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Dissipative preparation of large W states in optical cavities
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Two schemes are proposed for the dissipative preparation of large W states, of the order of ten qubits, within
the context of cavity QED. By utilizing properties of the irreducible representations of su(3), we are able to
construct protocols in which it is possible to restrict the open-system dynamics to a fully symmetric irreducible
subspace of the total Hilbert space and hence obtain analytic solutions for effective ground-state dynamics of
arbitrary-size ensembles of � atoms within an optical cavity. In the proposed schemes, the natural decay processes
of spontaneous emission and photon loss are no longer undesirable, but essential to the required dynamics. All
aspects of the proposed schemes relevant to implementation in currently available optical cavities are explored,
especially with respect to increasing system size.
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I. INTRODUCTION

A path towards the experimental realization of a quantum
computer has become one of the main focus areas of current
research [1]. Many quantum algorithms have been designed
and studied [2,3]; however, in order for their implementation
to become a reality it is essential to be capable of creating
and manipulating large-scale entanglement between effective
physical qubits. One of the primary obstacles in this regard
is the interaction of a system with its environment, resulting
in dissipation and decoherence [4]. An effective strategy in
combating these destructive effects on unitary implementa-
tions of quantum algorithms has been the introduction of
error-correcting codes [5]. This approach is based on treating
the system-environment interaction as a negative influence, the
effect of which needs to be minimized.

A recent paradigm shift in the approach towards the phys-
ical realization of a quantum computer has been introduced
by the theoretical prediction that dissipation can in fact be
utilized for the creation of complex entangled states [6–13]
and to perform universal quantum computation [14–18]. This
fundamental shift in approach is based on the assumption that
the system-environment coupling can be manipulated such that
the system is driven towards a steady state that is the solution
to a computational task, or a desired entangled state [14].
Within this approach dissipation is no longer a negative effect,
but crucial to the required dynamics. Recent experimental
progress with atomic ensembles [19] and trapped ions [20,21]
has shown this approach to be both feasible and promising.

Concurrently many protocols have been suggested for
physical dissipative state engineering within cavity QED
setups [7–11]. These schemes suggest that it is possible to
prepare maximally entangled states of two qubits [7–10], as
well as the maximally entangled W state of three qubits [11],
with excellent fidelities, scaling better in cavity cooperativity
than any known coherent unitary protocols [7].
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Dissipative schemes utilizing � atoms within optical
cavities have been particularly successful and well studied
[7–11]; however, as of yet no scheme has been suggested
for which scaling of the scheme to large numbers of atoms
is possible. In this work we suggest a physical scheme and
a mathematical framework, which in conjunction with the
effective operator formalism for adiabatic elimination [22]
makes it possible to derive an analytic solution for the effective
two-level ground-state dynamics of arbitrary-size ensembles
of � atoms within an optical cavity. Moreover, we demonstrate
the possibility of engineering parameters within a bimodal
cavity such that it is possible to prepare large W states,
irrespective of the initial thermal state of the system, with
excellent fidelities and scaling characteristics.

We proceed by introducing preliminary theory, before
demonstrating the implementation of our suggested method
within a single-mode cavity, in which one is restricted to
specific initial states of the system. Finally, we present our
scheme for the dissipative preparation of large W states,
irrespective of the initial thermal state of the system, within a
bimodal cavity.

II. PRELIMINARY THEORY

We use a cavity QED setup of three-level � atoms within
an optical cavity, as per [7–11]. As per Figs. 1 and 9, each �

atom consists of two ground states |0〉 and |1〉 and an excited
state |e〉 coupled to cavity modes. The Hamiltonian for the
system is given by

Ĥ = Ĥg + Ĥe + Ŵ+ + Ŵ−, (1)

where Ĥe is the Hamiltonian for the excited subspace, Ĥg

the Hamiltonian for the ground subspace, Ŵ+ the perturbative
excitation from the ground space to the excited space, and Ŵ−
the perturbative deexcitation.

The total system, which consists of a collection of three-
level � atoms and a single quantized mode of the cavity
electromagnetic field, interacts with an external thermal envi-
ronment. As is typical for such cavity QED systems in vacuum
[7–11] (with experimental realizations described in [23–25]),
the unitary interaction between the ensemble of three-level
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FIG. 1. Cavity QED setup for a single atom. The |0〉 − |e〉
transition is driven by a coherent laser with a resonant Rabi frequency
of � and a detuning of �, while levels |1〉 and |e〉 are coupled via the
cavity field, with an atom-cavity interaction strength of g. The entire
setup consists of n identical atoms within a single cavity.

atoms and the photon mode is damped by both spontaneous
emission from the excited states of the three-level atoms
and decay of the photon mode. The dynamics of the system
is described by a master equation, incorporating the Born-
Markov approximation, in Gorini-Kossakowski-Sudarshan-
Lindblad form [4]

ρ̇ = Lρ

= −i[Ĥ ,ρ] +
∑

k

(
L̂kρL̂

†
k − 1

2
L̂kL̂

†
kρ − 1

2
ρL̂

†
KL̂k

)
. (2)

All previously suggested schemes [7–11] require nonuni-
form individual laser addressing of atoms within the cavity.
This requirement makes realistic scaling and generalization
to larger atomic ensembles impossible and motivates the
use of protocols designed around global uniform addressing
of atoms within the cavity. Mathematically this corresponds
to a Hamiltonian and Lindblad operators constructed from
collective operators of the form

Ô =
n∑

i=1

Ôi, (3)

where for systems of n � atoms, Ôi acts on the states within
the Hilbert space of the ith atom and the total Hilbert space for
the atomic ensemble is the direct product of the n individual
Hilbert spaces. In analogy with methods for the solution of
arbitrary-size ensembles within the Dicke model [26–29], we
will show that if one devises a physical system in which
the Hamiltonian and Lindblad operators are formed from
specific collective operators, then specific subspaces of the
total Hilbert space are invariant under the action of both
the Hamiltonian and Lindblad operators. In the case of the
Dicke model these irreducible subspaces, invariant under the
action of the Hamiltonian and Lindblad operators formed from
collective generators of SU(2), are the irreducible representa-
tions of su(2). However, for arbitrary-size ensembles of �

atoms it is natural to examine the irreducible representations
of su(3).

Furthermore, the effective operator formalism [22] has pro-
vided an extremely elegant method for performing adiabatic
elimination [30] such that it is possible to isolate effective
ground-state dynamics. For an optical cavity QED setup with
a Hamiltonian of the form (1), described by a master equation

as in Eq. (2), one can obtain an effective master equation [22]

ρ̇g = −i[Ĥeff,ρg] +
∑

k

[
L̂k

effρg

(
L̂k

eff

)†

− 1

2
L̂k

eff

(
L̂k

eff

)†
ρg − 1

2
ρg

(
L̂k

eff

)†
L̂k

eff

]
, (4)

where ρg is the density matrix for the ground subspace and

Ĥeff ≡ − 1
2Ŵ−

[
Ĥ−1

NH + (
Ĥ−1

NH

)†]
Ŵ+ + Ĥg, (5)

L̂k
eff ≡ L̂kĤ

−1
NHŴ+, (6)

with

ĤNH ≡ Ĥe − i

2

∑
k

L̂
†
kL̂k. (7)

The use of adiabatic elimination implies a restriction to
the single-excitation subspace of the atom-cavity system, for
which certain physical assumptions are necessary, which are
discussed in Sec. III. As we would like to isolate effective
ground-state dynamics, this restriction, in conjunction with
a consideration of the consequences of a collective-operator
approach, motivates an investigation of the single-excitation
irreducible subspaces of the total atom-cavity Hilbert space,
especially with respect to their invariance under specific
collective operators. In order to construct these invariant
subspaces and determine their irreducibility properties, we
proceed via analogy with the Dicke model.

A familiar single spin-half system, as in the Dicke model,
exists within a Hilbert space whose basis consists of the
two eigenvectors of Sz, denoted here by the kets |0〉,|1〉.
These two kets form a multiplet that can be considered the
fundamental representation of su(2), the angular momentum
Lie algebra and generator of the symmetry group SU(2). For a
system of multiple spin-half particles, as per the theory for the
addition of angular momenta, the total Hilbert space consists of
multiple invariant irreducible subspaces, spanned by multiplets
which are irreducible representations of su(2). For example,
it is well known that the total Hilbert space of a system
consisting of two spin-half particles consists of an invariant
symmetric subspace, spanned by the triplet multiplet, and
an invariant antisymmetric subspace, spanned by the singlet
state. Mathematically, constructing these multiplets requires
a reduction of the Hilbert space from a tensor product of two
spin-half spaces into the direct sum of a spin-one Hilbert space
and a spin-zero Hilbert space, a process generally described
by using the notation[

1
2

] ⊗ [
1
2

] = [1] ⊕ [0]. (8)

These subspaces of the total Hilbert space are invariant in
the sense that they are closed under the action of elements of
SU(2) and irreducible in the standard sense that they contain
no smaller invariant subspaces.

