coordinates of the horizontally and vertically polarized
photons. This entanglement reflects antibunching in the two-
photon output wave function and is characterized by a subunity
purity P ≡ tr ρ ′2

H of the horizontal photon’s output density
matrix ρ ′

H ≡ trV E(|HV 〉〈HV |) [Fig. 3(b)].
Small phase shifts. While large phase shifts are accompa-

nied by large errors, it is possible to achieve small phase shifts
with a much smaller error: |ε|2 � ϕNL � 1. When the phase
shift and error are small, it is convenient to write

〈HV |S†
LSNL|HV 〉 = 1 + iζ, (24)

so that to lowest order in ζ the nonlinear phase shift is ϕNL =
Re[ζ ] and error probability 1 − F is |ε|2 = 2Im[ζ ].

Particularly simple expressions for the phase shift and error
are obtained when the pulse bandwidth is much less than the
atomic linewidth, γ � 
. Because the photon wave function
ψ(z) has length ∼γ −1 and is normalized to unity, this can be
considered a sort of weak-excitation regime. In this case, ζ is
readily calculated from the Fourier-space propagators, given
by Eqs. (10) and (12). One finds that in this case, dependences
of ϕNL and |ε|2 on the detuning are again those of dispersion

and absorption curves,

ϕNL = γ
2δ

[δ2 + (
/2)2]2
, (25a)

|ε|2 = 


δ
ϕNL, (25b)

to lowest nonvanishing order in γ /
.
From Eq. (25), it is clear that when γ � 
 � δ, the

nonlinear phase shift, while very small, is large in comparison
to the error probability: |ε|2 � ϕNL. Actually, the relation
|ε|2 � ϕNL can be achieved without requiring that γ � 
:
it is enough for the photons to be far detuned. When 
,γ � δ,
we have

ϕNL = Re[ζ ] = γ
2

δ3

(
1 + 5 γ




1 + γ




)
, (26a)

|ε|2 = 2Im[ζ ] = 


δ

(
1 + 10 γ



+ γ 2


2

1 + 5 γ




)
ϕNL, (26b)

to lowest order in max [γ,
]/δ. Again, the nonlinear phase
shift, though small, is much larger than the infidelity |ε|2.
In this sense, our primitive conditional phase gate can be
considered high fidelity for small phase shifts.

IV. CASCADING SMALL PHASE SHIFTS

The error |ε|2 in the primitive conditional phase gate
discussed above is the probability that the gate causes the
two-photon state |HV 〉 to leak out of the principal-mode
subspace. Because this error probability can be made much
smaller than the phase shift in the far-detuned regime, the
possibility of cascading N = π/ϕNL primitive gates to produce
a high-fidelity conditional π -phase gate arises.

When the primitive gate S†
LSNL is cascaded N times, two

sorts of errors can occur. With each application, the proba-
bility of photons leaking out of the principal-mode subspace
increases; for small |ε|2, these leakage errors grow as N |ε|2 =
π |ε|2/ϕNL � 1 and are not terribly problematic. However,
amplitude that leaked from the principal-mode subspace in
earlier applications of S†

LSNL can return in later applications
with corrupted phase; these coherent feedback errors can grow
as N2|ε|2, which is not small. Alternatively, this difficulty can
be seen by noting that the primitive gate cascaded N times
does not correspond to the quantum operation Eprim cascaded
N times. This is because the state of the auxiliary modes
changes with each application of the S†

LSNL.

A. A cascadable primitive gate

We propose to eliminate coherent feedback errors by
measuring the number of photons present in the auxiliary
modes after each application of the primitive gate. For the sake
of the following analysis, the result of this measurement need
not be considered, only that with probability of at least 1 − |ε|2
it projects the quantum state back onto the principal-mode
subspace. For this reason, we call this measurement process
principal-mode projection (PMP). Performing PMP after each
application of the primitive gate is a sort of Zeno effect error
correction that prevents amplitude from leaking out of the
principal-mode subspace too quickly.
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vz, hz

I I

FIG. 4. (Color online) Schematic of a principal-mode projector
for mode function given by Eq. (23). Initially, iris 1 is open, and
photons from the principal mode are absorbed by the cavity after
inversion. After principal-mode photons have been absorbed, iris 1 is
shut and iris 2 is open, allowing cavity photons to be reemitted into
the principal mode.

