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The ubiquitous decoherence phenomenon is responsible for the lack of quantum superpositions at the
macroscopic scale. It is increasingly difficult to isolate a quantum system from its environment when its size
increases. Making use of the weird quantum properties of mesoscopic quantum states thus requires efficient
means to combat decoherence. One option is real-time quantum feedback. It features the components of a
conventional feedback: measurement of the system’s state (sensor), analysis (controller), and feedback action
(actuator) aiming to the target state. The random back-action of the measurements by the sensor makes quantum
feedback much more difficult than its classical counterpart. Mesoscopic photon number (Fock) states feature
a decoherence rate proportional to the photon number. They are thus a simple example of a fragile quantum
resource. We demonstrated recently two quantum feedback schemes continuously stabilizing Fock state of a
microwave field in a high-quality cavity. Sensitive atoms, crossing the field one at a time, are used as quantum
nondemolition (QND) probes of its photon number. The feedback actuator is either a classical source [Sayrin
et al., Nature (London) 477, 73 (2011)] or individual resonant atoms emitting or absorbing one photon each
[Zhou et al., Phys. Rev. Lett. 108, 243602 (2012)]. Both schemes detect the quantum jumps of the photon number
and efficiently correct their adverse effects, preparing and preserving a fragile quantum resource. We present an
in-depth analysis of our methods, which sheds light onto the fundamental difficulties encountered in quantum
feedback, in particular concerning the state estimation algorithm, and onto the ways to circumvent them. These
results open the way to informationally optimal QND measurements or to the stabilization of mesoscopic field
state superpositions. More generally, they can be cast in a variety of contexts to loosen the tight constraints set
by decoherence in quantum metrology and quantum information processing.
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I. INTRODUCTION

Feedback control of a complex system, although not always
evident, plays a very important role in many domains of our
everyday activity. From the simple temperature setting of an
oven in our kitchen to the very sophisticated control of a
spacecraft docking to the International Space Station, the feed-
back loop accomplishes basically the same task. It monitors
some property of the system to be controlled (e.g., oven’s
temperature or spacecraft’s position), compares it to a preset
target value, and, despite all external random perturbations,
forces the system to reach the target by correspondingly acting
onto it (e.g., by means of the oven’s heating resistors or by
means of the spacecraft’s engines).

The control of classical objects is extremely efficient,
but the implementation of a simple measure-analyze-react
feedback loop to a quantum system is highly nontrivial.
The difficulties are both of technical and fundamental na-
ture. The technical challenge is to measure the quantum
properties of fragile quantum systems. This requires both a
good isolation of the system from its environment and very
sensitive measurement methods. The fundamental challenge
comes from one of the most basic postulates of quantum
mechanics: any measurement on a quantum system changes
its state [1]. The measurement should thus be carefully
designed to reduce the perturbation onto the quantum state
and its unavoidable back-action should be properly taken into
account [2].
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The last two decades have witnessed a tremendous break-
through in isolating and studying individual quantum systems,
such as single ions [3], photons [4], etc. The technical
challenge on the route towards quantum feedback control has
thus been met. This made it possible, for instance, to control
with a feedback loop some classical parameters of microscopic
systems [5–8].

Several research groups have reported so far on experiments
featuring quantum feedback [9–13]. They have achieved the
swap of quantum states between qubits [9], the freeze and
release of a state evolution [10], an adaptive measurement for
a more efficient discrimination between coherent states [11],
a qubit’s state recovery after spin flip [12], and the control
of a driven state evolution [13]. These feedback schemes can
be sorted in two main categories. For the autonomous schemes,
the controller is embedded into the quantum system [9]. The
more flexible active schemes use a measurement, whose result
is analyzed by the controller. The optimal control action is then
fed back to the system in single shot (the feedback action is
triggered only once) [9,10,12] or repeated operation [11,13].

We discuss in this paper two experiments, which have been
recently performed in our group [14,15]. In contrast to all ex-
periments cited above, we have realized continuously operated
quantum feedback schemes actively stabilizing nonclassical
states of a quantum system. The photon-number (Fock) states
of microwave radiation stored in a high-Q superconducting
cavity are deterministically prepared and then continuously
recovered after decoherence-induced quantum jumps. In both
schemes, the quantum sensors of the field are circular Rydberg
atoms, crossing one at a time the cavity mode in a superposition
of two states and interacting with it in the dispersive regime.
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The large atom-cavity detuning makes it impossible for the
atoms to emit or absorb photons in the mode. However, the
atomic frequency is transiently shifted by the field in the cavity,
resulting in a phase shift for the atomic state superposition,
proportional to the field intensity. A measurement of the
atomic state thus provides quantum nondemolition (QND)
information on the photon number in the cavity mode [16].

This information is used by the controller, a classical fast
real-time computer, to estimate the present cavity state, based
upon an extensive knowledge of all experimental parameters
and imperfections. This state estimation is used by the
controller to decide upon the action of the actuator which will
drive the cavity state as close as possible to the target Fock
state |nt〉 containing nt photons. Once the target is reached,
the controller detects the relaxation-induced quantum jumps,
either the loss of a photon into or its creation out of thermal
environment, and corrects for them, restoring the target state.

The two experiments use two different types of actuators.
In the first [14], we use a coherent classical source to perform
small displacements of the cavity field, with an amplitude
determined by the controller. This is an experimentally simple
procedure. However, this classical actuator, which naturally
produces coherent states, is not ideally suited to correct
for single-photon quantum jumps. The compensation is thus
a rather long process, alternating displacements and QND
information acquisition. An efficient stabilization requires that
the quantum jump recovery time is much shorter than the
lifetime Tc/nt of the Fock state |nt〉, where Tc is the field energy
damping time in the cavity. The maximum number of photons
in the target state is thus limited to four in this experiment.

In the second experiment [15], we have opted for a fully
quantum actuator instead of a classical source. We use resonant
atoms to react on the cavity field. Prepared in the upper state |e〉
of the transition, they can emit a single photon in the cavity.
Prepared in the lower state |g〉, they can absorb a photon.
In principle, a single atom is sufficient to compensate for a
relaxation-induced quantum jump. The feedback mechanism
is thus simpler in its principle and more reactive. It is, however,
experimentally more demanding since we must alternate
between dispersive atoms, gathering QND information, and
resonant actuator atoms. After a careful optimization, we have
been able to stabilize photon numbers up to seven.

The aim of this paper is to present in detail all the aspects of
these two experiments. We will, in particular, explore the state
estimation algorithms, whose performance is essential. They
are based on a Bayesian inference for the cavity state, which
uses the knowledge of all experimental parameters including
imperfections measured in careful calibration experiments, of
all measurement results, and of all actuator actions performed
so far. We will also present extensive numerical simulations
that have been widely used to optimize the experimental
parameters and the settings of the feedback mechanism. We
discuss the experimental results and the procedures used to
assess the efficiency of the feedback.

The paper is organized as follows. Section II is devoted to
the general description of the main components of the exper-
imental setup and of the dispersive atom-field interaction. We
also describe the main features of the computer control system
and give the general structure of an experimental sequence.
Section III is devoted to the feedback implementation with a

FIG. 1. (Color online) General scheme of the cavity QED
experiment. C: high-Q microwave cavity; V: voltage supply to control
the electric field in C; R1 and R2: low-Q Ramsey cavities; S′:
microwave source. Toroids represent circular Rydberg atoms flying
from the excitation zone B towards the ionization detector D.

classical coherent actuator. Section IV describes the quantum
actuator feedback experiment. We conclude in Sec. V by
recalling the main results of the paper and discussing possible
extensions of this work.

II. EXPERIMENTAL SETUP AND DISPERSIVE
ATOM-FIELD INTERACTION

A. Experimental system

The basic components of our cavity QED setup are depicted
in Fig. 1. The microwave field at frequency ωc/2π = 51 GHz
is confined in a high-finesse Fabry-Perot resonator C made
up of two superconducting niobium mirrors facing each other
[17]. The cavity is cooled by a 3He refrigerator down to a
temperature of 0.8 K. The field energy damping time reaches
Tc = 65 ms. At this low temperature, the average number of
black-body photons in the cavity mode is only nth = 0.05. The
mode has a Gaussian transverse profile, with a waist w0 =
5.96 mm, and a longitudinal standing-wave pattern, with nine
antinodes separated by λ/2 = 2.94 mm along the l = 27.6 mm
separation between the mirrors.

To probe and manipulate the field, we use circular Rydberg
atoms, with a large principal quantum number and the
maximal value of angular momentum. They are excited in
B out of a thermal beam of ground state rubidium atoms.
Laser velocity-selective optical pumping and time-of-flight
selection determine the atomic velocity v = 250 ± 1 m/s.
The low angular momentum Rydberg states directly prepared
by laser excitation are transferred into the circular state |g〉
with principal quantum number 50 by a sequence of radio-
frequency and microwave transitions between Stark levels
lasting a few tens of μs [18].

The weak laser excitation of the atomic beams results in a
Poisson probability distribution for the number m of circular
atoms prepared in each sample:

Pa(m) = e−m mm

m!
, (1)

where m is the mean number of atoms, typically kept around
or below 1.

In order to achieve an efficient feedback, we must send
the QND probe samples at the shortest possible time interval
Ta = 82 μs in all experiments reported here. This time interval
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is such that each sample leaves the zone B before the next
preparation sequence starts.

The QND sensor atoms are cast in a superposition of the
levels |g〉 and |e〉 (circular state with a principal quantum
number 51) in the low-Q cavity R1 by a π/2 pulse driven by
the microwave source S′ resonant with the |g〉 → |e〉 atomic
transition at frequency ωa ≈ ωc. A second π/2 pulse is applied
in the low-Q cavity R2. It realizes, in combination with R1, a
Ramsey interferometer. The atoms are finally detected in g or
e by the state-resolving ionization detector D. The ionization is
produced by an electric field ramp reaching at different times
the ionization thresholds for the two levels. The probability
for detecting the atoms in g or e measures the phase shift of
the atomic coherence produced by the interaction of the atoms
with the field in C.

The atom-field coupling strength in C is measured by
the vacuum Rabi frequency �0/2π = 46 kHz. The atom-
cavity detuning δ = ωa − ωc, and thus the choice between
the resonant (δ = 0) and dispersive (δ � �0) interactions, is
controlled by a static electric field produced by a voltage V
applied across the cavity mirrors. The resulting quadratic Stark
shift of the atomic frequency is −255 kHz/(V/cm)2.

Note that the lateral extension of the atomic beam (wa ≈ 1
mm) is not negligible at the scale of the cavity-mode standing-
wave pattern. This leads to a dispersion of the atom-cavity
coupling discussed in Secs. II C1 and IV B2.

B. Cavity relaxation

The decoherence of the cavity field results from sponta-
neous loss or creation of photons to or from the environment.
The dynamics of the density operator ρ of the field coupled
to an environment at nonzero temperature is described by the
master equation [19]

dρ

dt
= −κ

2
(1 + nth)(a†aρ + ρaa† − 2aρa†)

− κ

2
nth(aa†ρ + ρa†a − 2a†ρa), (2)

where κ = 1/Tc is the cavity decay rate and a (a†) is the
photon annihilation (creation) operator. The state evolution
during a short-time interval Ta = ξTc, with ξ � 1, can thus be
approximated by the action of the superoperator T :

Tρ = J0ρJ0
† + J↓ρJ↓† + J↑ρJ↑†, (3)

where the jump operators J0, J↓, and J↑ are defined by

J0 = (1 − ξnth/2) I − ξ (1/2 + nth) a†a, (4)

J↓ =
√

ξ (1 + nth) a, (5)

J↑ =
√

ξnth a†, (6)

with I being the identity operator. They describe events
in which the photon number changes by 0, −1, and +1,
respectively. Note that, in the limit of a zero-temperature
environment (nth = 0), we recover, from the expression of
J↓, that the lifetime of a photon-number state |n〉 is equal to
Tn = Tc/n.

C. Dispersive sensors

1. Ramsey interferometer

The dispersive atom-field interaction results in energy shifts

Eg(n) and 
Ee(n) of the atomic states |g〉 and |e〉, respec-
tively. These light shifts depend on the field intensity, i.e.,
on the photon number n. During the atom-cavity interaction,
the atomic superposition state (|g〉 + |e〉)/√2 prepared in R1
accumulates a phase shift ϕ(n) [4]:

ϕ(n) =
∫

dt[
Ee(n) − 
Eg(n)]/h̄. (7)

In the dispersive regime (δ � �0), the energy shifts are
proportional to n. Thus, the phase shift also depends linearly
upon the photon number:

ϕ(n) ≈ φ0
(
n + 1

2

)
, (8)

with the phase shift per photon

φ0 = �2
0t

2δ
, (9)

where effective interaction time is t = √
π/2(w0/v). The

term 1
2 in (8) accounts for the vacuum Lamb shift. In the

experiments reported here, typical values are δ/2π = 245 kHz
and φ0 = 0.256π , allowing us to discriminate between eight
photon-number values [16]. The precise calibration of ϕ(n)
and φ0 as well as the experimental verification of the linear
approximation (8) are given in Appendix A 1.

The phase shift of the atomic coherence ϕ, and hence QND
information on the photon number n provided by sensor atoms,
is measured by the Ramsey interferometer. The final detection
of a sensor atom in state μ ∈ {e,g} modifies the field state
according to

Msn
μ ρ = MμρM†

μ

Tr(MμρM
†
μ)

, (10)

where the superscript sn stands for “sensor.” For a sensor
initially prepared in state |g〉, the Kraus operators Mμ

associated to this measurement are

Mg = sin

(
φr + φ0(N + 1/2)

2

)
,

Me = cos

(
φr + φ0(N + 1/2)

2

)
, (11)

with N = a†a the photon-number operator and φr the phase
of the interferometer (see below).