As we are dealing with a collection of � atoms, the total
atomic Hilbert space is given by

H =
n⊗

i=1

C3 (9)

and hence it is natural to examine the invariant irreducible
subspaces of su(3), the underlying symmetry group relevant
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to this problem. Following [31], we construct these invariant
irreducible subspaces of the total atomic Hilbert space through
a generalized angular momentum approach. This process will
involve the reduction of the direct product of individual atomic
Hilbert spaces, each spanned by a fundamental representation
of su(3) into a unique direct sum of subspaces spanned
by irreducible representations of su(3). This approach is in
direct analogy to the approach taken in particle physics,
where the irreducible representations of su(3) are used to
construct baryon and meson multiplets from up, down, and
strange quarks and antiquarks, which collectively form the
two fundamental representations of su(3) in that context [31].

In general, SU(n) has n2 − 1 generators and hence SU(3)
has 8. These generators are typically denoted as

λ̂1,λ̂2, . . . ,λ̂8. (10)

From the theory of Lie groups, each λ̂i is required to be both
Hermitian and traceless. As a consequence of the fact that
SU(2) ⊂ SU(3), the first three generators are constructed
by extending the familiar generators of SU(2) into three
dimensions. The rest of the generators can then be chosen
in a variety of manners. We choose to follow the conventions
of particle physics. The full matrix form of all the generators
can be found in the Appendix.

From the full form of the generators {λ̂i}, one can calculate
their commutators and hence the Lie algebra su(3). These
commutation relations are found to be

[λ̂i ,λ̂j ] = 2ifijkλ̂k, (11)

where the structure constants are totally antisymmetric under
the exchange of any two indices and can be found in detail in
the Appendix. From Eq. (11) it can be seen that, as expected,
the Lie algebra of SU(3) is indeed closed. In analogy with
angular momentum in SU(2) it is helpful to redefine the
generators as

F̂i = 1
2 λ̂i . (12)

From (11) it then follows that

[F̂i ,F̂j ] = ifijkF̂k. (13)

In particle physics, the clear analogy between the above and
the familiar angular momentum situation in SU(2) has led to
generators {F̂i} being labeled as F spin. In order to continue
with this generalization, we proceed to introduce the following
representation of the F -spin operators:

T̂± = F̂1 ± iF̂2, T̂3 = F̂3, (14)

V̂± = F̂4 ± iF̂5, Û± = F̂6 ± iF̂7, (15)

Ŷ = 2√
3
F̂8. (16)

The full set of commutation relations for the above operators
is of great importance to what follows and can be found in the
Appendix.

The structure of the irreducible representations of su(3)
follows from the existence of subalgebras. In order to see this
we note that the commutation relationships

[T̂+,T̂−] = 2T̂3, [T̂3,T̂±] = ±T̂± (17)

show that the operators {F̂1,F̂2,F̂3} fulfill the algebra of su(2)
and hence the operators {T̂+,T̂−,T̂3} form a closed subalgebra
of su(3). Similarly, we have that

[Û+,Û−] = 2Û3, [Û3,Û±] = ±Û±, (18)

[V̂+,V̂−] = 2V̂3, [V̂3,V̂±] = ±V̂± (19)

and hence the operator sets {Û+,Û−,Û3} and {V̂+,V̂−,V̂3} both
also form closed subalgebras of su(3), where Û3 and V̂3 are
still to be defined. All three of these closed subalgebras match
the algebra of the familiar angular momentum operators. The
action of these operators is made clear by considering the
commutation relationship

[Ŷ ,T̂3] = 0, (20)

which shows that the operators Ŷ and T̂3 may be simultane-
ously diagonalized. If we represent their common eigenstate
by |T̂3,Ŷ 〉, then it follows that

T̂3|T̂3,Ŷ 〉 = T3|T̂3,Ŷ 〉, (21)

Ŷ |T̂3,Ŷ 〉 = Y |T̂3,Ŷ 〉, (22)

from which it is possible to show that

T̂3(V̂±|T̂3,Ŷ 〉) = (
T3 ± 1

2

)
(V̂±|T̂3,Ŷ 〉), (23)

which implies that V̂± transforms a state with quantum number
T3 into a state with quantum number T3 ± 1

2 . Similarly, it can
be shown that

T̂3(Û±|T̂3,Ŷ 〉) = (
T3 ∓ 1

2

)
(Û±|T̂3,Ŷ 〉) (24)

and hence Û± lowers and raises, respectively, the quantum
number T3 by 1

2 . It is also clear, by construction and from
analogy with angular momentum, that T̂± raises and lowers
the quantum number T3 by integer units.

From the commutators

[Ŷ ,V̂±] = ±V̂±, [Ŷ ,Û±] = ±Û± (25)

it can be shown that

Ŷ (Û±|T̂3,Ŷ 〉) = (Y ± 1)(Û±|T̂3,Ŷ 〉), (26)

Ŷ (V̂±|T̂3,Ŷ 〉) = (Y ± 1)(V̂±|T̂3,Ŷ 〉) (27)

and hence V̂± and Û± both raise and lower, respectively,
the quantum number Y by integer units. Finally, from the
commutator [Ŷ ,T̂±] = 0 it is possible to see that the operators
T̂± do not change the value of the Y quantum number. The
action of all these operators is shown in Fig. 2.

Armed with the above, it is possible to gain insight into the
structure of SU(3) multiplets, the irreducible representations
of su(3). As the T , U , and V algebras, all isomorphic to
the algebra of angular momentum, all form subalgebras of
SU(3), the SU(3) multiplets can be constructed from coupled
T , U , and V multiplets. Figure 2 illustrates the fact that the T

multiplets lie parallel to the T3 axis, the V multiplets lie along
V lines, and the U multiplets lie along U lines. Commutation
relationships such as [T̂+,V̂−] = −Û− and [T̂+,Û+] = −V̂+
force the coupling of these SU(2) submultiplets to form SU(3)
multiplets.
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FIG. 2. Action of shift operators in the (T3,Y ) plane. The units
are scaled such that one unit on the Y axis is

√
3/4 times a single unit

on the T3 axis.

The structure of the SU(3) multiplets in the (Y,T3) plane
follows from considering the structure of the individual SU(2)
submultiplets and the relationships between the three subalge-
bras. From the theory of angular momentum in SU(2) it follows
that the T3 values of all members of the T -algebra submultiplet
are within the interval T3(min) � T3 � T3(max) and hence the
T -algebra submultiplet is symmetric around the T3 = 0 axis.
As the T , U , and V subalgebras are completely equivalent
and hence equally symmetric, the U -algebra submultiplet
will be symmetric around the 2U3 = 3

2Y − T3 = 0 axis and
the V -algebra submultiplet will be symmetric around the
2V3 = 3

2Y + T3 = 0 axis. The SU(3) multiplets formed from
coupling T -, U -, and V -algebra submultiplets will therefore
be symmetric with respect to the T3 = 0, U3 = 0, and V3 = 0
axes, resulting in SU(3) multiplets that are either regular
hexagonal or triangular in the (Y,T3) plane. It also follows, by
construction, that all SU(3) multiplets will be centered around
the origin of the (Y,T3) plane and invariant under rotations of
2π/3 about the origin.

It is now necessary to consider the structure of SU(3)
multiplets in more detail. Every multiplet will contain one
state, described as the state with maximal weight and denoted
|ψM〉, associated with the largest T3 value in the multiplet.
From Fig. 2 it is clear that this state has the property

T̂+|ψM〉 = V̂+|ψM〉 = Û−|ψM〉 = 0. (28)

If one can identify this state, then the boundary of the multiplet
can be constructed in the following algorithmic manner. From
|ψM〉, successive member states of the boundary can be
achieved by repeated application of V̂−. After p applications
of V̂− a state will be reached such that

(V̂−)p+1|ψM〉 = 0, (29)

uniquely defining the integer p. From the state (V̂−)p|ψM〉
the boundary of the multiplet can be continued by successive
applications of T̂−, until after q applications one reaches the
state such that

(T̂−)q+1(V̂−)p|ψM〉 = 0, (30)

uniquely defining the integer q. The two integers (p,q) define
SU(3) multiplets, as the remaining boundary states follow
necessarily from considerations of symmetry discussed above.

As discussed in detail in [31], for a given multiplet (p,q),
the states on the boundary of the multiplet are unique (i.e.,
each mesh point on the hexagonal boundary of the multiplet
corresponds to only one state); however, as one moves through
inner hexagonal shells of the multiplet, the multiplicity of each
mesh point (the number of different states associated with that
point) increases by 1 with each step towards the origin, until
after q steps (where q � p) the hexagon has become a triangle
and the multiplicity of each mesh point is q + 1.

At this point we have sufficient information to construct the
invariant irreducible subspaces of the total Hilbert space of an
arbitrary number of � atoms or, in the language of particle
physics, to decompose the direct product of n Hilbert spaces
into the direct sum of irreducible invariant subspaces. For a
system of n � atoms, notice that the collective operators

T̂+ =
n∑

i=1

|0〉i〈1|, T̂− =
n∑

i=1

|1〉i〈0|, (31)

V̂+ =
n∑

i=1

|0〉i〈e|, V̂− =
n∑

i=1

|e〉i〈0|, (32)

Û+ =
n∑

i=1

|1〉i〈e|, Û− =
n∑

i=1

|e〉i〈1|, (33)

T̂3 = 1

2

n∑
i=1

(|0〉i〈0| − |1〉i〈1|), (34)

Ŷ = 1

2
√

3

n∑
i=1

(|0〉i〈0| + |1〉i〈1| − 2|e〉i〈e|) (35)

fulfill all the commutation relationships (A2)–(A8) and hence
are suitable representations of generators for SU(3). Utilizing
operators (31)–(35), it is now possible to apply the discussed
theory in order to create multiplets of states, each of which
spans a unique invariant irreducible subspace of the total
Hilbert space.