Crucially, the measurement used to implement PMP must
be done in such a way that it is insensitive to the number of
photons in the principal modes. If the principal-mode function
ψ(z) is chosen to be the one-sided exponential used above
[Eq. (23)], then such a measurement can, in fact, be performed
using empty optical cavities, the pulse inverter I introduced
in Sec. III A, and irises.

The scheme, illustrated in Fig. 4 and analyzed in the
Appendix, exploits the fact that (ignoring free-space evolution)
a cavity with resonant wave number k0 and decay rate γ

preferentially emits photons with mode functions eik0z�(z)
and preferentially absorbs from the inverted mode eik0z�(−z).
This selectivity is used to load all principal-mode photons
into optical cavities. That possibility is enabled by our gates
being run on a clocked protocol; the known group velocity
and principal-mode shape provide the necessary timing for the
irises in Fig. 4. So, once the principal-mode photons have been
loaded, iris 1 is closed, preventing non-principal-mode photons
from entering the cavity, while iris 2 is opened, allowing
the cavity photons to be emitted back into the principal
modes. This setup could be modified to record the result of
the PMP measurement, allowing for heralded operation and
postselection. However, the point of the present analysis is to
provide a design for a deterministic gate, and thus our process
employs no postselection.

Figure 5 shows the entire process: interaction with the ∨
system (SNL), followed by removal of linear evolution (S†

L),
followed by PMP. (Note that the second and third pulse
inverters cancel, and thus need not actually be implemented.)
This gate, which we call the cascadable primitive gate, is

z

I
I

I
I

hz

vz

I
I

Ω1,Γ
k0, γ

Ω2, Γ k0, γ

Snl S†
l

FIG. 5. The cascadable primitive gate. First, nonlinear evolution
is provided by interaction with the atomic ∨ system. Linear evolution
is then removed. Finally, principal-mode projection is performed.

most naturally represented by a non-trace-preserving quantum
operation [34],

Ec-prim(ρ) = UϕNL
E1ρE

†
1U

†
ϕNL

, (27)

where tr [Ec-prim(ρ)] is the probability of success, i.e., that
the output state has been collapsed into the principal-mode
subspace.

B. Fidelity of the cascaded gate

Because of the PMP, the cascadable primitive gate can
be cascaded N = π/ϕNL times to produce a high-fidelity
conditional π -phase gate. Without any postselection, the
fidelity of this cascaded gate with the ideal conditional π -phase
gate is the probability that PMP success occurs N times:

F (EN
c-prim,Uπ ) = F (Ec-prim,UϕNL

)N

= 1 − π



δ

(
1 + 10 γ



+ γ 2


2

1 + 5 γ




)
, (28)

to lowest nonvanishing order in max [γ,
]/δ. In the far-
detuned regime γ,
 � δ, this fidelity can become quite large:
cascading Ec-prim can yield a high-fidelity conditional π -phase
gate.

As expected, because the ∨ system’s nonlinearity is so
weak, an unrealistic number of cascades N are required
to produce a high-fidelity conditional π -phase gate. That
impracticality is the price paid for having chosen a system
whose simplicity admits to rigorous analysis.

For fixed N , Eq. (28) can be rewritten, after optimizing the
ratio γ /
, as

F
(
EN

c-prim,Uπ

) ≈ 1–4.82 × N−1/3. (29)

To achieve a fidelity greater than 95%, more than 106 cascades
are required. A realization of our primitive gate using the
6.8 GHz microwave photons with exponential decay time
(γ c)−1 = 40 ns generated in [36] and chirped delay-line-based
temporal imaging as in [38,39] would take roughly 800 ns. The
vast majority of this time is used loading photons into the PMP
cavity. The 95%-fidelity conditional π -phase shift thus takes
0.8 s, which is prohibitively long.