Finally, the probability πg = Tr(MgρM
†
g) to detect the atom

in |g〉 when C contains n photons is a function of φr, ideally
oscillating between zero and one, given by

πg(φr,n) = 1
2 − 1

2 cos (φr + φ0(n + 1/2)). (12)

These oscillations, known as Ramsey fringes, result from an
interference between two quantum paths for the atom (either
transition from |g〉 to |e〉 in R1 and then from |e〉 to |g〉 in R2,
or no transitions at all).

042320-3



B. PEAUDECERF et al. PHYSICAL REVIEW A 87, 042320 (2013)

The Ramsey interferometer phase φr, appearing in the above
expressions, is in general the sum of two terms:

φr = φr0 + (ωa − ωr)Tr. (13)

The first one, φr0, is the relative phase between the classical
resonant pulses in R1 and R2. It is constant in all experiments
presented in this paper. The second term is the phase accumu-
lated by the atomic coherence with respect to S′ during the
Tr = 360 μs time of flight from R1 to R2 (9-cm separation at
250 m/s velocity). It depends linearly on the source frequency
ωr and on the average atomic frequency for an empty cavity ωa.
The latter can be adjusted by means of a Stark shift resulting
from a static potential Vr applied across the mirrors of R2. In
the feedback experiments, the Stark shift is the only parameter
used to adjust φr in real time from one atomic sample to
the next. In the calibration measurements, we tune the source
frequency ωr to record Ramsey fringes (see following).

2. Experimental imperfections

Our atomic source is nondeterministic with a random
number m of atoms per sample. In order to achieve a faithful
state estimation, this imperfection has to be included in the
measurement operators. Typically, the average number of
sensor atoms per sample is msn = 1.2. The probability to have
more than 2 atoms can be therefore neglected. We thus consider
that the probability to have m = 0, 1, or 2 atoms is given
by the Poisson distribution Pa(m), truncated after 2 atoms
and properly normalized. The set of all possible detection
outcomes reduces then to six values μ ∈ {∅,g,e,gg,ge,ee}
(∅ stands for detection of zero atoms). They are linked to a
new set of Kraus operators, replacing those in (11):

L∅ =
√

Pa(0)I, Lg =
√

Pa(1)Mg, Le =
√

Pa(1)Me,

Lgg =
√

Pa(2)M2
g , Lge =

√
2 Pa(2)MgMe, (14)

Lee =
√

Pa(2)M2
e

with Mg and Me given by (11). The above expressions of
the measurement operators Lgg , Lge, and Lee assume that
two atoms, simultaneously coupled to the cavity mode, do
not influence each other and can be treated independently.
We have checked numerically that this assumption is valid in
the present dispersive regime. The factor

√
2 in Lge accounts

for the indistinguishability of the two atoms simultaneously
detected in different states.

The operators Mg and Me lead to ideal Ramsey fringes (12)
with the unity contrast. Figure 2 presents, however, the
experimental Ramsey signal, measured as a function of φr for
an empty cavity, with a reduced contrast. It is limited by various
experimental imperfections, including the imprecisions on the
π/2 pulses in R1 and R2, the stray field inhomogeneities on
the atomic beam extension, and the state assignation errors in
the detector D. Taking into account all these imperfections, the
actual probability πg(φr,n) can be written as

πg(φr,n) = πo − c

2
cos(φr + φ0(n + 1/2)), (15)

where typically c = 0.79 and πo = 0.51 are the fringe contrast
and offset obtained from a sine fit of the signal in Fig. 2.

FIG. 2. (Color online) Experimental Ramsey fringes. Probability
πg(φr,0) for detecting the atom in state g as a function of the
Ramsey interferometer phase φr for an empty cavity. The dots are
experimental. The solid line is a sine fit, used to measure the fringe
contrast c and offset πo. In the paper, all presented Ramsey fringes
are recorded by scanning the source frequency ωr while keeping the
potential Vr constant.

We have checked theoretically that all Ramsey interferom-
eter imperfections leading to this reduced contrast and finite
offset can be modeled as effective state detection errors. They
are described by the probabilities ηg and ηe of erroneous
detection of state |g〉 as state |e〉 and vice versa. These two
probabilities are deduced from the Ramsey fringe contrast c

and offset πo following

ηg = 1 − πo − c/2, ηe = πo − c/2. (16)

These errors must be calibrated before each experimental run.
Their typical values are ηg = 0.10 and ηe = 0.11.

Aside from the limited state resolution of the Ramsey
interferometer, our detector D has a finite detection efficiency
ε (an atom escapes detection with a probability 1 − ε). The
measurement of ε is described in Appendix A 2. In the present
experiments, its value is about 0.3. As a consequence of finite
detection efficiency, samples involving different real atom
number may lead to the same detection event. This introduces
another level of mixing in the expression of the superoperator
corresponding to a given detection event.

The field state transformation Msn
μ in (10) has been derived

for an ideal Ramsey interferometer and a perfect detector.
However, because of nonideal detection efficiency (ε < 1)
and nonzero effective detection errors (0 < ηg,ηe < 1), one
measured outcome μ′ corresponds to a mixture of different
ideal detection outcomes μ. The conditional probabilities
P (μ′|μ) are given as a stochastic matrix in Table I. As a
result, the estimated state after the measurement (outcome μ′)
performed on state ρ is given by the action of the superoperator
Msn

μ′ defined by

Msn
μ′ ρ =

∑
μ P (μ′|μ)Lsn

μ ρ

Tr
(∑

μ P (μ′|μ)Lsn
μ ρ

) , (17)

where we introduce for the sake of simplicity the superoperator
Lsn

μ ρ ≡ LμρL†
μ.

If the sample has not been detected (it is still flying from C to
D or has escaped detection in D), the field state transformation
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TABLE I. Stochastic matrix showing the probability P (μ′|μ) to measure outcome μ′ for each ideal measurement outcome μ.

μ′ \ μ ∅ g e gg ee ge

∅ 1 1 − ε 1 − ε (1 − ε)2 (1 − ε)2 (1 − ε)2

g 0 ε(1 − ηg) εηe 2ε(1 − ε)(1 − ηg) 2ε(1 − ε)ηe ε(1 − ε)(1 − ηg + ηe)
e 0 εηg ε(1 − ηe) 2ε(1 − ε)ηg 2ε(1 − ε)(1 − ηe) ε(1 − ε)(1 − ηe + ηg)
gg 0 0 0 ε2(1 − ηg)2 ε2η2

e ε2ηe(1 − ηg)
ge 0 0 0 2ε2ηg(1 − ηg) 2ε2ηe(1 − ηe) ε2((1 − ηg)(1 − ηe) + ηgηe)
ee 0 0 0 ε2η2

g ε2(1 − ηe)2 ε2ηg(1 − ηe)

is given by the superoperator

Nsnρ =
∑

μ

Lsn
μ ρ. (18)

Note that such an unread measurement does not modify the
photon-number distribution p(n), i.e., the diagonal elements
ρnn of ρ. This is a direct consequence of the QND nature
of the dispersive atom-field interaction. However, this unread
measurement does change the nondiagonal elements of ρ,
carrying phase information on the field. The effect of unread
measurements must thus be taken into account when the field
coherences play an important role. This is clearly the case
when we use a coherent source as an actuator.

D. Control system

The timing and management of the feedback experiment is
realized by the combination of two computer-control systems
running in parallel. The deterministic control calculates and
executes predetermined sequences of digital and analog
outputs realizing all invariable experimental settings and event
triggers. For instance, it controls the laser pulses for repetitive
Rydberg state excitation, the potential voltage ramps for
atomic state detection, the frequencies of all radio-frequency
and microwave generators, etc. The adaptative control, based
on an ADwin Pro-II system (Jäger Messtechnik), acts as
the feedback controller K. It performs, in real time, data
analysis and sets values of several experimental parameters,
thus realizing the feedback action.

The adaptive system includes a CPU board (clock frequency
300 MHz, with a computing power close to 150 Mflops) and
a set of digital and analog input-output boards and input gated
counters. Its operation in each feedback loop is triggered by
an input signal sent by the deterministic system immediately
after an atomic sample detection. The first task of the adaptative
system is thus to record the number of atoms detected in states
|e〉 and |g〉.

The main task of the CPU is the state estimation, based
on the atomic detection and on all previously available
information. This rather complex computation, the principle
of which is detailed in the next sections, must be completed
in a time shorter than the time interval Ta = 82 μs between
two atomic samples. The code is thus carefully optimized
to minimize computational overheads. All quantities known
a priori are precalculated. All matrix multiplications are
expanded term by term to avoid time-consuming iteration
loops. This code is automatically generated by an appropriate
precompiler.

Once the state estimation has been performed, the CPU
decides upon the actuator settings and programs accordingly
the ADwin output channels. The digital output board sets for
instance the duration and phase of the coherent field injection
(coherent feedback scheme in Sec. III) as well as the duration
of the Ramsey pulses in R1 and R2 manipulating the atomic
states (atomic feedback scheme in Sec. IV). The analog output
boards control the Ramsey phase φr by setting the potential
Vr applied across R2 (both schemes) and the atom-cavity
interaction via the electric field in C controlled by V (atomic
scheme). At the end of its operation, the CPU enters an idle
state and waits for the next trigger from the deterministic
control.

All information about state estimation and actuator deci-
sions for the complete feedback sequence is stored in the
internal memory of the ADwin system. It is thus possible
to check offline the operation of the feedback system and to
analyze the decision making of the controller.

E. Basic experimental sequence

A feedback experiment typically consists in 4000 repe-
titions of an elementary sequence. This sequence itself is
divided into three parts. We first prepare an initial field in
C: vacuum or coherent state for the feedback with quantum
(Sec. IV) or coherent (Sec. III) actuator, respectively. We then
operate repeatedly the feedback loop. Finally, we perform an
independent reconstruction of the cavity field photon-number
distribution, assessing the performance of the system.

In order to prepare the initial state, we have first to get rid of
thermal photons and of the field left over by the previous run
of the sequence. We thus send through C about 100 resonant
atoms prepared in state |g〉 and tuned at resonance with the
mode by a proper setting of the voltage V. They behave as a
zero-temperature reservoir and efficiently absorb any photon
left in C. Once the vacuum is obtained, we inject the initial
coherent state for the coherent feedback (see Sec. III A).

For the feedback operation, we program a long sequence
of atomic samples, indexed by the integer k, prepared at
time intervals Ta. As described in the previous paragraph, the
detection of sample k triggers the execution by K of the state
estimation and actuator decision in the kth feedback loop. This
task is completed in a time shorter than Ta.

The situation is slightly complicated by the finite atomic
time of flight from C to D, separated by 86 mm. At the time
sample k is detected, there are thus s = 4 samples which have
interacted with C but have not yet been detected by D (see
Fig. 1 for a schematic representation of the sample positions at
this time). The yet unread detections of these s samples must

042320-5



B. PEAUDECERF et al. PHYSICAL REVIEW A 87, 042320 (2013)

be taken into account by K in its state estimation. The feedback
action calculated after detection of the kth sample is applied
shortly before the sample number (k + s + 1) enters C.

The end of the feedback operation can be decided upon in
two ways, corresponding to two realistic modes of operations
for an experiment in which the target Fock state would be
used as a quantum resource. In the first operation mode, we
require the resource to be ideally ready at all times. In this
“steady-state mode,” we thus run the feedback for a prescribed
arbitrary time interval, typically more than twice the cavity
damping time Tc. As will be seen in Secs. III E2 and IV F2,
the feedback process reaches, on the average, its steady state
long before this time.

In the steady-state mode, the feedback has a chance to be
halted during a quantum jump recovery process, when the state
is far from the target. This is obviously not the optimal use of
a feedback mechanism if one aims on the purity of the target
state disregarding the precise preparation time. One generally
takes into account information provided by the controller and
uses the system only when its state is estimated to be close
to the setpoint. We thus implement a “convergence mode” of
operation. The feedback is stopped as soon as the fidelity of
the target state, i.e., probability to have nt photons, reaches
a predefined threshold (typically 0.8) in three consecutive
loops.

At the end of the feedback operation, we conclude the
sequence by checking the cavity state. Instead of relying
on information provided by K, we perform an independent
reconstruction of the average photon-number distribution
p(n). The principle of this method, outlined in [20] and
investigated in detail in [21], is recalled in the next paragraph.

F. Reconstruction of photon-number distribution

The simplest approach to a measurement of p(n) is to
determine, in each realization of the sequence, the actual
photon number by a full-fledged QND measurement [16].
This method requires the detection of about 100 atoms, in
a time of the order of 25 ms. This relatively long acquisition
time is well adapted to the measurement of slowly evolving
photon-number distributions, such as that of a coherent state.
It is not compatible with states close to a Fock state |nt〉, whose
p(n) notably evolves over a time of the order of Tc/nt.

We thus give up determining the photon number in each
realization. Instead, we reconstruct by a maximum likelihood
(MaxLik) procedure [22] the average photon-number distribu-
tion pQND(n,t = 0) immediately after the end of the feedback
sequence (taken as the time origin in this section). We use
information provided by the atoms detected in a 20-sample
time window (duration of 1.64 ms after t = 0) in each of the
4000 realizations of the sequence. The phase of the Ramsey
interferometer φr alternates for successive samples between
four values, typically 1.17, 0.36, −0.44, and −1.24 rad. These
four phases provide equal sensitivity to eight consecutive
photon numbers, e.g., between 0 and 7. We then get a MaxLik
estimate of pQND(n,0) [21].