However, as the subspace spanned by each possible
multiplet is invariant under the action of collective operators
(31)–(35), it is clear that if one constructs a Hamiltonian
from the above collective operators, then it is sufficient to
restrict one’s analysis to the invariant subspace containing
the desired target state of our scheme, the W state. As the
W state is a symmetric state, this implies that it is only
necessary to construct the completely symmetric multiplets,
spanning completely symmetric subspaces, provided we con-
struct the Hamiltonian of our scheme from collective operators
(31)–(35). It is useful to begin with an analysis of a system of
three � atoms.

In this case the symmetric state with maximal weight
|ψ(M,S)〉 is

|ψ(M,S)〉 = |000〉. (36)

It is important to note that the W state that we are interested in
creating, which is the state containing the maximum amount
of sum of two-qubit entanglement [32], indeed belongs to this
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FIG. 3. Construction of the multiplet (3,0) in the (T3,Y ) plane.
The top row of the multiplet consists of ground states, while the
second row consists of single-atomic-excitation states.

multiplet and is given by

|W 〉 = 1√
3

(|001〉 + |010〉 + |100〉) (37)

=
(

1√
3

)
T̂−|ψ(M,S)〉. (38)

In order to determine the properties of this multiplet, we note
that

(V̂−)(3+1)|ψ(M,S)〉 = 0 (39)

and

(T̂−)(0+1)(V̂−)3|ψ(M,S)〉 = 0. (40)

Hence the symmetric multiplet of three � atoms is the unique
multiplet (p,q) = (3,0). As per [31], the number of states
within a multiplet d(p,q) is given by

d(p,q) = 1
2 (p + 1)(q + 1)(p + q + 2) (41)

and there are ten states in the multiplet (3,0) under consider-
ation. This multiplet is constructed in the manner previously
described and is shown in Fig. 3.

From Fig. 3 one can see that the top row of the multiplet
consists only of ground states, while the second row consists
of states with a single excitation and the remaining rows
contain states with more than a single excitation (as per
the conventional interpretation of a � atom). Therefore,
as adiabatic elimination implies a restriction to the single-
excitation subspace, we are only concerned with the top two
rows of the multiplet, which form a basis for the completely
symmetric single-excitation subspace of three � atoms.

It is now possible to generalize this to the case of n atoms.
The symmetric state with maximal weight is given by

|ψ(M,S)〉 =
n⊗

i=1

|0〉i (42)

and, in general,

(V̂−)(n+1)|ψ(M,S)〉 = 0 (43)

and

(T̂−)(0+1)(V̂−)n|ψ(M,S)〉 = 0 (44)

such that the completely symmetric multiplet for n atoms, the
basis for the completely symmetric subspace, is the multiplet

(p,q) = (n,0). This multiplet is again triangular and only
the first two rows contain states from the single-excitation
subspace. The number of these single-excitation symmetric
states d1(p) is given by

d1(p) = (p + 1) + p = 2p + 1. (45)

It can now be seen that a basis for the completely symmetric
first-excitation subspace of n � atoms is given by the union of
the following two sets:

G =
⎧⎨
⎩|0〉, . . . , 1√(

n

j

) |j 〉, . . . ,|n〉
⎫⎬
⎭ , (46)

A =
⎧⎨
⎩ 1√

n
|e(0)〉, . . . , 1√

n
(
n−1
j

) |e(j )〉, . . . , 1√
n
|e(n − 1)〉

⎫⎬
⎭ ,

(47)

where

|j 〉 = (T̂−)j |ψ(M,S)〉 (48)

and

|e(j )〉 = (T̂−)j (V̂−)|ψ(M,S)〉. (49)

In this case, G is the set of completely symmetric ground states,
the top row of the (n,0) multiplet in the (T3,Y ) plane, and A

is the set of completely symmetric single-atomic-excitation
states, the second from the top row of the (n,0) multiplet.

While {G,A} forms a basis for the completely symmetric
first-excitation subspace of n � atoms, we are actually
interested in n � atoms within a single optical cavity and
later within a single bimodal optical cavity. The Hilbert space
for an empty single-mode cavity, restricted to one excitation,
is C2, with a basis we choose to denote {|0c〉,|1c〉}. If we now
adopt the notation

|j 〉 = |j 〉 ⊗ |0c〉, |jc〉 = |j 〉 ⊗ |1c〉, (50)

then a basis for the symmetric single-excitation subspace of n

� atoms within a single optical cavity is a union of the sets G,
A, and C where

C =
⎧⎨
⎩|0c〉, . . . , 1√(

n

j

) |jc〉, . . . ,|nc〉
⎫⎬
⎭ . (51)

It is important to note that C is the set of completely
symmetric single-cavity-excitation states, created naturally
from members of the set G by application of the creation
operator

â† = |1c〉〈0c|. (52)

As C has the same dimension (n + 1) as G, the dimension of
the full basis for the completely symmetric single-excitation
subspace of n � atoms within a single optical cavity {G,A,C}
is given by

d(n) = 3n + 2. (53)

Figure 4 illustrates the construction of this basis in full detail.
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FIG. 4. Construction of the total basis for the symmetric single-excitation subspace of n � atoms in a single optical cavity. The top row
consists of single-cavity-excitation states, the second row of ground states, and the third row of single-atomic-excitation states. The notation is
as per Eqs. (48)–(50).

III. DISSIPATIVE STATE PREPARATION

A. Single-mode cavity scheme

In this section we present a simple scheme for the
dissipative preparation of large W states, under the assumption
that the system begins in a specified ground state. By deliberate
construction of the Hamiltonian from generators of SU(3),
we are able to utilize the symmetric single-excitation basis
previously constructed in order to be able to apply the effective
operator formalism of [22] to arbitrary-size systems. This
allows us to obtain effective operators whose strengths can
be engineered, via suitable parameter choices, such that the
target state is prepared efficiently and reliably.

We use a cavity QED setup of n � atoms in a single-mode
optical cavity. As per Fig. 1, each � atom consists of two
ground states |0〉 and |1〉 and an excited state |e〉, which is
coupled to a cavity mode. The Hamiltonian for the system is
of the form given in Eq. (1), where in the appropriate rotating
frame the Hamiltonian is time independent with the following
individual terms:

Ĥe = �

n∑
i=1

|e〉i〈e| + δ(â†â) + Ĥac, (54)

Ĥac = g(â†Û+ + H.c.), (55)

Ŵ+ = �

2
V̂−, (56)

Ŵ− = Ŵ
†
+, (57)

Ĥg = 0, (58)

where V̂− and Û+ are as per Eqs. (32) and (33). The
perturbative excitation Ŵ+ is driven by a coherent laser,
addressing all atoms uniformly, with a resonant Rabi frequency
� and a detuning of �, while the atom-cavity interaction term
Ĥac describes the coupling of levels |e〉 and |1〉 via the cavity
field, with a strength of g and uniform phase over all atoms. It is
important to note that the atom-cavity coupling for each atom
depends on the cavity mode functions and is therefore not a
priori the same for each atom. However, in currently available
optical cavities [23], mirror sizes and cavity scales are such
that, for the number of atoms relevant to this paper, uniform

atom-cavity couplings can be obtained through appropriate
symmetric arrangement of atoms within the cavity.

As we assume Markovian interaction with the environment,
an extremely good assumption within quantum optics [33], as
is relevant to this paper, the evolution of the system is described
by a master equation of the form given in Eq. (2). The Lindblad
operator associated with cavity loss L̂κ is given by

L̂κ = √
κâ, (59)

where κ is the photon decay rate. The Lindblad operators
associated with spontaneous emission are given by

L̂(γ,0) =
√

γ

2
V̂+ =

√
γ

2

n∑
i=1

|0〉i〈e|, (60)

L̂(γ,1) =
√

γ

2
Û+ =

√
γ

2

n∑
i=1

|1〉i〈e|, (61)

where the decay rates into states |0〉 and |1〉 have been
made equal (

√
γ /2) for simplicity, while the individual

atomic emission Lindblad operators have been collected into
collective operators, a natural way to treat the system.

From the construction of the Hamiltonian and the structure
of the symmetric single-excitation subspace detailed in Fig. 4 it
is clear that the symmetric single-excitation subspace is closed
under the action of the Hamiltonian and Lindblad operators.
Hence, as desired, if the initial state of the system is some
state within the symmetric single-excitation subspace, we can
restrict our attention to this particular subspace.