The origin of this N−1/3 scaling is the weak cross-phase
shift, ϕNL ∝ δ−3. If instead the phase shift and error were ϕNL ∝
δ−m and |ε|2 ∝ δ−n, respectively, the fidelity of the cascaded
gate would be F ∼ 1 − N1−n/m. For example, n = 2 and m =
1 (as in the giant Kerr effect [22,23]) would lead to F =
1 − 5 × N−1 (assuming a prefactor similar to the ∨-system
gate). In this case, 100 cascades would suffice for producing a
95%-fidelity conditional π -phase shift in about 40 μs.

Our cascadable primitive gate Ec-prim operates in the
far-detuned regime and incorporates two error-correcting
steps: the removal of linear evolution (S†

L) and the PMP.
Principal-mode projection is absolutely essential in making
this gate cascadable. How important is removing the linear
evolution? For the mode function used above, the linear errors
{|εH |2,|εV |2} must be removed. It turns out that because the
Fourier-space mode function ψ̃(k) = iγ 1/2(k − k0 + iγ /2)−1

falls off only as k−1, linear errors are of the same order
of magnitude as the nonlinear phase shift. However, for

042325-7



CHUDZICKI, CHUANG, AND SHAPIRO PHYSICAL REVIEW A 87, 042325 (2013)

more well-behaved Fourier-space mode functions (e.g., Gaus-
sians ψ̃(k) ∼ exp [−(k − k0)2/4γ 2] and even Lorentzians
ψ̃(k) ∼ [(k − k0)2 + γ 2]−1), linear errors are of the same order
as nonlinear errors. If PMPs could be constructed for these
modes, the removal of linear evolution would not be essential.

V. CONCLUSIONS

Treating light as a multimode quantum field, we have
described conditional phase gates in which photonic qubits
interact with a three-level ∨ system. Although we have used the
language of atomic and optical systems in our analysis, other
implementations are possible. In the microwave, for example,
the one-dimensional field of transmission-line waveguides
have been coupled to artificial atoms [40,41].

In the regime of large nonlinear phase shifts, our primitive
(noncascaded) gate has unacceptably low fidelity, as has
been found for other gates relying on quantum cross-phase
modulation [8–10]. We attribute much of this infidelity to
undesirable entanglement generated by the local character
of the nonlinear interaction between the horizontally and
vertically polarized fields.

In contrast, the primitive gate can produce a small nonlinear
phase shift with very high fidelity (1 − F � ϕNL) by operating
in the far-detuned regime. However, one cannot straightfor-
wardly cascade this high-fidelity, small conditional phase shift
because of coherent feedback errors that grow as N2.

We have shown that it is, in principle, possible to overcome
the cascadability problem by making a projective measurement
of the bath modes’ photon number after each small conditional
phase gate. With high probability, this measurement projects
the field state back onto the information-carrying principal
modes. This step—principal-mode projection—uses the quan-
tum Zeno effect to prevent coherent feedback errors from oc-
curring, making a cascadable primitive conditional phase gate.

We suggest that principal-mode projection could be a
helpful subroutine in the future of photonic quantum infor-
mation processing. While the ∨ system’s weak cross-phase
shift makes cascading our gate impractical [Eq. (29)], PMP
together with stronger nonlinearities, e.g., the giant Kerr effect,
could potentially realize a conditional π -phase gate whose
fidelity scales more favorably with N . Moreover, for the often
considered use of fiber XPM, PMP may provide a way to
circumvent the phase-noise problem identified in [8,9]. While
its utility in this regard can be evaluated theoretically, should
that analysis be promising, a key challenge will be finding a
practical PMP realization for fiber.
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APPENDIX: PRINCIPAL-MODE PROJECTION WITH
CAVITIES

In Sec. IV A, we outlined how principal-mode projec-
tion could be achieved for the one-sided exponential mode

ψ(z) = θ (−z)γ 1/2e(ik0+γ /2)z by exploiting the fact that cavities
absorb and emit forward-decaying and backward-decaying
exponential pulses. Here we give some mathematical details.