The statistical noise on this estimate is, however, larger than
the required precision. Increasing the duration of time window
would not help since relaxation comes into play on a longer
time scale. We thus instead reconstruct the time evolution of

FIG. 3. (Color online) Scheme of the quantum feedback exper-
iment with a classical actuator (coherent microwave injection). K:
feedback controller; S: microwave source coupled to C; A and �:
amplitude and phase controls for microwave injection.

the photon-number distribution pQND(n,t), over a typically
20-ms duration, using a sliding 20-sample time window. The
observed noisy evolution is fitted on the predictions of the
master equation (2) using the initial pQND(n) values as the only
fit parameters and a priori knowledge of the independently
measured Tc and nth, defining the cavity relaxation. We have
estimated in [21] the fidelity of this reconstruction method,
using extensive numerical simulations. For a state close to
|nt〉, the statistical uncertainty on pQND(nt) is about 3%.

III. FEEDBACK WITH CLASSICAL ACTUATOR

A. Classical source field injection

In the first quantum feedback experiment, proposed in [23],
reported in [14], and sketched in Fig. 3, we use as actuator a
coherent classical source S. It produces coherent pulses, which
are weakly coupled into the cavity mode by diffraction on the
mirrors’ edges. This injection performs on the cavity state a
unitary transformation described by the displacement operator
D(α) = exp(αa† − α∗a), where α is the a priori complex
injected amplitude.

In order to speed up the feedback convergence, we prepare,
at the beginning of each experimental sequence, the field in a
coherent state ρ0 = |α0〉 〈α0| of amplitude α0 = √

nt. Without
loss of generality, we can use this amplitude as the phase
reference and hence take it real. This state is produced by S
from the vacuum state generated by the absorbing atoms in the
first part of the sequence. It has, among all classical states, the
largest population in the target state |nt〉.

The initial cavity state |α0〉 is described by a real density
operator, as well as the target Fock state |nt〉. The superoper-
ators T and Msn

μ involved in the state estimation have only
real elements. We can thus restrict to real values the small
amplitudes α injected in each feedback loop by S which acts as
actuator. This leads obviously to a considerable simplification
of the real-time computations (all matrices are real) and also
makes the control of the injection phase technically much
simpler.

The real injected amplitude α is controlled by K, based upon
its cavity state estimation and upon an optimization made to
drive the cavity field as close to the target state as possible.
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These procedures are described in more detail in the following
paragraphs. The modulus of α is controlled by adjusting the
injection duration tS by means of the microwave switch A
(a PIN diode). Keeping the output power of S constant, |α| is
proportional to tS. In the experiments presented here, |α| = 0.1
corresponds to tS = 63 μs. The phase shifter � sets the phase
of α to zero or π . For a detailed description of this procedure,
see Appendix A 3.

The pulse produced by S must be rather intense, even for a
small injected amplitude, due to its weak coupling with C. It
fills the whole experimental setup, i.e., all the way from B to
D, with many microwave photons. We have carefully checked
that this rather intense field does not affect the state of all
atomic samples flying through the apparatus during injection.

In most feedback loops, the optimal injection has a small
amplitude modulus |α| � 1, as will be shown in Sec. III E1
and in Fig. 9. We therefore decided to limit |α| to αmax = 0.1.
This enables us to use an approximate form of the displacement
operator making the amplitude optimization by K much faster.
Furthermore, we do not apply microwave pulses shorter than
0.63 μs, corresponding to injection amplitudes smaller than
αmin = 0.001, since their contribution to the field state is much
smaller than that of relaxation during the loop duration Ta.
Thus, all applied injections are limited to |α| ∈ [αmin,αmax].

B. Measurement settings

We typically have for the atomic sensors a phase shift per
photon φ0 = 0.256 π . It makes possible to discriminate all
photon numbers from 0 to 7 and is thus quite appropriate for
the stabilization of Fock states up to nt = 4 reported in this
section.

The sensor samples must be as sensitive as possible to
a jump out of the target state |nt〉 into the neighboring
Fock states |nt ± 1〉. This is achieved by setting the Ramsey
interferometer phase to φr = π/2 − (nt + 1/2)φ0, leading to
equal probabilities for detection of states |e〉 and |g〉 in the
target state (mid-fringe setting) and to very different detection
statistics for states |nt ± 1〉. We use this phase setting for
stabilizing |nt = 1〉 and |nt = 2〉.

For the higher and thus shorter-lived target states |nt = 3〉
and |nt = 4〉, this choice is not optimal, as has been observed
experimentally. Due to the low thermal photon number (nth =
0.05), most quantum jumps from |nt〉 occur towards |nt − 1〉.
In addition, the coherent displacements applied to correct for
a jump widen the initially peaked photon-number distribution.
There is thus a finite probability that the correction and the
simultaneous QND measurements by the sensors drive the field
towards |nt − 2〉 instead of |nt〉. Therefore, in order to help K
to detect faster these more frequent jumps as well as to correct
more efficiently for them, we alternate the Ramsey phase
between the two values φr,1 = π/2 − (nt + 1/2)φ0 and φr,2 =
π/2 − (nt − 1/2)φ0, corresponding to a maximum sensitivity
centered at nt and nt − 1, respectively. Note that we can not use
the phase φr,2 all the time, as we have seen experimentally and
in numerical simulations. In this case, optimized for detecting
the population in |nt − 1〉, the sensors were not able to detect
properly the population in the target state |nt〉, thus reducing
the efficiency of the feedback convergence.

C. Quantum state estimation

The state estimation in the loop number k, initiated at the
detection of the kth atomic sample in the sequence, takes into
account all available information. It includes the measurement
results {μ′

i} obtained so far (1 � i � k) and described by the
superoperators {Msn

μ′
i
}, the action of the next s not yet detected

samples flying between C and D, the field decoherence given
by the superoperator T and all applied injections {αi} into C
described by the superoperators Dαi

:

Dαi
ρ = D(αi)ρD(−αi). (19)

After detection of the sample k and just before K is ready to
apply the feedback injection αk , the estimated field state reads
as

ρk =
k+s∏

i=k+1

(
Dαi−s

TN
) k∏

i=1

(
Dαi−s

TMsn
μ′

i

)
ρ0. (20)

Here, we set Dαi−s
to unity for i � s (no injection is applied

before the first sample has been detected) and for i = k + s

(after the detection of the last sample k no injection has
been performed yet). The right product in (20) includes the
detection results of the k already detected samples, and the
left product includes the s samples still flying from C to
D. Note that here, we implicitly assume that relaxation can
be treated independently from displacements and atom-cavity
interaction. This is a quite reasonable assumption since the
effect of relaxation during the time interval Ta, represented by
the superoperator T , is very small.

In order to make it possible for K to complete the state
estimation within a time interval shorter than Ta, we simplify
matrix calculations. First, we truncate the Hilbert space. We
limit it to the first Fock states up to nmax = 7 photons for the
target states |nt = 1〉 and |nt = 2〉 and to nmax = 8 photons for
|nt = 3〉 and |nt = 4〉. These values have been experimentally
found to be a reasonable compromise between the computation
time and the precision of the state estimation.

The next optimization is to compute the superoperator T
using the approximate form given by (3). In addition, the
restriction to small (less than 0.1 in modulus) real injection
amplitudes allows us to use a second-order approximation in
α for the displacement superoperators Dα:

Dαρ ≈ ρ − α[ρ,a† − a] + α2

2
[[ρ,a† − a],a† − a]. (21)

We next approximate the left product in (20) by

k+s∏
i=k+1

(
Dαi−s

TN
) ≈ Dβk

(TN)s (22)

with βk = ∑k−1
i=k+1−s αi . This approximation holds for small

accumulated field displacements βk � 1 and short delays
sTa � Tc. In this way, K precalculates the constant super-
operators Msn

μ′ , T , and the product (TN)s before the feedback
operation starts. In each feedback loop, K recursively updates
the right product in (20), calculates βk , and multiplies all
resulting operators.

Finally, in order to skip unnecessary operations (e.g.,
calculation of equal elements or multiplications by zero), we
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use the intrinsic mathematical properties of the superoperators
(symmetries, multidiagonal form, etc.).

D. Controller decision

1. Distance to target

In each loop, the feedback controller K adjusts the value of
the control injection α minimizing an appropriate distance
between the target and the current state of the system.
The distance between any state ρ and a pure quantum reference
state ρt is often defined as 1 − Ft(ρ), where Ft(ρ) = Tr (ρρt)
is the fidelity with respect to the reference state. For ρ = ρt,
the fidelity reaches its maximum value 1, and the distance
vanishes. For all states orthogonal to ρt, this distance takes its
maximum value 1, making it impossible to distinguish between
all of them. In other words, this simple distance definition gives
no clue on how far from the target the system state is.

We thus provide K with a sensitivity to the photon-number
values by defining the distance to the target state ρt = |nt〉〈nt|
as

d(ρt,ρ) = Tr
[
Dntρ

]
(23)

with the diagonal distance matrix Dnt given by

Dnt =
nmax∑
n=0

dnt (n) |n〉 〈n| . (24)

Note that this distance reduces to the fidelity-based one
1 − Ft(ρ) if dnt (n) = 1 − δn,nt , i.e., if all coefficients are set to
1 except for dnt (nt) = 0. Figure 4 presents four sets of dnt (n)
coefficients chosen for the stabilization of the four target states
|nt〉 with nt ranging from 1 to 4.

At each feedback iteration, after obtaining the updated field
state estimate ρ, we search for the displacement amplitude α

minimizing d(ρt,ρα) for the displaced state ρα = Dαρ. The
dependence of dnt (n) is thus chosen to provide a minimum of
d(ρt,ρα) with respect to α in the vicinity of α = 0 for ρ = ρt

and local maxima for all other photon-number states [23]. The
exact values of the dnt (n) coefficients plotted in Fig. 4 are then
optimized for each nt by numerical simulation of the quantum
feedback experiment. The optimization criterion is the rate of
convergence towards the target state. The principle of these
quantum Monte Carlo simulations is outlined in Appendix B.

FIG. 4. (Color online) Coefficients dnt (n) defining the distance
d(ρt,ρ) to four target Fock states ρt = |nt〉 〈nt| with nt = 1 to 4.

2. Determination of the control injection amplitude

Complete numerical minimization of d(ρt,ρα) with respect
to the displacement amplitude α is far too time consuming to be
performed by K in the limited duration Ta of a loop. We thus use
an analytical approximate formula for the optimal value αopt.
Using the second-order approximation of the displacement
operators given in (21), we get

d(ρt,ρα) ≈ d(ρt,ρ) − a1(ρ)α − a2(ρ)
α2

2
(25)

with

a1(ρ) = −Tr([Dnt ,a
† − a]ρ),

(26)
a2(ρ) = −Tr([[Dnt ,a

† − a],a† − a]ρ).

The optimal amplitude αopt must minimize the second-order
polynomial function in (25) over the interval [−αmax,αmax]. If
a2(ρ) < 0, d(ρt,ρα) is convex and reaches its minimum for
αopt = −a1(ρ)/a2(ρ). If this value falls outside the allowed
interval, or if a2(ρ) � 0 meaning that the concave d(ρt,ρα)
function has no local minimum, we set αopt to the interval
margin ±αmax corresponding to the smallest distance, i.e.,
αopt = sgn[a1(ρ)]αmax. Moreover, if |αopt| < αmin, K sets
αopt = 0 (see Sec. III A).

The total duration of the calculations performed by K for
a single loop never exceeds 70 μs. We thus programmed K
to switch the required correction phase by the phase shifter
� always at 70 μs after the loop start. At the same moment
K also opens the switch A which is then closed after the
injection duration corresponding to the chosen amplitude
modulus |αopt|. This duration being limited to αmax = 63 μs,
the microwave pulses of neighboring feedback loops never
overlap.

Aside from numerical simulations, which have been ex-
tensively used to test and optimize the feedback algorithm,
the convergence of the closed-loop system in the presence
of the experimental imperfections has also been confirmed
theoretically by considering d(ρt,ρ) as a control Lyapunov
function [24] and ensuring global asymptotic convergence
towards the target state ρt in the absence of decoherence [25].

E. Experimental results

1. Examples of individual trajectories

Figure 5 presents two individual feedback sequences
corresponding to nt = 1 and 4. The panels, from top to bottom,
present the atomic detection results (the bars indicate the
number of detected atoms in g and e in each loop), the distance
d to the target ρt, the injection amplitude α chosen by K
and plotted in a pseudologarithmic scale with an excluded
interval ] − 0.001,0.001[, and the estimated photon-number
distribution p(n) in color (grayscale). The evolution of the
mean photon number n is shown as a black line in the p(n)
panel. Figure 6 shows four density matrices estimated by K
at times t = 0, 15.6, 48.4, and 51.5 ms during the feedback
sequence presented in Fig. 5 for nt = 4 (right panel).

Starting from the coherent field with amplitude α0 = √
nt,

the field state converges rapidly to the target, with a p(nt) value
close to one and hence n ≈ nt. The actuator then idles since
this is the best strategy to keep the prepared state. From time to
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FIG. 5. (Color online) Single sequences of the feedback experiment with nt = 1 (left panel) and nt = 4 (right panel). The frames present as
a function of time t the detected sensor states (upwards bars for e, downwards bars for g), the distance d to nt, the feedback injection amplitude
α chosen by K (in pseudologarithmic scale), and the photon-number distribution p(n) inferred by K [color (grayscale)] together with its mean
value n (solid black line).

time, K detects a quantum jump. This is for instance the case at
23 ms (photon loss) and 125 ms (thermal excitation creation)
for nt = 1 in Fig. 5. The average photon number progressively
changes as information is gathered from the sensor atoms,
and the distance d accordingly increases. The controller thus

FIG. 6. (Color online) Absolute values of the cavity field density
matrix elements estimated by the controller during the realization
of the feedback experiment with nt = 4 presented in Fig. 5 (right
panel). (a) Initial coherent state (t = 0 ms) with the average photon
number nt. (b)–(d) Estimated state at 15.6 ms (high population in
|nt〉 after initial feedback convergence), at 48.4 ms (after a sudden
quantum jump to |nt − 1〉), and at 51.5 ms (during the correction
phase), respectively.

reactivates the actuator and S injects correcting microwave
fields to restore |nt〉.