We will proceed to use adiabatic elimination, via the
effective operator formalism of [22], in order to reduce the
evolution of the system to effective secondary processes
between ground states, described by an effective master
equation of the form given in Eq. (4). We will work within the
high-cooperativity regime g2 � κγ and, in addition, in order
to apply adiabatic elimination (and motivate a restriction to
the single-excitation subspace), it is required that we restrict
ourselves to the regime of weak driving � 
 (g,κ,γ ) and
simultaneously ensure that the excited energy levels are largely
detuned from the ground levels, i.e., that � (the detuning of
the coherent interaction between |0〉 and |e〉) and � − δ (the
detuning of the atom-cavity interaction between |1〉 and |e〉)
are both large, implying (�,� − δ) ∼ g.
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In the basis of the symmetric first-excitation subspace and
the notation of Eqs. (48)–(50), the terms of the Hamiltonian
take the form

Ĥe = �

n−1∑
i=0

|e(i)〉〈e(i)| + δ

n∑
i=0

|ic〉〈ic| + Ĥac, (62)

Ĥac = g

(
n−1∑
i=0

(
√

i + 1)|(i + 1)c〉〈e(i)| + H.c.

)
, (63)

Ŵ+ = �

2

n−1∑
i=0

(
√

n − i)|e(i)〉〈i|, (64)

Ŵ− = Ŵ
†
+, (65)

Ĥg = 0, (66)

while the Lindblad operators become

L̂1 = L̂κ = √
κ

n∑
i=0

|i〉〈ic|, (67)

L̂2 = L̂(γ,0) =
√

γ

2

n−1∑
i=0

|i〉〈e(i)|, (68)

L̂3 = L̂(γ,1) =
√

γ

2

n−1∑
i=0

|i + 1〉〈e(i)|. (69)

In this basis it is possible to obtain the effective operators
and the effective Hamiltonian for arbitrary-size systems.
Here ĤNH , the matrix whose inverse consists of propagators
between excited states, can be represented as a block matrix
with form as per Fig. 5, where Ã is the block pertaining
to interactions within the single-cavity excitation subspace,
D̃ is the block pertaining to interactions within the single
atomic-excitation subspace, and B̃ and C̃ are blocks describing
interactions between the two single-excitation subspaces.

In the symmetric single-excitation basis ĤNH is then
given by

ĤNH = Ã + B̃ + C̃ + D̃, (70)
where

Ã =
(

δ − i
κ

2

) n∑
i=0

|ic〉〈ic|, (71)

D̃ =
(

� − iγ
n + 1

4

) n−1∑
i=0

|e(i)〉〈e(i)|, (72)

B̃ = g

(
n−1∑
i=0

(
√

i + 1)|(i + 1)c〉〈e(i)|
)

, (73)

C̃ = B̃†. (74)

FIG. 5. Partitioned matrix form of ĤNH .

Using the Banachiewicz inversion theorem for partitioned
matrices [34], we find that Ĥ−1

NH , the propagator representing
the non-Hermitian evolution of the excited subspace, is
given by

Ĥ−1
NH = Â + B̂ + Ĉ + D̂, (75)

where
D̂ = (D̃ − C̃Ã−1B̃)−1, (76)

Â = Ã−1 + Ã−1B̃(D̃ − C̃Ã−1B̃)−1C̃Ã−1, (77)

B̂ = −Ã−1B̃(D̃ − C̃Ã−1B̃)−1, (78)

Ĉ = B̂T = −(D̃ − C̃Ã−1B̃)−1C̃Ã−1. (79)

After the calculation we obtain

Â =
(

2

2δ − iκ

)
|0c〉〈0c| +

n∑
j=1

(
2
(
� − iγ (n+1)

4

)
d(j−1)

)
|jc〉〈jc|

(80)

and

B̂ = −2g

n∑
j=1

( √
j

d(j−1)

)
|jc〉〈e(j − 1)|, (81)

Ĉ = B̂T , (82)

D̂ = (2δ − iκ)
n−1∑
j=0

(
1

dj

)
|e(j )〉〈e(j )|, (83)

with

dj =
(

� − iγ
(n + 1)

4

)
(2δ − iκ) − 2(j + 1)g2. (84)

It is now possible to obtain the effective operators, which
are found to be

L̂1
eff = −g�

√
κ

n−1∑
j=0

(√
j + 1

√
n − j

dj

)
|j + 1〉〈j |, (85)

L̂2
eff = (2δ − iκ)�

√
γ

2
√

2

n−1∑
j=0

(
n − j

dj

)
|j 〉〈j |, (86)

L̂3
eff = (2δ − iκ)�

√
γ

2
√

2

n−1∑
j=0

(√
j + 1

√
n − j

dj

)
|j + 1〉〈j |,

(87)
while the effective Hamiltonian is given by

Ĥeff = −�2

8

n−1∑
j=0

f (j )(n − j )|j 〉〈j |, (88)

where

f (j ) = (2δ − iκ)dj + (2δ + iκ)dj

|dj |2 . (89)

Figure 6 summarizes the effective ground-state processes
and offers excellent insight into the underlying design of
the scheme. Each effective process consists of a coherent
excitation via laser driving, an intermediate process described
by the propagator Ĥ−1

NH , and a deexcitation via dissipation or
coherent driving. The terms L̂2

eff and Ĥeff describe effective
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FIG. 6. Summary of effective ground-state processes (85)–(88) omitting effective loop processes of L̂2
eff and Ĥeff . Each effective process

consists of a coherent excitation, an intermediate propagation within the single-excitation subspace (facilitated by Ĥ−1
NH ), and a deexcitation

via coherent driving or dissipation.

loop processes, from state |j 〉 to state |j 〉, while L̂1
eff and L̂3

eff
describe state transfer from state |j 〉 to state |j + 1〉, driven
by dissipation as the mechanism of deexcitation. From Fig. 6
and the form of the effective operators it is clear that net
state transfer is only possible from left to right, from state |j 〉
to state |j + 1〉, and hence a necessary assumption for this
introductory scheme is that the system begins in the state |0〉.

It is clear that the strength of the effective process from
state |j 〉 to state |j + 1〉, described by L̂1

eff , is determined by
the propagator element h1

j , given by

h1
j = 〈(j + 1)c|Ĥ−1

NH |e(j )〉 ∼
√

j + 1

dj

. (90)

Similarly, the strength of the effective process from state
|j 〉 to state |j + 1〉, described by L̂3

eff , is determined by the
propagator element h3

j given by

h3
j = 〈e(j )|Ĥ−1

NH |e(j )〉 ∼ 1

dj

. (91)

Therefore, one can see that in order to prepare the state |1〉
(the W state of n qubits), it is necessary to choose system
parameters such that d0 
 d1. This will result in h1

0 � h1
1 and

h3
0 � h3

1, effectively enhancing the strength of the effective
process from state |0〉 to state |1〉, while suppressing loss from
state |1〉 into state |2〉.

In this case the effective master equation can be solved
explicitly, offering extra insight into the manner in which
system parameters need to be chosen and insight into the
limitations of the system. The effective master equation
consists of (n + 1)2 equations for the matrix elements of ρg .
For this scheme, the n + 1 equations for the diagonal matrix
elements decouple from the remaining equations and we are
left to solve n + 1 coupled first-order equations of the form

ρ̇j = T(j−1)ρ(j−1) − Tjρj , (92)

where ρj = 〈j |ρg|j 〉 and

Tj = l
(1)
j + l

(3)
j , (93)

with l
(1)
j and l

(3)
j defined as

l
(1)
j = ∣

∣〈j + 1|L̂1
eff|j 〉∣∣2

, (94)

l
(3)
j = ∣

∣〈j + 1|L̂3
eff|j 〉∣∣2

. (95)

Our assumption regarding the initial state of the sys-
tem, along with probability requirements, implies the initial
condition

ρj (t = 0) = δj,0. (96)

It is important to note that T(−1) = 0 and that because of the
left-to-right nature of the system, we are only concerned with
solving for ρ0(t) and ρ1(t). These solutions are found to be

ρ0(t) = e−T0t , (97)

ρ1(t) = T0

T0 − T1
[e−T1t − e−T0t ]. (98)

Instantly a heuristic analysis shows that if T0 � T1, then

lim
t→∞ ρ0(t) = 0, (99)

lim
t→∞ ρ1(t) = 1. (100)

We now focus our attention towards determining the extent
to which this can be achieved and the manner in which system
parameters need to be chosen to do this. Using the effective
operators, we find that

Tj = g(j )

[
�2

(
g2κ + 4δ2 + κ2

8

)]
, (101)

with

g(j ) = m(j )

|dj |2 = (j + 1)(n − j )

|dj |2 . (102)

Hence, in order to achieve T0 � T1 one must have g0 � g1.
For small n we have that m(0) ≈ m(1) and hence choosing
parameters such that |d0|2 
 |d1|2 will result in g0 � g1 as
desired. However, for large n we have that m(0) 
 m(1) and
hence, despite achieving |d0|2 
 |d1|2, we will not be able to
achieve g0 � g1 as required. This sets a limit on the size of
the W state that can be produced reliably using this scheme, a
limit that will be explored shortly.

