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Resonant quantum kicked rotor with two internal levels
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We study a system consisting of a quantum kicked rotor with an additional degree of freedom. We show
analytically and numerically that this model is characterized by its quantum resonances with ballistic spreading
and by the entanglement between the internal and momentum degrees of freedom. We conclude that the model
shows certain interesting similarities with the standard quantum walk on the line.
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I. INTRODUCTION

Advances in technology during the last decade have made it
possible to obtain samples of atoms at temperatures in the nK
range [1] (optical molasses) using resonant or quasiresonant
exchanges of momentum and energy between atoms and
laser light. The experimental progress that has allowed the
construction and preservation of quantum states has also
opened the possibility of building quantum computing devices
[2–5] and has led the scientific community to think that
quantum computers could be a reality in the near future.
This progress has been accompanied with the development
of the interdisciplinary fields of quantum computation and
quantum information. In this scientific framework, the study
of simple quantum systems such as the quantum kicked rotor
(QKR) [6,7] and the quantum walk (QW) [8] may be useful to
understand the quantum behavior of atoms in optical molasses.

The QKR is considered as the paradigm of periodically
driven systems in the study of chaos at the quantum level [6].
This system shows behaviors without classical equivalence,
such as quantum resonance and dynamical localization, which
have posed interesting challenges both in theoretical and
experimental [9] terms. The occurrence of quantum resonance
or dynamical localization depends on whether the period of the
kick T is a rational or irrational multiple of 4π . For rational
multiples, the behavior of the system is resonant, while for
irrational multiples the average energy of the system grows
in a diffusive manner for a short time and then the diffusion
stops and localization appears. From a theoretical point of
view the two types of values of T determine the spectral
properties of the Hamiltonian. For irrational multiples the
energy spectrum is purely discrete and for rational multiples it
contains a continuous part. Both resonance and localization
can be seen as interference phenomena, the first being a
constructive interference effect and the second a destructive
one. The QKR has been used as a theoretical model for several
experimental situations dealing with atomic traps [10–17] and
is a matter of permanent attention [18–26].

The quantum walk has been introduced [8,27–34] as a natu-
ral generalization of the classical random walk in relation with
quantum computation and quantum information processing.
In both cases there is a walker and a coin; at every time step
the coin is tossed and the walker moves depending on the toss
output. In the classical random walk the walker moves to the
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right or to the left, while in the QW coherent superpositions of
right and left and head and tail happen. This feature endows
the QW with outstanding properties, such as the linear growth
with time of the standard deviation of the position of an initially
localized walker, as compared with its classical counterpart,
where this growth goes as t1/2. This has strong implications in
terms of the realization of algorithms based on QWs and is one
of the reasons why they have received so much attention. It
has been suggested [35] that the QW can be used for universal
quantum computation. Some possible experimental implemen-
tations of the QW have been proposed by a number of authors
[2,3,36–40]. In particular, the development of techniques to
trap samples of atoms using resonant exchanges of momentum
and energy between atoms and laser light may also provide a
realistic frame to implement quantum computers [41].

A parallelism between the behavior of the QKR and a
generalized form of the QW was developed in Refs. [21,22]
showing that these models have similar dynamics. In those
papers, the modified QW was mapped into a one-dimensional
Anderson model [42], as had been previously done for the
QKR [43]. In the present paper, following the work of Saunders
et al. [44,45] we propose a modification of the QKR. We
study some properties of this modified version of the QKR and
find certain similarities between this modified QKR and the
QW, which help further the parallelism previously suggested.
Essentially, the modified QKR has an additional degree of
freedom which describes the internal ground and excited states
of a two-level atom. We call this modified system the two-level
quantum kicked rotor (2L-QKR). In this system the internal
atomic levels are coupled with the momentum of the particle.
This coupling produces an entanglement between the internal
degrees of freedom and the momentum of the system.

The rest of the paper is organized as follows: In the next
section we present the 2L-QKR system. In the third section
we obtain the time evolution of the moments. In the fourth
section the entanglement between the internal degrees of
freedom and momentum is studied. In the last section some
conclusions are drawn.