We clearly observe that the correction of a single quantum
jump implies very many actions of the actuator source S.
Acting alone, S would produce a coherent displacement with
a well-defined phase. In contrast, we need compensate a single
photon loss or creation, implying no phase information at
all. The feedback strategy, spontaneously implemented by
K, consists in performing many injections with exponentially
decaying amplitudes of two opposite phases, as conspicuous
in Fig. 5. The interplay between these injections and the
state reductions performed by the sensor atoms results in an
effective phaseless injection or subtraction of a single photon.

The corrections are more frequent when the target photon
number increases since its lifetime decreases, making quantum
jumps more frequent. For nt = 4, as clearly seen in Fig. 5,
the actuator is active up to 50% of the time. This indicates
why higher nt values can not be stabilized with this coherent
feedback scheme.

2. Average evolution of p(n)

Figure 7 shows the time evolution of the average proba-
bilities p(nt,t), p(n < nt,t), and p(n > nt,t) to have nt, less
than nt, and more than nt photons in the field, respectively,
for each target state nt = 1 to 4. The averages are performed
over 4000 sequences. After a few tens of milliseconds, these
probabilities saturate to their steady-state values set by the
competition between the quantum jumps out of the target state
and the state recovery induced by the feedback mechanism.
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FIG. 7. (Color online) Establishment of the steady-state regime.
The probabilities p(nt,t) (squares), p(n < nt,t) (triangles), and
p(n > nt,t) (circles) are averaged over 4000 trajectories for each
nt value. Panels (a) to (d) correspond to nt = 1 to 4, respectively.
Solid lines are a fit with the sum of two exponential functions.

For each target state, the probabilities fit well with the
sum of two exponential functions with time constants t1 and
t2. They are given in Table II for all nt values. We identify
the reciprocal of the first time constant t−1

1 , with the rate of
information acquisition by the sensor atoms. Acting alone, this
information gathering process would project the cavity field
onto a randomly selected Fock state in a time of the order
of t1 [16]. The second time constant corresponds to the time
required to inject or suppress individual photons in the cavity.
It is quite long and t2 > t1 since, as mentioned above, the
injection of a single photon requires very many actions of S.

The evolution of the average standard deviation σ (t) of the
photon-number distributions p(n,t) performed on the same
4000 trajectories for each nt value is shown in Fig. 8. The
monotonic reduction of σ (t) fits well with an exponential
decay with a single time constant tσ given in Table II. The
photon-number variance reduction is mostly linked to the
rate of information provided by the sensor atoms and fairly
insensitive to the actuator’s injections, which do not broaden
p(n) on the average. Hence, we get a single time constant tσ
with tσ ≈ t1.

3. Controller actions

Figure 9 presents an analysis of the feedback injections
chosen by K during all sequences with |nt = 4〉. Figure 9(a)
shows the histogram of all nonzero values of the injection
amplitude α in a pseudologarithmic scale, obtained from
4000 feedback sequences. About 50% of these amplitudes
are inside the interval [−0.01,0.01] and only 25% have the

TABLE II. Characteristic times, in milliseconds, of the estab-
lishment of the steady-state regime.

nt 1 2 3 4

t1 4.9 ± 0.1 7.4 ± 0.1 6.7 ± 0.2 6.8 ± 0.3
t2 13.7 ± 0.1 18.8 ± 0.2 14.2 ± 0.3 9.9 ± 0.3
tσ 6.39 ± 0.04 7.00 ± 0.05 6.02 ± 0.02 5.78 ± 0.04

FIG. 8. (Color online) Time evolution of the normalized standard
deviation σ (t) averaged over 4000 trajectories for each nt value.
Panels (a) to (d) correspond to nt = 1 to 4, respectively. Solid lines
are fits to an exponential decay.

maximum allowed modulus αmax = 0.1. Our choice for αmax

is thus justified a posteriori. Since all injection amplitudes
from the interval ] − αmin,αmin[ are arbitrarily set to zero, we
have excluded it from the plot.

Figure 9(b) presents the average correction amplitude |α|
as a function of the estimated probability p(nt). As intuitively
expected, the higher p(nt), the smaller |α|. For very small

FIG. 9. Injection amplitudes chosen during feedback operation
with |nt = 4〉. (a) Histogram of nonzero values of α. (b) Absolute
value of α averaged over 4000 trajectories of 164 ms duration as a
function of the current probability of nt.
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FIG. 10. (Color online) Photon-number distribution pQND(n), measured by an independent QND process, for the target photon numbers nt

from 1 to 4 prepared by means of the coherent actuator feedback. (a) Reference initial coherent field with nt photons on the average. (b) Field
reconstructed in the steady-state mode after interrupting the feedback loop at 164 ms. (c) Converged field when K estimates that p(nt) > 0.8.

values of p(nt), the cavity is far from the target state and
almost all injections have the largest allowed modulus 0.1.

The conspicuous peak at α = −0.05 in Fig. 9(a) results
from our initial state choice, a coherent state with an amplitude
α0 = 2 (4 photons on the average). It corresponds to a
maximum value for p(nt). However, it does not correspond
to a minimum of the distance defined in Fig. 4. In fact,
this distance of a coherent state to the target is minimal
for an amplitude αd = √

3.8. Thus, K, aware of the initial
state, starts by correcting in the first loop this mismatch by
injecting an amplitude αopt = αd − α0 = −0.05. At this initial
time, p(nt) = 0.22, explaining the small peak at this value in
Fig. 9(b).

4. Photon-number distribution of prepared states

As discussed in Sec. II F, we assess the feedback per-
formance in the steady-state and convergence modes by
reconstructing the photon-number distributions pQND(n) at

FIG. 11. (Color online) Probability Fconv(nt,t) for p(nt) to reach
a threshold level of 0.8 (smooth line). Panels (a) to (d) correspond to
nt from 1 to 4. Each curve is determined from 4000 trajectories. The
horizontal lines depict the 0.63 level defining the convergence time.
The staircase line presents a passive trial-and-error QND method for
Fock state preparation.

the end of the feedback procedure. Figure 10 shows three
measured distributions: (a) that of the initial coherent field; (b)
the steady-state distribution after interrupting the feedback
operation after 164 ms; (c) the distribution after feedback
convergence [p(nt) � 0.8].

The feedback conspicuously narrows the photon-number
distribution and considerably increases the target state popu-
lation. In the steady state, for all nt values, pQND(nt) is about
twice as high as the initial value in the coherent state. Of course,
the higher the photon number, the higher the probability for
halting the feedback during a quantum jump recovery. This
explains the lower performance observed for high-lying states.

In the convergence mode, the target state population is
obviously much higher since we never halt feedback during
a quantum jump recovery in principle. The final pQND(nt) is
very close to the threshold value for low nt. It departs from it
for the higher nt due to the finite time required by K to detect
a quantum jump.

5. Convergence time

We deduce from the analysis of all 4000 feedback sequences
in the convergence mode the probability Fconv(nt,t) for p(nt)
to reach the threshold 0.8 at time t . Figure 11 shows the
corresponding results for the four target states. We define the
convergence time for each nt value as the time for which
1 − e−1 = 63% of the sequences converge. The convergence
times correspond to the intersection of the Fconv(nt,t) curves
with the horizontal lines in Fig. 11. They are given in
Table III.

It is instructive to compare our active feedback scheme
with a simpler, passive method providing us with a Fock state
|nt〉 on demand. It is based on a “trial-and-error” approach.
We prepare a coherent state with an amplitude α0 = √

nt.

TABLE III. Convergence time, in milliseconds, of two protocols
preparing photon-number states |nt〉 on demand.

nt 1 2 3 4

Coherent injection feedback 26 31 49 58
Trial-and-error projection 42 89 251 418
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FIG. 12. Optimization of the QND measurement duration of the
trial-and-error Fock state preparation for nt = 2.

We then send dispersive sensors for a total time τ . Their
settings (Ramsey phase and dephasing per photon) are the
same as for the feedback sensors, i.e., to optimally distinguish
the nt-photon state from the others (see Sec. III B). If we
get from this measurement p(nt) � 0.8, we have succeeded.
If it is not the case, we erase the cavity field and restart
the whole preparation-measurement sequence. We adjust the
measurement time τ by minimizing the overall convergence
time (see Fig. 12 for nt = 2). If τ is chosen to be too short,
the sensors do not bring enough information to pick up
a definite photon number. If τ is very long, the overall
convergence time, which is basically the product of the average
number of trials [at least of the order of 1/p(nt) in the initial
coherent state] by their duration τ , is also very long.

The optimized values of τ for the four nt values and the
corresponding convergence probabilities are also shown in
Fig. 11. The convergence times of both the feedback and trial-
and-error state preparations are summarized in Table III. Note
that we do not include into τ the time needed to restart a new
sequence, thus overestimating the efficiency of the passive
method. Being about 1.6 times faster for nt = 1, the feedback
method becomes more and more efficient with respect to the
passive one for higher nt.

This clearly demonstrates the interest of an active method
even for the simple task of state preparation. Of course, the
passive method is totally unable to preserve the prepared Fock
state by compensating for the quantum jumps.

IV. FEEDBACK WITH QUANTUM ACTUATORS

A. Resonant atoms in a feedback loop

We now use resonant atoms as the feedback actuators for the
correction of quantum jumps. The scheme of this experiment
is presented in Fig. 13(a). Its general organization is similar
to that of the coherent feedback experiment. Here, however,
Rydberg atoms are used both as sensors extracting QND
information out of the field and as actuators correcting the
field quantum jumps. The actuator atoms can either emit a
single photon into the mode or absorb one, according to their
initial state (|e〉 or |g〉). This scheme allows us to perform fast
correction of quantum jumps and to stabilize high-lying Fock
states, up to nt = 7.

FIG. 13. (Color online) Scheme of the quantum feedback exper-
iment with emitting and absorbing resonant atoms used as quantum
actuators. (a) Experimental setup. The controller K sets the durations
of the microwave pulses in R1 and R2 and the potential V applied
to one of the mirrors of C. Light (magenta) and dark (blue) toroids
represent sensor (dispersive) and actuator (resonant) samples. Their
positions with respect to the Ramsey zones, cavity, and detectors are
to scale. They correspond to the end of the kth feedback loop after the
detection of atom k. (b) Schematic control sequence for the realization
of the three atomic sample types for an atom crossing the cavity center
at time t0. The rectangles represent the Ramsey pulses. The solid line
represents the time dependence of the potential V, which is switched
between two values Vdis (lower) and Vres (upper), corresponding to
dispersive and resonant atom-field interaction, respectively.

1. Three atomic sample types

An atomic sample can be either set as a sensor (sn), an
emitter (em), or an absorber (ab), corresponding respectively
to three atomic states at the entrance of C: (|g〉 + |e〉)/√2,
|e〉, and |g〉. Since all atoms exit the circular state excitation
zone B in |g〉, the preparations of a sensor, an emitter, or an
absorber require a π/2 pulse, a π pulse, or no pulse at all in
R1, respectively, as schematically shown in Fig. 13(b).

Sensors interact dispersively with C before undergoing
a second π/2 Ramsey pulse in R2. Actuators are set at
resonance with C and do not experience a pulse in R2. The
atomic frequency in C, and thus the atom-cavity detuning δ,
are controlled by the Stark effect produced by the potential
V applied to one of the mirrors (the other is connected
to ground). The dispersive (δ/2π = 245 kHz) and resonant
(δ = 0) conditions correspond to V = Vdis = −0.62 V and
V = Vres = −2.5 V, respectively. The default potential value
is Vdis. For actuator samples, we thus switch V to Vres for the
appropriate time interval Tres = Tem or Tab, depending on the
actuator type [see Fig. 13(b)]. The application of this potential
pulse is synchronized with the atomic position in C. It is
centered around the time when the sample crosses the cavity
axis.

During the time interval Tres, the sample moves across
the Gaussian transverse profile of the cavity mode. We take
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this motion into account by defining the effective atom-cavity
interaction time teff :

teff =
∫ Tres

2

− Tres
2

e−(vt/w0)2
dt. (27)

From now on, we always refer to this effective time when
discussing resonant interaction.

In principle, the quantum jump compensation could be
achieved with a single actuator. On the contrary, each sensor
only provides partial information on the photon-number
distribution. Many tens of sensors are required to extract
a photon number from the binary information provided by
atomic detections [16]. We can thus anticipate that an efficient
feedback requires many more sensor samples than actuators.
We thus alternate, in the feedback sequence, a series of
Nsn sensor and Nct control samples, with Nsn > Nct . The
typical values are Nsn = 12 and Nct = 4. They have been first
found by numerical simulation of the feedback performance
(see Sec. IV E3) and then optimized experimentally.

The samples in the sensor group are always used as sensors.
The samples in the control group are controlled by K. Based
on its state estimation, it can decide to use them as emitters or
absorbers. It can also decide, if the state is close to the target,
to use them as sensors.

2. Feedback loop

The initial field state in this experiment is the vacuum ρ0 =
|0〉 〈0|, produced by the field-absorbing atoms at the beginning
of each sequence. After each sample detection, K estimates the
field’s quantum state taking into account the type of the last
detected sample. No information is wasted and the final state of
emitter and absorber samples is also used in this estimation, as
well as all available information on experimental imperfections
for dispersive and resonant interactions. Then, K decides which
action for the control samples at hand leads to the largest
reduction of a proper distance between the estimated and target
states.