In order to choose parameters such that g0 � g1, we
introduce the following notation:

g = y, δ = δ̃y, � = �̃y, (103)

� = �̃x, κ = κ̃x, γ = γ̃ x, (104)
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where y = αx, α ≈ 10, and (δ̃,�̃,�̃,κ̃,γ̃ ) = O(1) enforce the
correct scale of each parameter. Utilizing this notation one
finds that

dj = x2

{
α2{2[δ̃�̃ − (j + 1)]}

− iα

[
�̃κ̃ − γ̃ δ̃

(
n + 1

2

)]
− γ̃ κ̃

(
n + 1

4

)}
(105)

and hence one can approximate dj by

dj ≈ x2α2{2[δ̃�̃ − (j + 1)]}. (106)

From the above one can see that a parameter choice δ̃�̃ = 1
yields

d0 ≈ 0, (107)

d(j �=0) ≈ −x2α2j (108)

such that one indeed has |d0|2 
 |d1|2. Again it is important
to note that the approximation in Eq. (106) is only valid for
small n, as for larger n it becomes true that

α
n + 1

2
≈ α2 (109)

and hence the assumption breaks down.
It is now possible to derive relevant benchmarks, allowing

for a detailed examination of the protocol. From Eq. (98) one
finds

Tp =
ln

(
T1
T0

)
T1 − T0

, (110)

where Tp is the time taken to reach ρ(1,max), the maximum
population of ρ1 obtained, given by

ρ(1,max) = ρ1(Tp). (111)

It is also of interest to examine the stability time of the target
state given by the expression

S = Tz − Tp, (112)

with Tz the time Tz > Tp such that

ρ1(Tz) = z, (113)

where z is some specified population, set in order to measure
the threshold decay of the target state. Finally, it is of interest
to examine the ratio of the stability time of the target state to
the preparation time, given by the expression

R = S

Tp

. (114)

It is of particular interest to explore the behavior of the above
benchmarks with respect to cooperativity (a dimensionless and
invariant measure of the quality of a cavity QED system) and
system size, where cooperativity for a single cavity is given by
the expression

C = g2

κγ
. (115)

Figures 7(a)–7(c) detail the behavior of primary bench-
marks (ρ(1,max),R,Tp) with respect to the relevant parameters
of cooperativity and system size. For all displayed results the

FIG. 7. (Color online) (a)–(c) Plots of protocol benchmarks
against cooperativity C for different values of n. For these plots
( ˜�,γ̃ ) = (1/5,1/2) such that the protocol is within the weak driving
regime and the cooperativity is varied through κ̃ . (d) Plot of
preparation time Tp as a function of coherent driving strength �

for different values of n. For this plot ( ˜κ,γ̃ ) = (1/2,1/2) such that
C = 400. (a)–(d) For all plots (δ̃,�̃) = (8/11,11/8), the numerically
optimized choice within the restriction �̃δ̃ = 1, while z = 0.85.
Furthermore, typical values of g are on the order of 10 MHz [23]
such that preparation times are on the order of μs and � values are
on the order of MHz.

values of δ̃ and �̃ utilized have been numerically chosen to
maximize the ratio T0/T1, based on the criterion �̃δ̃ = 1, but
taking into account the lower-order terms in α of dj . It is
also important to note that � and δ satisfy the conditions
necessary for adiabatic elimination, while � is well within the
regime of weak driving in which the accuracy of the effective
operator formalism has been thoroughly analyzed and firmly
established in [22].

It is clear that for currently available cooperativities [7]
in the range C ≈ 200 and small system sizes corresponding
to n ≈ 3, the protocol behaves comparably to the previously
suggested protocols [11] for n = 3, with only one laser
necessary in this case. Importantly, the behavior of the system
with respect to all benchmarks, at a fixed system size,
scales excellently with respect to cooperativity. For increased
cooperativities, the realization of which is an active field of
current research, it is possible to obtain effective steady states
(states with extremely slow decay) with fidelities of near unity
and rapid preparation times. It is important to note, from
Fig. 7(d), that within the regime of weak driving it is possible to
obtain a broad range of preparation times. It can be shown that
R and ρ(1,max) exhibit no dependence on � such that variation
of coherent driving strength allows for the preparation of
extremely stable states, even at low cooperativities, at the cost
of increased preparation times.

The strength of this protocol, and the motivation for this
work, is the ease at which it is possible to scale the protocol to
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FIG. 8. (Color online) Evolution of populations with time, from
initial state |0〉, for different values of cooperativity and different
system sizes. The lower plot corresponds to C = 200 with (γ̃ ,κ̃) =
(1/2,1), while the upper plot corresponds to C = 600 with (γ̃ ,κ̃) =
(1/2,1/3). Both plots are at (�̃,δ̃,�̃) = (1/5,8/11,11/8). Note that
typical values of g are on the order of 10 MHz [23] such that
preparation times are on the order of μs. Populations in the upper
plot have been increased by one for display.

larger system sizes, without the need for any additional lasers.
From our analysis, especially expressions (102) and (109),
we do not expect the protocol to succeed for arbitrarily large
systems; however, Fig. 7 shows that reasonable scaling, up
to system sizes of n ≈ 10, is possible, an order of magnitude
improvement over previous schemes. It is clear that within
a fixed cooperativity the performance of the protocol, with
respect to all benchmarks, decreases as a function of system
size. However, scaling of the performance with cooperativity
is not affected such that these decreases in performance can
be combated via the utilization of larger cooperativity cavities,
envisaged experimentally possible in the near future.

The evolution of populations is shown in Fig. 8, where
it is clear that effective steady states are easily produced for
small system sizes, even at low cooperativities, while for larger
system sizes increased cooperativities are necessary in order
to obtain long-lived states of high fidelity. However, at slightly
higher cooperativities results are obtained for large system
sizes, comparable to those previously obtained for n = 3 [11].

B. Bimodal cavity scheme

In the previous section we presented a scheme with
excellent properties, under the assumption that the system
starts in the thermal ground state |0〉. This assumption was
necessary as, from Fig. 6 and the form of the effective operators
(85)–(87), it is clear that effective state transfer, driven by
dissipation, was only possible from left to right, or from state
|j 〉 to state |j + 1〉. In order to construct a scheme in which the
ideas of the previous scheme are exploited, but it is possible
to start in any thermal state of the system, it is necessary to
consider a physical system that results in the possibility of
effective bidirectional state transfer.

Bimodal cavities, as studied in [35–37], offer the perfect
physical realization of such a system. Dissipation processes
involving one mode of the cavity can be utilized to drive
effective left-to-right processes, while another dissipation

FIG. 9. Cavity QED setup for a single atom in a bimodal cavity.
The entire setup consists of n identical atoms within a single cavity.

process involving the other mode of the cavity can be utilized to
drive effective right-to-left processes. We consider a bimodal
cavity QED set up of n � atoms in a bimodal cavity, as
illustrated in Fig. 9 In this case the total Hilbert space for
n � atoms, in a cavity with two modes, each mode restricted
to a single excitation, is given by

H =
(

n⊗
i=1

C3

)
⊗ C2 ⊗ C2, (116)

where the full Hilbert space of the ith atom is C3 and spanned
by the basis {|0〉i ,|1〉i ,|e〉i}; the Hilbert space of the first cavity
field mode, restricted to a single excitation and with creation
and annihilation operators (â†,â), is C2 and spanned by the
basis {|0〉c(1),|1〉c(1)}; and the Hilbert space of the second cavity
field mode, restricted to a single excitation and with creation
and annihilation operators (b̂†,b̂), is C2 and spanned by the
basis {|0〉c(2),|1〉c(2)}.

The Hamiltonian for the system at hand, in the conventional
basis and the appropriate rotating frame, is again time
independent with the form of (1) and individual elements
given by

Ĥe = �1

n∑
j=1

|e〉j 〈e| + δ1(â†â) + δ2(b̂†b̂) + Ĥac, (117)

Ĥac = g1(â†V̂+ + H.c.) + g2(b̂†Û+ + H.c.), (118)

Ŵ+ =
(

�1

2

)
V̂− +

(
�2

2

)
Û−, (119)

Ŵ− = Ŵ
†
+, (120)

Ĥg = �2

n∑
j=1

|1〉j 〈1|. (121)

Coherent laser driving with a resonant Rabi frequency of �1

and a detuning of �1 is applied uniformly over all atoms and
couples the levels |0〉 and |e〉, while coherent laser driving with
a resonant Rabi frequency of �2 and a detuning of �1 − �2

couples the levels |1〉 and |e〉, also uniformly over all atoms.
The levels |0〉 and |e〉 are also coupled via the cavity field
(â†,â), with a strength of g1 and uniform phase over all atoms,
where a cavity excitation of the first field mode, created by â†,
has an energy of δ1. Finally, the levels |1〉 and |e〉 experience
coupling via the cavity field (b̂†,b̂), with a strength of g2 and
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uniform phase over all atoms, where a cavity excitation of the
second field mode, created by b̂†, has an energy of δ2.