The PMP setup is shown in Fig. 4 and relies on a cavity
whose resonant frequency ck0 and decay rate γ are matched
to the pulse shape ψ(z). We assume the cavity is placed at
position z = L. Ignoring the pulse inverter I for the moment,
the interaction between the field vz and cavity is described by
a Hamiltonian

H = Hfield + h̄ck0b
†b + ih̄cγ 1/2(vLb† − v

†
Lb), (A1a)

Hfield =
∫

dk

2π
h̄ckṽ

†
kṽk = −ih̄c

∫
dzv†

z∂zvz, (A1b)

where b is the cavity lowering operator and ṽk = ∫
dzvze

−ikz,
as above. Under this Hamiltonian, the Heisenberg equation of
motion for vz(τ ) can be readily solved. For τ > 0, the solution
is vz(τ ) = vz−τ − γ 1/2θ (z − L)θ (τ + L − z)b(τ + L − z).

Initially, the cavity in Fig. 4 is empty and the field contains
one photon in a mode φ(z) (assumed to be localized in the
region z < L):

|φ(0)〉 =
∫

dzφ(z)v†
z |0; vac〉. (A2)

The amplitude for this photon to have been absorbed by the
cavity at a time τ later is sV (τ ) = 〈1; vac|e−iHτ/h̄c|φ(0)〉. By
using Eq. (A2) to expand |φ(0)〉 and using the Heisenberg
equations of motion for vz(τ ) and b(τ ), one can show that
sV (τ ) obeys(

∂

∂τ
+ ik0 + γ /2

)
sV (τ ) = −γ 1/2φ(L − τ ), (A3)

whose solution is

sV (τ ) = γ 1/2
∫ τ

0
dτ ′φ(L − τ ′)e−(ik0+γ /2)(τ−τ ′)

=
∫ L

−∞
dτ ′φ(τ ′)ψ(L − τ − τ ′). (A4)

At τ = L, this becomes sV (L) = ∫ L

−∞ dτφ(τ )ψ(−τ ): the
cavity acts as a filter, preferentially absorbing photons from
the inverted mode ψ∗(−τ ) and rejecting all others. Note that
by making L large enough, essentially all of the photon in the
mode ψ∗(−z) can be absorbed: only an exponentially small
portion e−γL is missed. This inverted mode ψ∗(−z) is precisely
what the principal mode ψ(z) is transformed into by the pulse
inverter I. In contrast, absorbed photons are reemitted into
the principal mode. Long after absorbing a single photon, the
cavity photon decays into the mode

lim
τ→∞〈0; z|eiHfieldτ/h̄ce−iHτ/h̄c|1; vac〉 = ψ(z − L). (A5)

(Here, |0; z〉 = v
†
z |0; vac〉 and free-space translation has been

removed by applying eiHfieldτ/h̄c.)
We now summarize the PMP process. Before pulse in-

version, the photon’s mode function can be decomposed
as αψ(z) + βψ⊥(z) and as φ(z) = αψ∗

⊥(−z) + βψ ′
⊥(z) after

inversion. The pulse propagates into the cavity through iris 1,
which is initially open. Next, the cavity absorbs a portion of the
pulse and rejects the rest. In order to prevent reflection of the
rejected portion, iris 2 is initially closed. At time τ = L,
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the amplitude for the cavity to contain a single photon is α,
i.e., the principal-mode photon has been transferred coherently
to the cavity. At this point, iris 2 is opened (pulse timing is

known) to allow the cavity photon to decay back into the
principal mode, while iris 1 is shut in order to prevent further,
unwanted absorption.
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