At the end of the state estimation based on the kth sample
detection, there are three samples upon which K decides,
provided of course they are of the control type (sensor samples
are not under control of K). The sample k + 8 is at this time
located immediately before R1. It can still be programmed
to be either an emitter, an actuator, or a sensor by choosing
its initial state. The samples k + 7 and k + 6 are flying from
R1 to C. Their states have already been decided upon and
can not be modified. However, K can still decide whether it
applies the Stark pulse in C or not. It can thus decide to use
these samples as actuators, as initially planned, or to merely
discard them if new information makes this option optimal.
For these discarded (ds) samples, the potential V of the cavity
mirror is kept at the value Vdis for a dispersive atom-cavity
interaction. Within an irrelevant global phase, this interaction
does not modify the photon-number distribution and extracts
no information. No pulse is applied in R2 and the result of the
final detection in D is merely discarded.

B. Resonant interaction

1. Rabi oscillations

The resonant interaction of an atom with the cavity field
results in a coherent energy exchange, the quantum Rabi
oscillation, well described by the Jaynes-Cummings model [4].
Starting from a joint atom-cavity state |e,n〉 or |g,n + 1〉,
the system evolves, after the effective interaction time t , into
|�em(t)〉 or

∣∣�ab(t)
〉

given, respectively, by

|�em(n,t)〉 = cos
�nt

2
|e,n〉 + sin

�nt

2
|g,n + 1〉,

(28)
|�ab(n,t)〉 = − sin

�nt

2
|e,n〉 + cos

�nt

2
|g,n + 1〉.

Energy exchange between the atom and the field occurs at the
frequency

�n = �0

√
n + 1, (29)

where �0 is the vacuum Rabi frequency. From (28) we see
that the probability to detect an atom in state |g〉 oscillates in
time as

πem
g (n,t) = 1

2 − 1
2 cos(�nt),

(30)
πab

g (n,t) = 1
2 + 1

2 cos(�nt).

2. Experimental imperfections

Figure 14 shows experimental vacuum Rabi oscillations. To
avoid contributions from two-atom events, we have lowered
the average atom number per sample and have selected
only the sequences in which exactly one atom is detected. We
plot the probability πg(t) to detect an atom in state |g〉 versus
the effective interaction time t . In Fig. 14(a), the initial atomic
state is |e〉 and the cavity is initially in its vacuum state. In
Fig. 14(b), the initial atomic state is |g〉 and the cavity contains
one photon. This initial one-photon Fock state is prepared by
the QND photon-number projection of a small coherent field
followed by a post-selection of the experimental runs in which
the measured final probability p(1) of having 1 photon is larger
than 90% [20]. In this way, we obtain p(1) = 93.4%, close to
an ideal Fock state |n = 1〉.

FIG. 14. (Color online) Experimental vacuum Rabi oscillations.
The probability πg to detect a resonant atom in state g is measured as
a function of the effective interaction time t . Initially, the atom-cavity
system is prepared in a joint state |e,0〉 (a) or |g,1〉 (b). The
dots are experimental, with statistical error bars. Solid lines are
phenomenological fits to exponentially damped oscillating functions.
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The experimental Rabi oscillations are damped and have a
reduced contrast as compared to the ideal oscillations in (30).
The solid lines in Fig. 14 are fits to phenomenological functions
including a damping term, given by

π |e,0〉
g (t) = π0 − c

2
e−t/τ0 cos(�0t),

(31)
π |g,1〉

g (t) = π0 + c

2
e−t/τ0 cos(�0t).

The shared fit parameters are the Rabi frequency �0/2π =
(46.0 ± 0.3) kHz, the damping rate 1/τ0 = (0.022 ±
0.006) μs−1, the offset π0 = 0.51 ± 0.01 and the contrast
c = 0.90 ± 0.02. Good agreement between the recorded os-
cillations and the fit justifies our choice of an exponential
damping.

The points at t = 0 in Fig. 14 correspond to a direct atomic
state detection with no atom-cavity interaction. In principle,
the corresponding probabilities should be zero and one in
Figs. 14(a) and 14(b), respectively. The observed deviations
from these values, and hence the contrast c and offset π0 of
the fit functions, can be attributed to pure detection errors η̃e

and η̃g mixing the detected states. We can express the contrast
and the offset in terms of these errors [see Eq. (16)]:

c = 1 − η̃e − η̃g, π0 = (1 + η̃e − η̃g)/2, (32)

resulting in η̃g = 0.03 ± 0.01 and η̃e = 0.07 ± 0.01. Note
that η̃e and η̃g are the real detection errors and not the
effective mixing ηe and ηg of the atomic states describing the
Ramsey interferometer imperfections, which we introduced in
Sec. II C1.

In order to characterize fully the resonant interaction
for all relevant photon-number states, we have measured a
series of Rabi oscillations starting from joint atom-field states
|e,n〉 (0 � n � 6) and |g,n〉 (1 � n � 6). The resulting signals
are plotted in Fig. 15 for an initial atomic state |g〉 (the data
corresponding to |e〉 are not shown for the sake of clarity, but
they have also been recorded and analyzed).

The photon-number states |n〉 are again obtained by a
QND photon-number measurement procedure performed on
an initial coherent state and by selecting the realizations in
which the final probability of having n photons is larger than
a threshold fn. The chosen values of fn and the resulting
photon-number distribution for n from 0 to 6 are given in Table
IV. These distributions are mainly a mixture of the required
Fock state with its two neighbors and will be taken into account
in the following analysis.

TABLE IV. Measured photon-number distribution p(n) of the
photon-number states prepared by QND photon counting with the
threshold fn.

n fn p(n − 1) p(n) p(n + 1)

0 0.90 0.97 0.03
1 0.90 0.05 0.93 0.02
2 0.85 0.07 0.89 0.04
3 0.80 0.10 0.85 0.05
4 0.75 0.13 0.80 0.07
5 0.70 0.16 0.76 0.08
6 0.60 0.21 0.68 0.11

FIG. 15. (Color online) Rabi oscillations measured in Fock states
from n = 1 (a) to 6 (f). The initial atomic state is |g〉 (the data
for the initial level |e〉 are not presented in this figure). The points
are experimental with statistical error bars. Solid lines are fits to
phenomenological damped oscillating functions taking into account
the impurity of the prepared Fock states.

We fit the data in Fig. 15 with a sum, over the photon
number, of phenomenologically damped Rabi oscillations,
weighted by the photon-number probability distributions given
in Table IV. These functions, for the Fock state |n〉 and the
initial levels |e〉 and |g〉, are given by

π |e,n〉
g (t) = π0 − c

2
e−t/τn cos(�nt),

(33)
π |g,n〉

g (t) = π0 + c

2
e−t/τn−1 cos(�n−1t).

The shared contrast c and offset π0 are determined by the fits
of Fig. 14. The only fit parameters are thus the n-photon Rabi
frequencies �n and the damping rates τ−1

n .
The fitted values of these parameters are shown in Fig. 16 as

functions of
√

n + 1. Squares and rectangles are deduced, re-
spectively, from oscillations starting from |e,n〉 and |g,n + 1〉.

FIG. 16. (Color online) Frequency and damping rate of the fits
to the experimental Rabi oscillations. The initial atom-cavity state is
either |g,n + 1〉 (triangles) or |e,n〉 (squares). Straight lines are linear
fits.
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We observe that �n is, as expected from (29), proportional to√
n + 1. We deduce from these data �0/2π = 46.0 ± 0.5 kHz,

in good agreement with the value extracted above from the
vacuum oscillations.

More surprisingly, the damping rates τ−1
n are also, within a

large experimental dispersion, proportional to
√

n + 1:

τ−1
n ≈ τ−1

0

√
n + 1. (34)

The τ−1
0 value extracted from the linear fit in Fig. 16, 1/τ0 =

0.020 ± 0.009 μs−1, coincides with the damping rate of the
vacuum oscillations obtained above.

This result suggests that a dominant source of Rabi
oscillations damping might be the dispersion of the vacuum
Rabi frequencies experienced by atoms crossing C along
different paths within the 1-mm diameter of the atomic beam,
which is not much smaller than the standing-wave pattern
extension along the cavity axis. A simple model of this
dispersion effectively leads to a damping rate proportional
to the average Rabi oscillation frequency.

The Rabi oscillations are quite sensitive to the experimental
alignment, e.g., to the position of the atomic beam with respect
to the cavity mode. They are thus regularly recalibrated. The
results of Fig. 16 allow us to simplify this calibration by
recording only vacuum oscillations π |e,0〉

g (t) [Fig. 14(a)] and
then deducing all Rabi oscillations from this single fit.

3. Field transformation

In this feedback scheme, all state transformations, from the
field relaxation to the interaction with sensors and actuator
atomic samples, do not couple the diagonal elements of the
field’s density operator ρ (the photon-number probability
distribution p(n) = ρnn) to its nondiagonal terms. In other
words, all operations performed on the field are phase
independent. The initial state being the vacuum, with no
phase information, the nondiagonal elements of ρ remain zero
during the whole feedback sequence. Therefore, we can greatly
simplify the state estimation and controller decision making
by only keeping track of p(n). We nevertheless still use, in
the following discussion, the density matrix formalism for the
sake of an easy comparison of the two feedback methods. We
must keep in mind that all density operators are, from now on,
diagonal in the Fock state basis.

Let us note Rν
μ the Kraus operator describing the field

projection occurring when an emitter (ν = em) or absorber
(ν = ab) atom has been ideally detected in state μ after an
ideal resonant interaction with C. Using (28), we obtain the
four Kraus operators

Rem
e =

∑
n

cos
�nt

2
|n〉 〈n| ,

Rem
g =

∑
n

sin
�nt

2
|n + 1〉 〈n| ,

Rab
e =

∑
n

sin
�nt

2
|n〉 〈n + 1| ,

Rab
g =

∑
n

cos
�nt

2
|n + 1〉 〈n + 1| + |0〉 〈0| . (35)

The corresponding state transformation reads as

Mν
μρ ≡ Rν

μρRν
μ
†

Tr
(
Rν

μρRν
μ
†) . (36)

In order to take into account the spurious experimental Rabi
oscillation damping, we replace the ideal state transformations
Rν

μρRν
μ
† by the action of the superoperators Rν

μ given by

[
Rem

e ρ
]
nn

= 1
2 [1 + e−t/τn cos(�nt)]ρnn,[

Rem
g ρ

]
nn

= 1
2 [1 − e−t/τn−1 cos(�n−1t)]ρn−1,n−1,[

Rab
e ρ

]
nn

= 1
2 [1 − e−t/τn cos(�nt)]ρn+1,n+1,[

Rab
g ρ

]
nn

= 1
2 [1 + e−t/τn−1 cos(�n−1t)]ρnn, (37)

where we define ρ−1,−1 ≡ 0 and e−t/τ−1 cos(�−1t) ≡ 1. Since
we are interested only in the diagonal elements of ρ, we do
not give here the transformations of its nondiagonal elements.

Control samples contain on purpose a small average atom
number (typically 0.5, in contrast with 1.3 atoms on average
in sensor samples) in order to limit the probability of having
two atoms at a time, jeopardizing the field jump correction.
However, two atom events have to be taken into account when
estimating the field state after an actuator sample detection.
In contrast to the case of the dispersive interaction (14), the
simultaneous coupling of two resonant atoms to the field can
not be represented as a product of two independent one-atom
interactions, i.e., Rν

s1s2
�= Rν

s1
Rν

s2
for s1 and s2 ∈ {g,e} and ν ∈

{em,ab}. The theoretical evolution of two atoms resonantly
coupled to the cavity field and its experimental calibration are
given in Appendix C. Based on these results, we get the set of
superoperators Rν

μ, with μ ∈ {ee,eg,gg} [see Eq. (C10)].
We take into account the atom-number Poisson distribution

in the actuator samples as we did for sensor samples [see
Eq. (14)]. The superoperators Lν

μ describing the field evo-
lution produced by the resonant interaction with an actuator
containing up to two atoms, followed by the ideal detection
result μ, are thus given by

Lν
∅

= Pa(0)I, Lν
g = Pa(1)Rν

g, Lν
e = Pa(1)Rν

e ,

Lν
gg = Pa(2)Rν

gg, Lν
ge = 2 Pa(2)Rν

ge, Lν
ee = Pa(2)Rν

ee,

(38)

where I is the unity superoperator.
The effects of the limited detection efficiency and state

resolution of D can be included as for the sensor samples. The
detection result μ′ of an actuator of type ν ∈ {em,ab} can be
expressed [see also Eq. (17)] as

Mν
μ′ρ =

∑
μ Pac(μ′|μ) Lν

μρ

Tr
( ∑

μ Pac(μ′|μ) Lν
μρ

) . (39)

The conditional detection probabilities Pac(μ′|μ) are to be
taken from Table I, substituting the effective detection errors
of the Ramsey interferometer ηe/g by the pure detection errors
η̃e/g of D.
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The action of a not-yet-detected actuator on the field’s state
is described by the superoperator

Nνρ =
∑

μ

Lν
μρ. (40)

Note that, as mentioned above, a discarded actuator, being off
resonant, does not change the field’s energy and provides no
information on the field since it is always detected in its initial
state. Therefore, the superoperators Mds

μ′ and Nds related to a
discarded sample are both unity:

Mds
μ′ ρ = Ndsρ = ρ. (41)

C. Quantum state estimation

The state estimation (17) after the detection of a sensor
sample can be somewhat simplified. Since ρ is always
diagonal, unread sensor measurements do not change it. The
state estimation, which thus does not depend on the detection
efficiency ε, consequently simplifies to

Msn
μ′ ρ =

∑
μ Psn(μ′|μ) Lsn

μ ρ

Tr
( ∑

μ Psn(μ′|μ) Lsn
μ ρ

) , (42)

where the conditional probabilities Psn(μ′|μ) are given in
Table I with ε set to 1. Obviously, the state transformation
due to a not-yet-detected sensor is unity:

Nsnρ = ρ. (43)

Since the distance between two successive samples is
smaller than the size of the cavity mirrors, the electric pulse
Vres applied across C in order to tune an actuator in resonance
spoils the phase of a neighboring sensor, which is also located
between the mirrors at this time. Therefore, the measurement
of a sensor neighboring an actuator does not provide reliable
information on the field and we always replace Msn

μ′ by unity
in this case.