Again the system interacts with the environment via
spontaneous emission and cavity loss. Under the assumption
that these dissipation processes are Markovian, the system is
described by a master equation with Lindblad operators

L̂(γ,0) =
√

γ

2
V̂+ =

√
γ

2

n∑
i=1

|0〉i〈e|, (122)

L̂(γ,1) =
√

γ

2
Û+ =

√
γ

2

n∑
i=1

|1〉i〈e|, (123)

L̂κ1 = √
κ1â, (124)

L̂κ2 = √
κ2b̂, (125)

where κ1 is the photon decay rate for the cavity field (â†,â) and
κ2 is the photon decay rate for the cavity field (b̂†,b̂). Again
the spontaneous decay rates into states |0〉 and |1〉 have been
set equal for simplicity. Following from the previous example,
we would like to utilize the fully symmetric single-excitation
basis to describe our Hamiltonian and Lindblad operators. This
basis, spanning the fully symmetric single-excitation subspace
of the total Hilbert space, is given by

B = {G,A,C1,C2}. (126)

Here G is the fully symmetric ground-state basis, as per (46),
A is the fully symmetric single-atomic-excitation basis, as per
Eq. (47), and we utilize the natural notation

|j 〉 = |j 〉 ⊗ |0c(1)〉 ⊗ |0c(2)〉, (127)

|e(j )〉 = |e(j )〉 ⊗ |0c(1)〉 ⊗ |0c(2)〉. (128)

Here Ci is the fully symmetric single-cavity-excitation basis
for cavity mode i, where

Ci =
⎧⎨
⎩|0c(i)〉, . . . , 1√(

n

j

) |jc(i)〉, . . . ,|nc(i)〉
⎫⎬
⎭ (129)

and the state |jc(i)〉 is given by

|jc(1)〉 = â†|j 〉, |jc(2)〉 = b̂†|j 〉. (130)

In light of the previous discussion it is clear that the fully
symmetric single-excitation subspace, containing the W state,
is closed under the action of the Hamiltonian (117)–(121)
and Lindblad operators (122)–(125). Therefore, as before, we
restrict ourselves to this subspace and proceed by transforming
the Hamiltonian and Lindblad operators into the basis B. This
results in a Hamiltonian where Ĥe is given by

Ĥe =
n∑

j=0

[(�1 + j�2)|e(j )〉〈e(j )|

+ j�2(|jc(1)〉〈jc(1)| + |jc(2)〉〈jc(2)|)] + Ĥac, (131)

with the atom-cavity interaction Hamiltonian

Ĥac = g1

⎛
⎝ n∑

j=0

(
√

n − j )|jc(1)〉〈e(j )| + H.c.

⎞
⎠

+ g2

⎛
⎝n−1∑

j=0

(
√

j + 1)|(j + 1)c(2)〉〈e(j )| + H.c.

⎞
⎠. (132)

The perturbative excitation term is given by

Ŵ+ =
(

�1

2

) ⎛
⎝ n∑

j=0

(
√

n − j )|e(j )〉〈j |
⎞
⎠

+
(

�2

2

)⎛
⎝ n∑

j=0

(
√

j + 1)|e(j )〉〈(j + 1)|
⎞
⎠ (133)

and finally the ground-state Hamiltonian is given by

Ĥg =
n∑

j=0

(�2j )|j 〉〈j |. (134)

In order to calculate ĤNH one requires the Lindblad operators,
which after a basis transformation are found to be

L̂1 = L̂κ1 = √
κ1

n∑
j=0

|j 〉〈jc(1)|, (135)

L̂2 = L̂κ2 = √
κ2

n∑
j=0

|j 〉〈jc(2)|, (136)

L̂3 = L̂κ(γ,1) =
√

γ

2

n−1∑
j=0

(
√

j + 1)|j + 1〉〈e(j )|, (137)

L̂4 = L̂κ(γ,0) =
√

γ

2

n∑
j=0

(
√

n − j )|j 〉〈e(j )|. (138)

All of the above now allows us to calculate the non-Hermitian
Hamiltonian as per (7). As in the previous scheme, in order to
invert ĤNH it is useful to represent this operator as a partitioned
matrix with form as per Fig. 10.

In this case,

ĤNH = Ã1 + Ã2 + B̃ + C̃ + D̃. (139)

We define Ã = Ã1 + Ã2 with

Ã1 =
n∑

j=0

[
(δ1 + j�2) − i

κ1

2

]
|jc(1)〉〈jc(1)|, (140)

Ã2 =
n∑

j=0

[
(δ2 + j�2) − i

κ2

2

]
|jc(2)〉〈jc(2)|, (141)

FIG. 10. Partitioned matrix form of ĤNH for the bimodal scheme.
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while the remaining blocks are

B̃ =
n−1∑
j=0

[g1(
√

n − j )|jc(1)〉〈e(j )|

+ g2(
√

j + 1)|(j + 1)c(2)〉〈e(j )|], (142)

D̃ =
n−1∑
j=0

[
(�1 + j�2) − iγ

n + 1

4

]
|e(j )〉〈e(j )|, (143)

and C̃ = B̃T . Using the Banachiewicz inversion theorem, via
Eqs. (75)–(79), we obtain

Ĥ−1
NH = Â + B̂ + Ĉ + D̂. (144)

Here Â = Â1 + Â2 + Â3, where

Â1 =
n∑

j=0

f1(j )|jc(1)〉〈jc(1)|, (145)

Â2 =
(

2

α
(2)
0

)
|0c(2)〉〈0c(2)|

+
n∑

j=0

f2(j )|(j + 1)c(2)〉〈(j + 1)c(2)|, (146)

Â3 =
n∑

j=0

f3(j )[|jc(1)〉〈(j + 1)c(2)| + H.c.] (147)

and we have defined the functions

f1(j ) = 2dj − 16g2
1(n − j )α(2)

j+1α
(1)
j

α
(1)
j dj

, (148)

f2(j ) = 2dj − 16g2
2(j + 1)α(2)

j+1α
(1)
j

α
(2)
j+1dj

, (149)

f3(j ) = 16g1g2
√

n − j
√

j + 1

dj

, (150)

with α
(k)
j defined via

α
(k)
j = 2(δk + j�2) − iκk (151)

and dj defined via

dj = βjα
(1)
j α

(2)
j+1

− 8
[
g2

1(n − j )α(2)
j+1 + g2

2(j + 1)α(1)
j

]
, (152)

with βj given by

βj = 4(�1 + j�2) − iγ (n + 1). (153)

The block containing propagators between atomic and cavity
single-excitation states is given by B̂ = B̂1 + B̂2, with

B̂1 =
n−1∑
j=0

(−8g1(
√

n − j )α(2)
j+1

dj

)
|jc(1)〉〈e(j )|, (154)

B̂2 =
n−1∑
j=0

(−8g2(
√

j + 1)α(1)
j

dj

)
|(j + 1)c(2)〉〈e(j )|, (155)

and Ĉ = B̂T . Finally, the block containing loop propagators
between atomic single-excitation states is given by

D̂ =
n−1∑
j=0

(
4α

(1)
j α

(2)
j+1

dj

)
|e(j )〉〈e(j )|. (156)

Armed with H−1
NH , it is possible to calculate the effective

operators utilizing Eqs. (5) and (6). For all effective operators
we find that L̂i

eff = L̂
i(a)
eff + L̂

i(b)
eff . The results are as follows:

L̂
1(a)
eff = c1(1)

n−1∑
j=0

(
(n − j )α(2)

j+1

dj

)
|j 〉〈j |, (157)

L̂
1(b)
eff = c1(2)

n−1∑
j=0

(
(n − j )(j + 1)α(2)

j+1

dj

)
|j 〉〈j + 1|, (158)

L̂
2(a)
eff = c2(1)

n−1∑
j=0

(
(n − j )(j + 1)α(1)

j

dj

)
|j + 1〉〈j |, (159)

L̂
2(b)
eff = c2(2)

n−1∑
j=0

(
(j + 1)α(1)

j

dj

)
|j + 1〉〈j + 1|, (160)

L̂
3(a)
eff = c3(1)

n−1∑
j=0

(√
n − j

√
j + 1α

(1)
j α

(2)
j+1

dj

)
|j + 1〉〈j |,

(161)

L̂
3(b)
eff = c3(2)

n−1∑
j=0

(
(j + 1)α(1)

j α
(2)
j+1

dj

)
|j + 1〉〈j + 1|, (162)

L̂
4(a)
eff = c3(1)

n−1∑
j=0

(
(n − j )α(1)

j α
(2)
j+1

dj

)
|j 〉〈j |, (163)

L̂
4(b)
eff = c3(2)

n−1∑
j=0

(√
n − j

√
j + 1α

(1)
j α

(2)
j+1

dj

)
|j 〉〈j + 1|,

(164)

where the constants are given by

c1(k) = (−4
√

κ1�kg1), (165)

c2(k) = (−4
√

κ2�kg2), (166)

c3(k) =
√

2
√

γ�k. (167)

As can be seen from Eqs. (157)–(164), there now exist
effective loop processes (from state |j 〉 to state |j 〉), effective
left-to-right processes (from state |j 〉 to state |j + 1〉), and
effective right-to-left processes (from state |j + 1〉 to state |j 〉).
Closer inspection of the constants in Eqs. (165)–(167) shows
that right-to-left effective processes, due to L̂

1(b)
eff and L̂

4(b)
eff ,

involve a coherent excitation via �2, followed by an inter-
mediate process governed by Ĥ−1

NH , and a deexcitation via a
dissipative process. However, left-to-right effective processes,
due to L̂

2(a)
eff and L̂

3(a)
eff , involve coherent excitation via �1 as

a first step, before intermediate propagation and deexcitation
due to dissipation. Therefore, it is clear that

�2 = 0 ⇒ ci(2) = 0 (168)
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such that only effective left-to-right processes remain, driven
by spontaneous emission and dissipation involving the first
cavity-field mode. This is completely analogous to the single-
mode cavity scheme, studied in detail in the previous section.
However, it is also clear that

�1 = 0 ⇒ ci(1) = 0 (169)

such that only effective right-to-left processes remain, driven
by spontaneous emission and dissipation involving the second
cavity-field mode. In this case the natural steady state of the
system, irrespective of initial state, is the state |0〉.

It is now clear that if it is possible to create long-lived
W states, with �2 = 0 and assuming the initial state of the
system as |0〉, then it is possible to create a W state irrespective
of initial state, by utilizing a two-step process with the first
step creating the state |0〉 by setting �1 = 0. We proceed
to demonstrate a method for the production of long-lived W

states, assuming the initial state of the system as |0〉 and with
�2 = 0, before exploring the initial preparation of the state |0〉
with �1 = 0.

In the case of �2 = 0, our system is completely analogous
to the single-mode scheme explored in the previous section.
Again, the n + 1 coupled differential equations for the diag-
onal elements of the effective master equation decouple from
the equations for the off-diagonal elements and we are left to
solve n + 1 coupled differential equations with the form of
Eq. (92). In this case ρj = 〈j |ρg|j 〉 and

Tj = l
2(a)
j + l

3(a)
j , (170)

with l
2(a)
j and l

3(a)
j defined as

l
2(a)
j = ∣

∣〈j + 1|L̂2(a)
eff |j 〉∣∣2

, (171)

l
3(a)
j = ∣

∣〈j + 1|L̂3(a)
eff |j 〉∣∣2

. (172)

Again, because of the strictly left-to-right nature of the system
we are only concerned with solutions for ρ0 and ρ1, which are
given by Eqs. (97) and (98). It is clear that again the extent
to which the ratio T0/T1 can be maximized determines the
effectiveness of the scheme. For this physical set up we find
that

Tj = h(j )
[
�2

1|α(1)|2(16κ2g
2
2 + 2γ |α(2)|2)], (173)

where we have set �2 = 0 such that α
(k)
j = α(k) no longer

depends on j and

h(j ) = m(j )

|dj |2 = (n − j )(j + 1)

|dj |2 . (174)

Identically to the previous analysis, for small n we find that
the denominator of the propagators is the crucial element and
that

|d0|2 
 |d1|2 ⇒ T0 � T1. (175)

For this physical setup,

dj = x3[α3d (1)(j ) + α2d (2)(j ) + αd (3)(j ) + d (4)(j )], (176)

where we have defined y = αx, with α ≈ 10, and

g2 = y, g1 = g̃1y, (177)

δ1 = δ̃1y, δ2 = δ̃2y, (178)

�1 = �̃1y, �2 = �̃2y, (179)

define the large parameters, with

�1 = �̃1x, �2 = �̃2x, (180)

κ1 = κ̃1x, κ2 = κ̃2x, (181)

γ = γ̃ x, (182)

defining the small parameters. In terms of the above, the largest
term of dj (with �̃2 = 0 already set for simplicity) is given by

d (1)(j ) = 16
[
δ̃1δ̃2�̃1 − g̃1

2δ̃2(n − j ) − δ̃1(j + 1)
]

(183)

such that for parameter choices

g̃1 = 1

b
, δ̃1 = δ2

a
, (184)

�̃1 = 1

c
, δ̃2 = c

(
1 + n

a

b2

)
, (185)

we obtain that

d (1)(0) = 0, (186)

d (1)(j �= 0) = 16jc

(
1 + n

a

b2

)(
1

b2
− 1

a2

)
. (187)

Utilizing Eqs. (184) and (185), numerical optimization taking
into account lower-order terms in α of dj finds that parameter
choices

a = 1
4 , b = 2, c = 1

2 (188)

maximize the ratio T0/T1, while still yielding values for
�1, δ1, δ2, and g1 corresponding to a physically implementable
system in which adiabatic elimination of excited levels can be
applied.

It is now possible to examine the behavior of the
system, with respect to all relevant benchmarks, as per
Eqs. (111)–(114). For all analysis, the optimum parameter
values given in Eq. (188) are utilized. In this bimodal scheme,
all benchmarks are a function of �1, C(1), C(2), and n, where

C(i) = g2
i

κiγ
(189)

is the cooperativity pertaining to the ith cavity mode. From
Fig. 11 it is clear that the behavior of all benchmarks, for
a small system with size n = 3, is extremely similar to the
behavior previously observed in the single-mode scheme, with
respect to C2, while the dependence of all benchmarks on
C(1) is extremely weak. This is as to be expected by virtue
of the fact that dissipation involving the second cavity field
mode is the driving mechanism for left-to-right processes.
Again, for low cooperativities one can obtain results, with
respect to all benchmarks, comparable to those from previously
suggested schemes [11], while the scaling with cooperativity
is favorable such that the performance of the protocol can be
greatly increased via the use of larger cooperativity cavities.
In terms of dependence on �1, it can be shown that both R and
ρ(1,max) again exhibit no dependence, while the dependence
of Tp is extremely similar to that from Fig. 7(d) such that a
broad range of preparation times can be achieved within the
necessary regime of weak driving.

For the bimodal scheme the system again decreases in
performance with respect to all benchmarks, at fixed coopera-
tivities, with increasing system size. However, as can be seen
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FIG. 11. (Color online) (a)–(c) Plots of protocol benchmarks against cooperativity values C(1) and C(2) for fixed system size with n = 3 and
for the case �2 = 0. For these plots ( ˜�,γ̃ ) = (1/5,1/2) such that the protocol is within the weak driving regime and cooperativities are varied
through κ̃1 and κ̃2. For all plots (δ1,δ2,�1,g1) are at numerically optimized values, as per Eq. (188), within the restrictions set by Eqs. (184)
and (185). The threshold value has been set strictly, with z = 0.85, and the initial state of the system is assumed as |0〉. Furthermore, typical
values of g are on the order of 10 MHz [23] such that preparation times are on the order of μs.

from Fig. 12, it is again possible to combat this decrease in
performance through an increase in the relevant cooperativity
C(2). The evolutions for this scheme are extremely similar to
those shown in Fig. 8, hence it is clear that as in the single-mode
scheme, long-lived W states for systems of the order n ≈ 10
can be reliably created utilizing this bimodal protocol, under
the assumption that the system is in the initial state |0〉.

At this stage it is clear that the bimodal scheme manages
to near perfectly replicate the behavior of the excellent single-
mode scheme, assuming the initial state of the system as |0〉.
We now proceed to examine a method for the preparation of the

FIG. 12. (Color online) (a) and (b) Plots of protocol benchmarks
against system size at different values of cooperativity C(2) for the
case �2 = 0. For these plots ( ˜�,γ̃,κ̃1) = (1/5,1/2,1) such that the
protocol is within the weak driving regime and C2 is varied through
κ̃2 while C1 = 100 remains fixed. For both plots (δ1,δ2,�1,g1) are at
numerically optimized values, as per Eq. (188), within the restrictions
set by Eqs. (184) and (185). The threshold value has been set strictly,
with z = 0.85, and the system is assumed to be in the initial state |0〉.

state |0〉 from an arbitrary initial thermal state of the system,
within our bimodal cavity setup.

As seen earlier, �1 = 0 implies ci(1) = 0 such that only
effective right-to-left processes remain. In this case the n + 1
equations for the diagonal elements of the ground-state density
matrix, from the effective master equation, again decouple
from the equations for the off-diagonal elements. We are left
to solve n + 1 equations of the form

ρ̇j = Tjρj+1 − Tj−1ρj , (190)

where

Tj = l
1(b)
j + l

4(b)
j , (191)

with l
1(b)
j and l

4(b)
j defined as

l
1(b)
j = ∣∣〈j |L̂1(b)

eff |j + 1〉∣∣2
, (192)

l
4(b)
j = ∣∣〈j |L̂4(b)

eff |j + 1〉∣∣2
. (193)

The natural steady state of this system is ρ0 = 1, as desired.
However, in order to analyze the efficiency with which this
state is created we examine the behavior of the system for
one example of some arbitrary initial state. The worst possible
case, with n = 3, corresponds to the initial condition

ρj (t = 0) = δj,3. (194)

We are only interested in the solution corresponding to the
state |0〉, which is given by

ρ0(t) = −Ae−T0t − T0

T1
Be−T1t − T0

T2
Ce−T2t + D, (195)

where the constants are

B = − T1T2

(T0 − T1)(T1 − T2)
, (196)

C = − T1T2

(T0 − T2)(T1 − T2)
, (197)

A = −(B + C), (198)

D = 1. (199)