Using the state transformations for all possible sample types
and detection results and taking into account decoherence, we
obtain the complete state estimate ρk after detection of the kth
sample:

ρk =
k+s∏

i=k+1

(TNνi )
k∏

i=1

(
TMνi

μ′
i

)
ρ0. (44)

Here, the detection result of the ith sample is μ′
i ∈

{∅,g,e,gg,ge,ee} and its type is νi ∈ {sn,em,ab,ds}. The first
k samples have been already detected, while the last s have
interacted with C but are still flying towards D.

As already stressed, the field density matrix stays always
diagonal in this experiment. The state estimation (44) is
performed only with the photon-number distribution requiring
thus less computing power than the feedback experiments with
coherent injections.

To reduce the calculation time further, we truncate the
Hilbert space to the first 9 Fock states for nt = 1 to 5 and
to the first 10 states for nt = 6 to 7. We also approximate the
left product in (44) by

k+s∏
i=k+1

(TNνi ) ≈ (T )s
k+s∏

i=k+1

Nνi (45)

and precalculate the constant power term (T )s . The validity
of (45) has been confirmed by numerical simulations of the
experiment.

D. Controller decision

1. Distance

The controller’s task is to find the actuator action which
minimizes the distance, defined by (23) and (24), of the
updated field state to the target nt. For the photon-number
distribution p(n), this distance can be rewritten as

d(nt,p(n)) =
∑

i

dnt (i) p(i). (46)

The values of dnt (n) presented in Fig. 4 were adapted for
the coherent feedback and derived from the properties of the
displacement operator. They are thus not a priori optimal for
the atomic actuator feedback.

Emitter and absorber samples are equally efficient for
adding or removing a photon in the cavity. This suggests the
use of coefficients dnt (n) symmetric around nt. Therefore, we
choose the distance as

d(nt,p(n)) =
∑

i

(i − nt)
2p(i) = (n̄ − nt)

2 + 
n2 (47)

with n̄ and 
n2 denoting, respectively, the mean value and the
variance of the photon-number distribution. Minimizing this
distance thus results in pushing n̄ closer to nt and in narrowing
p(n). In matrix form, the distance is

d(nt,p(n)) = Tr
[
D′

ntρ
]

(48)

with a diagonal distance matrix

D′
nt =

∑
i

(i − nt)
2 |i〉 〈i| . (49)

By numerical Monte Carlo simulations of the experiment
(see Appendix B), we have compared the feedback perfor-
mance based on the distance (47) to that based on several other
definitions, such as dnt (n) = √|n − nt|, dnt (n) = |n − nt|, or
dnt (n) = 1 − δnnt . Note that the latter definition corresponds to
the simple maximization of p(nt). The best performance, i.e.,
the shortest convergence time τconv(nt) and the highest p(nt),
are obtained for the distance defined by (47).

2. Action

For the kth feedback loop, the controller can make decisions
on the three samples k + 8, k + 7, and k + 6, provided they are
of the control type. The type νk+8 of the (k + 8)th sample can
be set as sensor, emitter, or absorber. The types νk+7 and νk+6

of the two other samples can be either left unchanged or set as
discarded, if they were chosen as actuators, or set back to their
initial actuator type if they have been set to the discarded type
in the previous loop. For all possible sets {νk+8,νk+7,νk+6}, K
estimates the field state after the interaction of C with these
three samples (considering of course that the final detection
outcomes are yet unknown). The controller computes the
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distance of all these states to the target

d{νk+8,νk+7,νk+6} = Tr

[
D′

nt

k+8∏
i=k+6

(
TNνi

)
ρk

]

≈ Tr

[
D′

nt
(T )3

k+8∏
i=k+6

Nνi ρk

]
. (50)

It then selects the set of three samples’ types minimizing the
distance.

At the end of the kth loop, K constructs a time sequence
of digital pulses and voltages that will control microwave
injection into the Ramsey zones R1 and R2, and the electric
field in C during the next (k + 1)st loop. The values and timings
of these controls are set according to the assigned types of the
samples k + 8, k + 6, and k + 4, which will cross the centers
of R1, C, and R2, respectively, in the next loop. The sequence
is then uploaded to the corresponding output boards of the
ADwin system and can not be modified anymore. Its output
starts with the beginning of the next loop.

E. Experimental settings

1. Average atom number per sample

The average number of atoms per sample m is an important
parameter in the optimization of the feedback procedure. As
already stressed, its setting must be different for sensor and
control samples.

For sensor samples, the goal is to get as much information
as possible about the cavity field. This points towards the use
of larger m. This option is supported by numerical simulations,
which prove, as seen above, that two dispersive atoms interact
independently with C, acquiring thus relevant information.
However, this independence does not hold for much more than
two atoms. There are then additional atom-number-dependent
phase shifts of the atomic coherence. Since D can not measure
the exact number of atoms in a sample, the Ramsey fringes for
high ms have a reduced contrast and a shifted phase, affecting
the quality of the QND measurement. In order to circumvent
this problem, we use the highest m value, msn ≈ 1.3, that does
not affect the Ramsey fringes recorded when C is in its vacuum
state.

For emitter or absorber samples, the experiment is much
more sensitive to the atom number. Already, the interaction
of two atoms with C is very different from that of a single
one and must be treated independently. For more than two
actuator atoms, the description of the interaction becomes
more cumbersome and more sensitive to the determination
of the experimental parameters. The increase of the number
of resonant atoms leads also to a less deterministic feedback
action since many photons can be emitted or absorbed
simultaneously. We avoid these complications by setting m

to mct ≈ 0.5. We accordingly only include one- and two-atom
sample actions in the state estimation.

2. Phase shift per photon and Ramsey phase

The calibrated phase shift per photon for the atomic
feedback experiments is φ0 = 0.252π (see Appendix A 1). As

in Sec. III, it allows us to discriminate up to eight successive
photon numbers of the field.

Let us now choose the value of the Ramsey interferometer
phase φr. The atomic actuators lead to modifications of the
photon-number distribution more deterministic than those
performed by a classical source. An emitter sample can not
remove photons from C and an absorber can not add photons
to C. Thus, there is no likelihood that, for instance, the
emitter action could populate |nt − 2〉 after a jump to |nt − 1〉
from |nt〉, as was the case in the coherent feedback case.
However, K can still overshoot by injecting or subtracting
more than one photon, for instance, with a two-atom sample.
It is thus reasonable to set φr = π/2 − (nt + 1/2)φ0, so that the
sensor samples are symmetrically sensitive to states around the
target |nt〉.

3. Partition into sensor and control samples

As explained in Sec. IV A1, the feedback sequence is
partitioned in alternating series of Nsn sensor and Nct control
samples. In order to determine the optimal Nsn and Nct

values, we perform Monte Carlo simulations of the feedback
experiment. The two optimization criteria are the average
probability of the target photon-number state p(nt) and
the convergence time τconv(nt), which is required by K for
increasing p(nt) from 0 (initial vacuum field) to a 0.8 threshold
value in 63% of simulated trajectories.

Figure 17 shows p(nt) and τconv(nt) as a function of Nsn and
Nct for nt = 3. We chose to set the condition Nsn + Nct � 20,
so that the duration of one complete cycle is much shorter than
Tc. For each pair of values, we use 2000 quantum trajectories
of 145-ms duration. The setting Nsn = 0 corresponds the
situation in which the controller K can decide upon the type
of each sample. As we see, this algorithm, if the simplest, is
less efficient. The controller, aiming to reduce the distance to
the target in each loop, applies actuator samples even if the
expected distance reduction is very small and the knowledge
on the current state is poor. The better approach would
be to regularly send sensor samples, which do not change
the distance on average, but provide more information on the
state, thus reducing its entropy. As seen in Fig. 17, increasing

FIG. 17. (Color online) Optimization by Monte Carlo simulations
of the sequence partition into Nsn sensor and Nct control samples. (a)
Average population p(nt) in the target state nt = 3 (2000 trajectories)
as a function of Nsn and Nct with Nsn + Nct � 20. (b) Convergence
time τconv(nt), in ms, for reaching p(nt) � 0.8 in 63% of trajectories
used in (a). Dark gray color indicates partitions for which the
convergence time is larger than the simulated sequence duration of
145 ms.
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Nsn indeed improves in general the feedback quality, unless
Nct decreases down to 1. In this case, K does not have enough
control samples at hand to compensate for the jumps. The
region corresponding to Nsn = 10 to 16 and Nct = 2 to 4
features both high p(nt) and short τconv(nt). Experimentally, we
have found that the optimal values are Nsn = 12 and Nct = 4.

4. Resonant interaction times

Intuitively, the effective atom-cavity interaction time for
the resonant emitters or absorbers should be set to achieve
an exact π quantum Rabi rotation in the field of (nt − 1) or
(nt + 1) photons, respectively. These settings lead ideally to
the compensation of a quantum jump with a single actuator.
The random atom number in a sample and the finite atomic
detection efficiency make this simple choice far from optimal.
It is impossible to know for sure how many photons have been
emitted into the field or absorbed from it by a given sample.

We have therefore to rely also on the information provided
by the sensors to determine whether the jump has been
corrected or not. This information gathering is not instan-
taneous and we are thus unable to determine exactly when
the target state |nt〉 is reached and, hence, when we can stop
sending actuators. As a result, there is a large probability
for going beyond the required operation and overpumping or
overattenuating the field.

One possible solution to avoid these overshoots is to use
the “trapping state” condition [26]. When it is fulfilled by the
actuator samples, they are unable to alter the target photon-
number state. Let us consider first the emitter atoms entering C
in state |e〉. The Rabi frequency in |nt〉 is �0

√
nt + 1. If we set

the effective interaction time to t2π
e (nt) = 2π/(�0

√
nt + 1),

the emitter undergoes an exact 2π quantum Rabi pulse in
the target state. It exits the cavity in |e〉 and leaves its
state unchanged. For initial photon numbers smaller than
nt, however, there is a finite emission probability. Quantum
jumps can be corrected, but additional emitter samples do
not spoil the restored target state. For absorber samples, the
trapping state interaction time is t2π

g (nt) = 2π/(�0
√

nt). It
leads similarly to an unconditional correction of the quantum
jumps, independent of the precise number of actuators used.

Unfortunately, experimental imperfections again conspire
against this elegant solution. As seen above, the experimental
Rabi oscillations have a finite contrast and are damped.
Figure 18 shows, as a function of the initial photon number,
the resulting photon-exchange probabilities Pem(n) [triangles
in Fig. 18(a)] and Pab(n) [triangles in Fig. 18(b)] for an emitter
and an absorber, respectively, in the trapping state condition
for |nt = 3〉. Since Pem/ab(nt) are about 20%, instead of zero
in the ideal case, the trapping conditions can not ensure the
preservation of |nt〉. Moreover, the emission or absorption
probabilities in |nt − 1〉 or |nt + 1〉, respectively, are only of
the order of 30%–40%. This results in a low efficiency of the
actuators, in a slow compensation of the quantum jumps, and
thus in a poor overall feedback efficiency.

In order to find the optimal effective interaction times
tem(nt) and tab(nt) for emitters and absorbers, we have
performed Monte Carlo simulations with different values for
these parameters. For each pair {tem,tab}, we compute the
average of p(nt) over 2000 sequences. Figure 19 presents the

FIG. 18. (Color online) Probability of a photon exchange between
photon-number states and actuator atoms. (a) Emission probability
of an emitter. Triangles and squares correspond to the effective
interaction times t2π

e (nt) and 0.8t2π
e (nt), respectively, with nt = 3.

(b) Absorption probability of an absorber. Triangles and squares cor-
respond to the interaction times t2π

g (nt) and 1.2t2π
g (nt), respectively.

results for nt = 3 [Fig. 19(a)] and nt = 7 [Fig. 19(b)]. There is
a clear optimum, leading us to choose tem(nt) = 0.8t2π

e (nt)
and tab(nt) = 1.2t2π

g (nt). The corresponding experimental
emission and absorption probabilities Pem(n) and Pab(n) for
nt = 3 are shown as squares in the two panels of Fig. 18. The
transition probabilities for |nt〉 slightly increase with respect
to the trapping state conditions. However, the much larger
increase of Pem(nt − 1) and Pab(nt + 1) and the decrease of
Pem(nt + 1) and Pab(nt − 1) make the actuator samples more
efficient. This explains qualitatively the improvement of the
feedback performance.

F. Experimental results

1. Examples of individual trajectories

Figure 20 shows three feedback sequences with the target
photon numbers nt = 1, 4, and 7. The panels, from top to
bottom, present, as a function of the total time t , the detection
results of the sensor samples, the distance d to the target,
the types of actuator samples chosen by K, and, finally, the
photon-number distribution p(n) estimated by K. The mean
photon number n is plotted as a solid black line in the lower
panel.

Initially in the vacuum state (n = 0), the field converges
rapidly towards the target [n ≈ nt and p(nt) is close to 1].
When K feels that a quantum jump has occurred, it sends
actuator samples to restore nt. See, for instance, the photon

FIG. 19. (Color online) Numerical optimization of the resonant
effective interaction times. Average over 2000 sequences of the
population in the target state nt = 3 (a) and nt = 7 (b) is calculated
for each pair of values tem and tab marked by black circles. The color
(gray) gradient is interpolated to guide the eye.
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FIG. 20. (Color online) Single sequences of the feedback experiment with nt = 1 (left), nt = 4 (center), and nt = 7 (right). The frames
present as a function of the total time t the detected sensor states (upwards bars for e, downwards bars for g), the distance d to nt, the actuators
sent by K (red bars for emitters, blue bars for absorbers), and the photon-number distribution p(n) inferred by K [color (grayscale)] together
with its mean value n (solid black line).

loss around t = 17 ms and thermal excitation at t = 77 ms for
nt = 1, apparent on the change of n and on the corresponding
increase of d. Sometimes, K sends too many actuators and the
jump is overcompensated. It then corrects this error by sending
new actuator samples in the opposite state (see, e.g., the
overshoots at 10 and 110 ms for nt = 7). It is also conspicuous
that the higher the target photon number, the more frequent
the jumps and consequently the more actuators sent by K.

2. Steady-state regime

The time evolution of the photon-number distribution
averaged over 4000 sequences for nt = 3 is shown in Fig. 21.
The three curves are the probabilities p̄(n = nt,t) (green, thick
line), p̄(n < nt,t) (blue, dotted line), and p̄(n > nt,t) (red, thin

FIG. 21. (Color online) Evolution of the photon-number distri-
bution p̄(n,t) averaged over 4000 feedback sequences with nt = 3.
The upper panel shows p̄(n = nt,t) (green, thick curve), p̄(n < nt,t)
(blue, dotted curve), and p̄(n > nt,t) (red, thin curve). The lower
panel is a zoom into the region highlighted in the upper panel. Nsn

and Nct indicate the periodic division of the atomic sequence into
sensor samples detecting the field decay [reduction of p(nt)] and
control samples correcting for it [increase of p(nt)].

line). The steady-state regime, with nearly constant average
probabilities, is reached after 20 ms roughly. The residual
oscillations, with a period (Nsn + Nct )Ta, are due to the
periodic partition of the feedback sequence into Nsn sensor and
Nct control samples. The only mean-field evolution during the
series of sensors is relaxation, leading to a decreasing p̄(nt,t)
and to an increasing p̄(n < nt,t). When control samples are
sent, K uses the actuators to correct for the field decay, restoring
p̄(nt,t) to its maximum value.

3. Feedback action versus average photon number

Since the decision making on the feedback action by K
is based on the distance defined by (47), its choice must
be correlated with the difference (n − nt) between the mean
photon number and the target. In Fig. 22, we present the
probabilities of the three possible choices for the control
samples (emitter, absorber, and sensor) as a function of
(n − nt). The data are extracted from the analysis of the
steady-state regime of 4000 sequences for each target state
nt from 1 to 7.

Figure 22 makes it clear that the controller’s decision
making is similar to a simple rule based only on the comparison
of n with nt. When n < nt − 0.4, K mostly decides to inject a

FIG. 22. (Color online) Probabilities of the decision made by K
on the control samples (emitter: dashed red line; sensor: solid green
line; absorber: dashed-dotted blue line) as a function of (n − nt). Data
extracted from 4000 realizations of the 140-ms-long experiment for
each nt, from 1 to 7.
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FIG. 23. (Color online) Probability Fconv(nt,t) for p(nt) to reach
a 0.8 threshold level for nt = 1 to 7. Each curve is determined from
4000 sequences. The horizontal line shows the 0.63 level defining the
convergence time tconv.

photon into C and therefore sets the control samples at hand
as emitters. When n > nt + 0.6, K sets the control samples as
absorbers in order to remove a photon from C. In an interval
nt − 0.4 < n < nt + 0.6, with a width δn ≈ 1, the addition or
subtraction of a photon does not bring the field any closer to nt.
The controller thus decides wisely to use the control samples
as sensors. The center of this interval is slightly shifted above
nt since K is aware of cavity damping, which alone can get rid
of superfluous photons.

The boundaries of the three domains are not sharp, as
would be the case with the simple comparison rule. In the
intermediate regions, the exact form of p(n) is taken into
account, beyond the mere average n, leading to different
possible decisions for the same n value. We have compared,
using again Monte Carlo simulations, the performance of our
complete feedback algorithm with the efficiency of the simpler
scheme making decisions based on n. Our algorithm leads to
a slightly higher (by about 2%) fidelity of the target state in
the steady state, as well as to a narrower and more symmetric
photon-number distribution. This comparison justifies using
the more sophisticated algorithm.

4. Convergence time

In individual feedback sequences, the fidelity p(nt) can
reach relatively high values. We consider, as in Sec. III E4,
that the feedback has converged when p(nt) has reached the
0.8 threshold level. The fraction Fconv(nt,t) of sequences which
have converged at time t is shown in Fig. 23. For each nt from
1 to 7, we have used 4000 sequences.

At the beginning, all the Fconv(nt,t) curves remain at zero.
This period corresponds to the time required to drive the
initially empty cavity close to |nt〉 by accumulating emitter
sample actions. It logically widens when nt increases. At a
given time after this initial period, the convergence probability
decreases when nt increases. This is obviously due to the more
frequent quantum jumps for higher photon numbers.

The convergence time tconv, corresponding to the crossing
of the Fconv(nt,t) curve with the 0.63 level (horizontal line in
Fig. 23), is given in Table V. For comparison, we also recall
in this table the convergence time of the coherent actuator
feedback process measured for nt = 1 to 4.

TABLE V. Convergence times tconv, in milliseconds, of the two
feedback schemes versus nt.

nt 1 2 3 4 5 6 7

Atomic actuators 12 19 27 37 38 53 69
Microwave source 26 31 49 58

5. Photon-number distribution of prepared states

The independent reconstruction of the photon-number
distributions pQND(n) at the end of the feedback sequence
is shown, for nt = 1 to 7, in Fig. 24. For details on the
reconstruction method, see Sec. II F. Figure 24(a) presents the
theoretical Poisson distributions of the coherent fields with an
average photon number n = nt. They have the highest possible
fidelity with respect to |nt〉, which can be obtained with a
classical source. The distributions pQND(n) in the steady-state
mode (the feedback sequence stops at a preset 140-ms time)
and in the convergence mode (the feedback sequence stops
when the 0.8 fidelity threshold has been reached) are shown
in Figs. 24(b) and 24(c), respectively. A direct comparison
with the results presented in Fig. 10(b) shows that the atomic
actuators are more efficient for the stabilization of the quantum
Fock states than the coherent injections.

V. CONCLUSION

We have presented in detail the operation of two quantum
feedback protocols operating in steady state and stabilizing a
photon-number state in a microwave cavity. These experiments
are a first demonstration of quantum feedback as an efficient
protection mechanism for fragile quantum resources, which
could be used, for instance, in quantum information processing
experiments. Both protocols use quantum sensors to get QND
information on the number of photons in the cavity, realized
with atoms interacting dispersively with the cavity mode.

The first protocol uses a classical actuator, a coherent
source injecting small amplitudes inside the cavity mode.
The experimental implementation is simple, but the feedback
is not very efficient to protect high-lying Fock states due
to the inadequation between the classical source and the
single-photon relaxation-induced quantum jumps which must
be corrected. Nevertheless, photon numbers up to 4 are
prepared on demand and stabilized with reasonable fidelity,
exhibiting the power of the quantum feedback concept.

The second protocol uses quantum actuators, resonant
atoms which can add or subtract photons one by one from
the cavity mode. Compensation of quantum jumps is much
faster, allowing us to stabilize high-lying Fock states up to
n = 7 with a good fidelity.

In both cases, we have given a detailed description of the
experimental procedures and calibrations and of the subtle
state estimation that is required to get an efficient stabilization.
The relatively slow pace of these microwave-cavity QED
experiments and the extremely long cavity lifetimes make it
possible to achieve pretty complex calculations during a single
feedback loop. Implementing similar procedures in circuit
QED [27], for instance, would be very interesting but quite
demanding for the control electronics.
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FIG. 24. (Color online) Photon-number distribution prepared by means of the quantum actuator feedback for the target photon numbers
nt from 1 to 7. (a) Reference Poisson distribution with nt photons on the average. (b) Photon-number distribution pQND(n) measured by an
independent QND process in the steady-state mode after interrupting the feedback loop at 140 ms. (c) Photon-number distribution pQND(n)
measured in the convergence mode when K estimates that p(nt) > 0.8. For (b) and (c), pQND(n) is measured from n0 to n0 + 7, with n0 = 0
for nt � 5 and n0 = 2 for nt > 5.

The success of these first experiments is quite encouraging
for the development of quantum feedback in cavity QED. Some
improvements over the present scheme can be envisioned.
In the atomic actuator case, for instance, the interaction
time of the resonant atoms with the cavity could be used
as an additional control parameter to speed up the initial
convergence towards the target state. Besides, the choice
between sensor and control samples could also be decided
upon in real time. So far, the feedback algorithm tries to
reduce the distance to the target in each loop, even when the
expected improvement is very small. However, from time to
time, it could be wiser to acquire more information on the state
by sending more sensors before trying to correct it by using
actuators. In this case, for instance, the controller’s choice for
each sample can be made between the reduction of the distance
(actuators) and the reduction of the state entropy (sensors).

A quantum feedback scheme could be used to perform
extremely efficient QND measurements of the photon number
in the cavity. In this scheme, the parameters controlling the
interaction of each sensor atom with the cavity field are
decided upon dynamically taking into account all information
provided by previous atoms. The present method [16], with
fixed interaction parameters, requires about 100 atoms to pin
down a photon number between 0 and nmax = 7. With an ideal
adaptative protocol, controlling the atom-cavity interaction
time and the Ramsey interferometer phase, we could reduce
this number to the minimum required by information theory,
log2(nmax) [28]. Realistic simulations indicate that the practical
sample count required could be of the order of 10 only. This
achievement would open interesting perspectives for field state
reconstruction [29].

Finally, quantum feedback could be used to stabilize
against decoherence even more interesting states, for instance,
mesoscopic field state superpositions made up of two real
coherent components with opposite phases |α〉 ± |−α〉. These
states only expand on the even (+ sign) or odd (− sign) photon
numbers. Quantum jumps thus correspond to a jump in the
photon-number parity. It could be detected by sensor atoms
tuned for a φ0 = π phase shift per photon. Resonant feedback
atoms could then be sent to restore the field parity [30].
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APPENDIX A: CALIBRATION OF
EXPERIMENTAL PARAMETERS

1. Dispersive atom-field interaction

The phase shift per photon φ0 is an essential parameter for
the feedback operation and it must be precisely calibrated each
time the atom-cavity detuning is changed. We determine φ0 by
the atomic state tomography method described in [20]. We
prepare in C a coherent state with about 3–4 photons on the
average and send a sequence of 500 dispersive atomic samples
with 4 alternating Ramsey phases roughly equal to 0, π/4,
π/2, and 3π/4. On the average, 0.2 atoms are detected in each
sample, leading to about 100 atomic detections per sequence.
For all sets of 60 successively detected atoms, we calculate the
phase ϕa of the e/g superposition at the exit of C correlated to
n. Resuming the experiment 4000 times, we get the histogram
of the ϕa values, with a bin size of 0.02π , shown in Fig. 25(a).
The phase origin is here chosen as the phase of the atomic
coherence if the cavity interaction is not taken into account.
Note that the phase observed for the vacuum state includes the
effect of the cavity-induced Lamb shift [31].

In spite of the finite-measurement resolution, well-
separated peaks corresponding to the photon numbers n from 0
to 6 are conspicuous. The histogram is fitted by a sum of seven
Gaussian peaks with the same 0.27-rad standard deviation
width. The position of the peaks relative to the n = 0 one,
measuring φ(n), is shown in Fig. 25(b) as a function of the
photon number. From a second-order polynomial fit (solid
line), we extract φ(n). Here, φ(n) = (0.252 ± 0.001)π (n +
1/2) − (0.001 ± 0.0004)πn2. The quadratic term is negligible
with respect to the linear one for the values of n considered
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FIG. 25. (Color online) Calibration of the phase shift per photon
φ0. (a) Thick black line: histogram of the measured atomic coherence
phase ϕa. It is fitted by a sum of seven Gaussian peaks with the same
width, corresponding to photon numbers n from zero to six (green thin
lines for the individual peaks, red thin line for their sum). (b) Position
of the peaks as a function of n (dots) and second-order polynomial
fit (line).

in this paper. The linear approximation used in (8) is thus
experimentally vindicated and we get φ0 = 0.252π .

2. Detection efficiency

The efficiency ε of the detector D is defined as the ratio
between the average number of detected atoms per sample
md and the actual average atom number m: ε = md/m. The
value of md can be directly measured. In order to obtain m,
we perform an auxiliary experiment. An atomic sample with
md ≈ 0.06 is prepared in |e〉 and sent through the empty cavity.
It interacts resonantly with C, the effective interaction time
being tuned for a π quantum Rabi pulse, leaving ideally a
photon in C and an atom in |g〉.

Due to the experimental imperfections in the resonant
interaction, we measure a transfer rate from |e〉 to |g〉 limited to
χ = 0.8. The average number of photons n left by this sample
in C is thus n = χm. For small average atom numbers m, the
probability Pa(> 1) to have more than one atom per sample is
negligible. We have then

m = Pa(1) = Pa(1|1d)Pa(1d) + Pa(1|0d)Pa(0d), (A1)

where Pa(1) is the probability to have one atom in the sample,
Pa(1|1d) = 1 the probability for having one atom provided we
have detected one, and Pa(1|0d) the probability for having one
atom provided none has been detected. We define Pa(1d) = md

and Pa(0d) = 1 − Pa(1d) as the probabilities to detect one or
zero atom, respectively. We can then write m as

m = md + p(1|0d)/χ (1 − md), (A2)

where p(1|0d) is the probability for the field to contain one
photon if no resonant atom has been detected. The detector
efficiency is then

ε =
(

1 + p(1|0d)

χ

1 − md

md

)−1

. (A3)

The probability p(1|0d) is measured by sending a sequence
of dispersive atomic samples and by recording with them

FIG. 26. (Color online) Measurement of the detector efficiency
ε. Ramsey fringes πg(φr,0) in the vacuum field (black with larger
contrast) and Ramsey fringes πg(φr,0d) conditioned on no atom being
detected in the resonant sample (red with smaller contrast).

the Ramsey fringes πg(φr,0d) conditioned on no atom being
detected in the resonant sample (Fig. 26). The resulting
Ramsey signal can be expressed as the weighted sum of the
fringes in the vacuum and one-photon field:

πg(φr,0d) = [1 − p(1|0d)] πg(φr,0) + p(1|0d) πg(φr,1).