It is instantly clear that

lim
t→∞ ρ0(t) = 1; (200)
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FIG. 13. (Color online) (a) Plot of preparation time against cooperativities C(1) and C(2) with a fixed system size of n = 10. Coherent
driving is set within the regime of weak driving with �2 = 1/2, while γ̃ = 1 such that cooperativities are varied through κ̃1 and κ̃2. (b) Plot
of preparation time against �2 with fixed system size n = 5. (c) Plot of preparation time against system size with �2 = 1/2. (b) and (c)
Cooperativities are set with (γ̃ ,κ̃1,κ̃2) = (1,2,1/4). (a)–(c) For all plots �1 = 0 and (δ1,δ2,�1,g1) are at numerically optimized values, as per
Eq. (188), within the restrictions set by Eqs. (184) and (185), necessary for the second phase of the protocol. The threshold value has been set
strictly with z = 0.95 and the system is assumed to be in the initial state |3〉. Furthermore, typical values of g are on the order of 10 MHz [23]
such that preparation times are on the order of μs and � values are on the order of MHz.

however, it still remains to investigate the efficiency with
which this limit is obtained and the dependence of this
efficiency on all system parameters. In order to ensure that the
W state can be created after the state |0〉 has been prepared,
without altering any cavity parameters, the optimal parameter
set (188) will be utilized to describe the detunings. We use Tp

as a benchmark, where

ρ0(Tp) = z (201)

and z is some threshold accuracy. Figure 13(a) shows that
the preparation time has a very weak dependence on C(2),
however it exhibits a very favorable dependence on C(1) as it is
clear that preparation time actually decreases with decreasing
cooperativity. This is excellent, as Fig. 11(c) shows that
setting C(2) to a very low value will not strongly influence the
stability of the W state in the second phase of the scheme.

With respect to �2, it is clear from Fig. 13(b) that the
preparation time of the desired state can be drastically reduced
with increased driving strength. As described in [22], adiabatic
elimination and the effective operator formalism apply only
within the regime of weak driving, however all values for �2

given in Fig. 13(b) fall within a range for which the accuracy
of the effective formalism has been well established.

Finally, Fig. 13(c) illustrates the dependence of preparation
time on system size. In this case we have that

Tj = h(j )
[
�2

2|α(2)|2(16κ1g
2
1 + 2γ |α(1)|2)], (202)

where we have set �2 = 0 such that α
(k)
j = α(k) no longer

depends on j and

h(j ) = m(j )

|dj |2 = (n − j )(j + 1)

|dj |2 (203)

such that due to the form of h(j ) increasing system size
leads to decreasing preparation times. As can be seen from
Fig. 13(c), this relationship is approximately exponential such
that, although preparation times are significant for smaller
systems, for larger systems very reasonable preparation times
can be achieved. Again, it is important to note that for all

system sizes, increased driving will decrease the preparation
times.

At this stage it is clear that it is possible to prepare long-lived
large W states effectively, irrelevant of the initial thermal state
of the system. A preliminary step to prepare the state |0〉 is
performed by setting �1 = 0 and choosing �2 appropriately,
before the W state is created by setting �2 = 0 and choosing
�1 appropriately (see Fig. 14). In practice this can be done
with one laser, whose frequency and strength can be modified
after the preparation of |0〉. Due to the dynamical properties
of the system, the state |0〉 can always be prepared to any
accuracy. In practice it is not necessary to prepare the initial
state with unity probability, as the right-to-left nature of the
initial scheme is such that for very high populations, all excess
population is already in the target state. Finally, it is clear
that all benchmarks for the preparation of the W state depend
strongly on C(2), but weakly on C(1), while all benchmarks for
the preparation of the initial state |0〉 depend strongly on C(1),
but weakly on C(2). This allows cooperativities to be chosen
that allow for the optimal performance of both schemes,

FIG. 14. (Color online) Evolution of populations with time for
a system of size n = 8. Coherent driving is set with �1 = 0 and
�2 = 1/2, while (δ1,δ2,�1,g1) are at numerically optimized values,
as per Eq. (188), within the restrictions set by Eqs. (184) and (185),
necessary for the second phase of the protocol. The threshold value
has been set strictly with z = 0.95 and the system is assumed to be
in the initial state |3〉. Note that typical values of g are on the order
of 10 MHz [23] such that preparation times are on the order of μs.
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without having to adjust any cavity parameters between
preparation of initial and target states; only the strength and
frequency of one laser need modification.

IV. CONCLUSION AND OUTLOOK

We have conducted an in-depth study into the construction
and properties of the irreducible representations of su(3).
From this we have seen that each irreducible representation is
invariant under generators of SU(3) such that if one constructs
a Hamiltonian and Lindblad operators from these generators,
the dynamics of the corresponding open quantum system are
constrained to the irreducible subspace to which the initial
state belongs. We have applied these properties of SU(3) to
ensembles of � atoms within cavity QED setups, where we
have shown that a collective operator approach, embodied
through uniform global addressing of atoms within the cavity
along with uniform global dissipation, allows one to restrict
oneself to a fully symmetric irreducible subspace in which it
is possible to apply the effective operator formalism [22] to
arbitrary-size systems. This allows us to expose the effective
two-level ground-state dynamics for arbitrary-size systems of
� atoms within an optical cavity.

Furthermore, by application of the above theory we have
constructed both a single-mode and bimodal cavity QED setup,
in which it is possible to engineer the cavity parameters such
that the system is dissipatively driven into a long-lived W state
for systems on the order of ten atoms, an order of magnitude
improvement over all previous schemes of this nature [7–11].
Within the single-mode cavity protocol a specific initial ground
state is required, which in practical optical experiments may
be easily obtained via Raman pumping; however, for the
bimodal protocol the target state is obtained irrespective of
the initial thermal state of the system. We have performed
an in-depth analysis of both protocols, from which it is clear
that with currently available optical cavities it is possible to
achieve results comparable with respect to all benchmarks to
previously suggested protocols for three atoms [11]. Further-
more, the protocols suggested here require only one laser, for
uniform global addressing of all atoms, a vast improvement
over previously suggested schemes.

Importantly, the characteristic behavior of both protocols,
with respect to all relevant benchmarks, displays excellent
scaling properties against cavity cooperativity. This indicates
that with inevitable experimental developments and the avail-
ability of high-cooperativity cavities, it should soon be possible
to implement these schemes and obtain extremely long-lived
W states, with excellent fidelity, for large systems on the
order of ten atoms. Furthermore, for general systems the
witness methods of [38] offer a possible means for state
characterization, while for QED setups, as discussed in this
paper, atomic state tomography [39] may be utilized for the
characterization and verification of these results.
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APPENDIX: PROPERTIES OF SU(3)

The full set of generators {λ̂i} for SU(3) are as follows. The
first three are constructed by an extension of the Pauli matrices
into an extra dimension

λ̂1 =
⎛
⎝ 0 1 0

1 0 0
0 0 0

⎞
⎠, λ̂2 =

⎛
⎝ 0 −i 0

i 0 0
0 0 0

⎞
⎠,

λ̂3 =
⎛
⎝ 1 0 0

0 −1 0
0 0 0

⎞
⎠.

These are clearly traceless and Hermitian by construction.
The remaining five generators have been chosen as per the
conventions in particle physics, in clear analogy with the Pauli
matrices,

λ̂4 =
⎛
⎝ 0 0 1

0 0 0
1 0 0

⎞
⎠, λ̂5 =

⎛
⎝ 0 0 −i

0 0 0
i 0 0

⎞
⎠,

λ̂6 =
⎛
⎝ 0 0 0

0 0 1
0 1 0

⎞
⎠, λ̂7 =

⎛
⎝ 0 0 0

0 0 −i

0 i 0

⎞
⎠,

λ̂8 = 1√
3

⎛
⎝ 1 0 0

0 1 0
0 0 −2

⎞
⎠.

The commutators of the above generators are given by

[λ̂i ,λ̂j ] = 2ifijkλ̂k, (A1)

where the structure constants are totally antisymmetric under
exchange of any two indices, and their nonvanishing values
are listed below in Table I.

For the purposes of this paper, it convenient to construct
operators T̂±, V̂±, Û±, T̂3, and Ŷ as per Eqs. (14)–(16). The
full set of commutation relationships for these operators is as
follows:

[T̂3,T̂±] = ±T̂±, [T̂+,T̂−] = 2T̂3; (A2)

[T̂3,Û±] = ∓ 1
2 Û±, [Û+,Û−] = 3

2 Ŷ − T̂3 ≡ 2Û3; (A3)

[T̂3,V̂±] = ± 1
2 V̂±, [V̂+,V̂−] = 3

2 Ŷ + T̂3 ≡ 2V̂3; (A4)

[Ŷ ,T̂±] = 0, [Ŷ ,Û±] = ±Û±, [Ŷ ,V̂±] = ±V̂±; (A5)

[T̂+,V̂+] = [T̂+,Û−] = [Û+,V̂+] = 0; (A6)

[T̂+,V̂−] = −Û−, [T̂+,Û+] = V̂+; (A7)

[Û+,V̂−] = T̂−, [T̂3,Ŷ ] = 0. (A8)

TABLE I. Nonvanishing structure constants {fijk} up to antisym-
metric permutations.

ijk 123 147 156 246 257 345 367 458 678

fijk 1 1
2 − 1

2
1
2

1
2

1
2 − 1

2

√
3

2

√
3

2
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