(A4)

The signal πg(φr,0) is directly measured with the initial
vacuum field in C (see Fig. 26). In order to achieve the largest
sensitivity to one injected photon, we adjust for this calibration
the phase shift per photon to φ0 ≈ π . The one-photon Ramsey
fringes in (A4) are in phase opposition with the vacuum ones,
i.e., πg(φr,0) ≈ 1 − πg(φr,1). The fit to πg(φr,0d) thus yields
p(1|0d) and hence ε. With the signals presented here, for
instance, we get p(1|0d) = 0.15 and ε = 0.35. This value
of ε is typical of the coherent feedback measurements. This
efficiency deteriorated down to 0.25 for the atomic feedback
experiments.

3. Microwave injection

The scheme of the circuit used to control the amplitude
and the phase of the microwave injections into C is presented
in Fig. 27. The source S generates microwave radiation at
12.8 GHz. It is sent through the first PIN diode switch. The
TTL pulse (close level of 0 V and open level of 5 V) controlling
this switch defines the duration tS of the injection, and thus
the accumulated amplitude. The second PIN diode is used to
switch between two paths. One of them includes a variable

FIG. 27. Control of the injection amplitude and phase.
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FIG. 28. (Color online) Calibration of the injected amplitude.
Dots: probability πe for detecting the probe atom in |e〉 as a function
of the injection duration tS. The Ramsey interferometer phase is
φr = −φ0/2. Line: theoretical fit (A5), with τ as the only adjustable
parameter.

phase shifter, adjusted to provide a π/4 phase shift with
respect to the other path. The two paths are recombined in
a balanced power splitter. Finally, the fourth harmonic of the
microwave radiation is generated in a mixer and sent to the
experiment. The TTL pulses for the PIN switches are generated
by the ADwin system as required to implement the controller’s
decisions.

The field injection must be precisely calibrated before each
experimental run. The modulus |α| of the injected amplitude is
a linear function of the injection duration tS: |α| = tS/τ , where
τ is the time required to inject a one-photon coherent field. We
calibrate τ by probing the coherent field produced in C with
dispersive atomic sensor samples. The recorded Ramsey signal
is then a sum of fringes πe(φr,n) corresponding to different
photon numbers n, weighted by the Poisson distribution of
n. We choose for this experiment φr = −φ0/2 [maximum of
πe(φr,0)], with φ0 � π/4, and measure πe as a function of tS.
The data are fitted with the analytic fringe summation given
by

πe(tS) = πo + c

2
exp

{
−

(
tS

τ

)2

(1 − cos φ0)

}

× cos

{(
tS

τ

)2

sin φ0

}
. (A5)

The result of the fit with the only free parameter τ = 633 ±
4 μs is shown as a solid line in Fig. 28. The injection time
required to reach the maximum feedback amplitude αmax =
0.1 is thus 63 μs, shorter than the time interval Ta between
atomic samples. The injection calibration is independently
performed for the two injection phases realized through two
different microwave paths.

For a proper setting of the phase shifter to � = π/4,
we successively inject into the initially empty cavity two
microwave pulses of the same amplitude modulus, sent
through the two microwave paths. If � is set to π/4, the
relative phase of the two pulses after frequency multiplication
is π . The final field in C is thus minimal (ideally, it is the
vacuum if the cavity decay and the phase noise between the
two injections are negligible). We thus adjust � by minimizing
the residual cavity field, probed by a sequence of dispersive
sensor atoms.

APPENDIX B: MONTE CARLO SIMULATIONS

Quantum Monte Carlo simulations [4] have been exten-
sively used in order to test the performance of the quantum
feedback and to optimize the experimental parameters. In each
feedback loop, we simulate the decoherence of the cavity field,
its interaction with the probabilistic atomic samples, and the
result of the realistic imperfect atomic detection, which is then
used by the controller K to decide upon the feedback action.

The main simulation steps are thus the following. For each
sample, at the beginning of each loop, we first randomly
choose a number of prepared atoms m by using the Poisson
probability distribution (1) with the experimentally determined
average atom number m. The initial state of each atom and its
interaction with the field is determined by the sample type
(sensor for the coherent injection feedback experiment and
sensor, emitter, or absorber for the quantum actuator feedback
case). The type is either preset by the original sample sequence
or has already been modified by the controller in the previous
loops (quantum actuator feedback only).

Knowing the field state at the end of the previous loop,
we simulate the result of the virtual ideal detection of the
atomic state and then project the field state accordingly. Next,
we simulate the result of the real atom detection by using the
measured efficiency (ε) and errors (η̃g/e or ηg/e depending on
the feedback scheme) of our real detector D.

This result is then fed in K, which estimates the field’s
quantum state (Secs. III C or IV C) and which chooses the
optimal feedback action (Secs. III D or IV D). In the coherent
injection feedback, the displacement operator (19) with the
optimal coherent field amplitude α is then applied. Finally,
we include the decoherence process during the loop duration
Ta by randomly inducing the loss or gain of a photon in the
field. The probabilities of these events are given by the jump
operators (5) and (6).

APPENDIX C: TWO-ATOM RABI OSCILLATIONS

1. Theoretical description

The Jaynes-Cummings Hamiltonian of the system of N -
independent two-level atoms simultaneously and identically
coupled to the cavity field reads as [4]

H = h̄ωaJz + h̄ωc

(
a†a + 1

2

)
+ h̄�0

2
(J+a + J−a†). (C1)

The many-atom operators Jz and J± are given by

Jz = 1

2

∑
j

σz,j , (C2)

J± =
∑

j

σ±,j , (C3)

where σz,j , σ+,j , and σ−,j are the z component of the
Pauli matrices and the atomic raising and lowering operators,
respectively, associated to j th atom, viewed as a spin 1

2 . In
the resonant case, only considered in the following, the atomic
frequency ωa and the cavity frequency ωc in (C1) are set to be
equal.

The Hamiltonian (C1) conserves the total angular momen-
tum of the N atoms. In the case of two atoms only, the
allowed atomic states constitute a spin-triplet manifold with
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MJ = 0, ± 1. The bare states∣∣M1
J

〉 ≡ |ee,n − 1〉,∣∣M0
J

〉 ≡ |(eg + ge)/
√

2,n〉, (C4)∣∣M−1
J

〉 ≡ |gg,n + 1〉
with photon number n � 1 constitute a closed subspace of the
Hilbert space. In this subspace, the reduced Hamiltonian can
be expressed in the matrix form as

Hn = h̄

⎛
⎜⎝

ωc

(
n + 1

2

) √
n/2 �0 0

√
n/2 �0 ωc

(
n + 1

2

) √
(n + 1) /2 �0

0
√

(n + 1) /2 �0 ωc

(
n + 1

2

)
⎞
⎟⎠ .

(C5)

Its eigenenergies are

ξ0 = 0, ± h̄ξn = ±h̄
�0

2

√
2(2n + 1), (C6)

where, without loss of generality, a common term
h̄ωc (n + 1/2) has been subtracted by redefining the energy
origin. The corresponding eigenstates are

|ψ0〉 = 1√
2n + 1

(√
n + 1

∣∣M1
J

〉 − √
n
∣∣M−1

J

〉)
,

|ψ±〉 = 1√
2(2n + 1)

( ±√
n
∣∣M1

J

〉 + √
2n + 1

∣∣M0
J

〉
±√

n + 1
∣∣M−1

J

〉)
. (C7)

The bare states |M1
J 〉 and |M−1

J 〉, which correspond to two
emitter and two absorber atoms, respectively, can then be
expanded over these eigenstates bases:

∣∣M1
J

〉 = 1√
2n + 1

(√
n

2
(|ψ+〉 − |ψ−〉) + √

n + 1|ψ0〉
)

,

∣∣M−1
J

〉 = 1√
2n + 1

(√
n + 1

2
(|ψ+〉 − |ψ−〉) − √

n|ψ0〉
)

.

After a time interval t , they evolve into

∣∣M1
J

〉 t−→
[

1 + n

2n + 1
[cos(ξnt) − 1]

]∣∣M1
J

〉
− i

√
n

2n + 1
sin(ξnt)

∣∣M0
J

〉
+

√
n(n + 1)

2n + 1
[cos(ξnt) − 1]

∣∣M−1
J

〉
, (C8)

∣∣M−1
J

〉 t−→
√

n(n + 1)

2n + 1
[cos(ξnt) − 1]

∣∣M1
J

〉
−i

√
n + 1

2n + 1
sin(ξnt)

∣∣M0
J

〉
+

[
1 + n + 1

2n + 1
[cos(ξnt) − 1]

]∣∣M−1
J

〉
. (C9)

The three possible results of an ideal atomic detection
{ee,eg,gg} correspond to a projection into the states |M1

J 〉,
|M0

J 〉, and |M−1
J 〉, respectively.

The two-atom superoperators Rν
μ, analogous to (37), for

the time being in an ideal situation are

[
Rem

ee ρ
]
nn

=
(

1 + n + 1

2n + 3
[cos(ξn+1t) − 1]

)2

ρnn,

[
Rem

eg ρ
]
nn

=
(

n

2n + 1
sin2(ξnt)

)
ρn−1,n−1,

[
Rem

gg ρ
]
nn

=
(

n(n − 1)

2n − 1
[cos(ξn−1t) − 1]2

)
ρn−2,n−2,

[
Rab

ee ρ
]
nn

=
(

(n + 1)(n + 2)

(2n + 3)2
[cos(ξn+1t) − 1]2

)
ρn+2,n+2,

[
Rab

egρ
]
nn

=
(

n + 1

2n + 1
sin2(ξnt)

)
ρn+1,n+1,

[
Rab

ggρ
]
nn

=
(

1 + n

2n − 1
[cos(ξn−1t) − 1]

)2

ρn,n (C10)

with ξ−1 being understood as zero.

2. Experimental imperfections

Figure 29 shows the measured Rabi oscillations of two
atoms simultaneously coupled to the cavity mode. The average
detected atom number per sample is set to 0.06. All atoms are

FIG. 29. (Color online) Rabi oscillations of two atoms both
prepared in state |e〉 and simultaneously coupled to the cavity mode.
The atoms are detected both in |e〉 (a), both in |g〉 (b), or one in |e〉
and the other in |g〉 (c). Solid red lines are theoretical fits with the
phenomenological exponential damping.
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initially prepared in state |e〉 and the two-atom detection events
are post-selected. Figures 29(a), 29(b), and 29(c) present the
probabilities of the three possible detection results for two
atoms, namely, ee, gg, and eg, respectively. By setting n = 1
in (C8), we obtain their theoretical expressions

πem
ee (t) = 1

2
+ 1

18
cos(

√
6�0t) + 4

9
cos

(√
6�0t

2

)
,

πem
gg (t) = 1

3
+ 1

9
cos(

√
6�0t) − 4

9
cos

(√
6�0t

2

)
,

πem
eg (t) = 1

6
− 1

6
cos(

√
6�0t). (C11)

As in the one-atom case, we introduce now a phenomeno-
logical exponential damping, exp (−t/τ (2)

n ), for all oscillating

terms in (C10) with the damping times

τ (2)
n = τ

(2)
0 /

√
2(2n + 1), (C12)

which are also inversely proportional to the many-photon Rabi
frequency, similarly to (34). To include this damping, we mul-
tiply the terms oscillating at frequencies

√
6�0 and

√
6�0/2

by exp(−√
6t/τ

(2)
0 ) and exp(−√

6t/2τ
(2)
0 ), respectively.

The solid lines in Fig. 29 present the fits of the experimental
data with the damped oscillations (C11). The fit parameters
are the offsets of the πem

μ (t) functions, the amplitudes of all

oscillating terms, and the damping time τ
(2)
0 . We have also

used the fact that the πem
μ (t) sum up to 1 and we have set

�0/2π = 46 kHz. The obtained values of τ
(2)
0 = 35 μs and of

all offsets and contrasts are then used to construct the realistic
resonant two-atom superoperators.
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Gleyzes, S. Kuhr, I. Dotsenko, J. M. Raimond, and S. Haroche,
Phys. Rev. Lett. 101, 240402 (2008).

[21] C. Sayrin, I. Dotsenko, S. Gleyzes, M. Brune, J. M. Raimond,
and S. Haroche, New J. Phys. 14, 115007 (2012).

[22] A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek,
and S. Schiller, Phys. Rev. Lett. 87, 050402 (2001).

[23] I. Dotsenko, M. Mirrahimi, M. Brune, S. Haroche, J. M.
Raimond, and P. Rouchon, Phys. Rev. A 80, 013805 (2009).

[24] H. Khalil, Nonlinear Systems (Prentice Hall, Englewood Cliffs,
NJ, 2001).

[25] H. Amini, A. Somaraju, I. Dotsenko, C. Sayrin, M. Mirrahimi,
and P. Rouchon, IEEE Trans. Automatic Control (to be
published).

[26] M. Weidinger, B. T. H. Varcoe, R. Heerlein, and H. Walther,
Phys. Rev. Lett. 82, 3795 (1999).

[27] M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M.
Girvin, and R. J. Schoelkopf, Nature (London) 482, 382 (2012).

[28] S. Haroche, M. Brune, and J. M. Raimond, J. Phys. II 2, 659
(1992).
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