II. TWO-LEVEL QUANTUM KICKED ROTOR

In this section, we present a brief theoretical development
to obtain the Hamiltonian of the system studied in this paper,
following the work of [44]. The experimental setup which
motivates this development consists essentially in submitting
a dilute cloud of ultracold atoms, trapped in a magneto-optical
trap, to a modulated laser standing wave. This procedure has
been realized in a variety of experiences [10–17].
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As a starting point, a Hamiltonian that describes a single
two-level atom of mass M is considered. The center-of-mass
position coordinate is described by the operator Ẑ and its
conjugate momentum by the operator P̂ . Its internal ground
state is denoted by the vector |g〉 and its excited state by
the vector |e〉. The internal atomic levels are coupled by two
equal-frequency laser traveling waves. These waves propagate
in opposite directions so as to form a standing wave. If the laser
amplitudes are pulsed periodically, the standing wave with
which the atom interacts replicates the impulsive interaction
in the usual QKR model.

The Hamiltonian of an atom interacting with two traveling
waves is given by

Ĥ = ĤO + ĤL, (1)

where ĤO is the Hamiltonian corresponding to the free two-
level atom

ĤO = P̂ 2

2m
+ h̄ω0

2
(|e〉〈e| − |g〉〈g|) (2)

and ĤL gives the interaction with the traveling waves

ĤL = h̄�1 cos(kL̂z − ωLt + �1)(|e〉〈g| + |g〉〈e|)
+ h̄�2 cos(kL̂z + ωLt + �2)(|e〉〈g| + |g〉〈e|). (3)

Following the procedure in Ref. [44] we must now perform
certain transformations on these expressions to arrive at a
Hamiltonian similar to that of the QKR. We start by taking
the rotating wave approximation and, taking �1 = �2, we
arrive at

ĤL = h̄� cos(kL̂z)(e−iωLt |e〉〈g| + eiωLt |g〉〈e|), (4)

where the phases � have been eliminated by appropriate
translation of the space and time coordinates. We must now
eliminate the time dependence in the Hamiltonian. To this
end, we consider a time dependent unitary transformation of
the state space

Û (t) = ei[ωL|e〉〈e|−(ω0/2)(|e〉〈e|+|g〉〈g|)]t . (5)

Given that the Hamiltonian transforms as Ĥ ′ = ih̄ dÛ
dt

Û † +
ÛĤ Û †, we finally arrive at the transformed Hamiltonian

Ĥ = P̂ 2

2m
+ h̄�|e〉〈e| + h̄� cos(kL̂z)(|e〉〈g| + |g〉〈e|), (6)

where � = ω0 − ωL is the detuning between the laser
frequency and the atomic transition frequency. To get the
excitation characteristic of the QKR, the amplitude of the
standing wave must be pulsed periodically in time. Therefore,
we consider the Rabi frequency � to depend on time as
h̄�(t) = KδT (t), with

δT (t) =
n=∞∑
n=0

δ(t − nT ) (7)

being a series of periodic Dirac’s delta applied at times t = nT

with n an integer and T the kick period. We thus arrive at the
2L-QKR Hamiltonian

Ĥ = P̂ 2

2M
+ h̄�|e〉〈e| + KδT (t) cos(kL̂z)(|e〉〈g| + |g〉〈e|),

(8)

which will be the system studied in this paper. To get the
Hamiltonian of the QKR one must take a further approximation
to remove the excited atomic level from the dynamics. This
is done in Ref. [44] by way of the so-called adiabatic
approximation which eliminates transitions to the excited level
in the far detuned regime. However, we will not take that path
here and will keep both levels in the dynamics of the system.

It must be noted that, unlike the usual QKR system where
the position coordinate is an angular variable, here we consider
that the particle can move along the line. Therefore, the
2L-QKR conjugate position and momentum operators have
discrete and continuous components, i.e.,

ẑ = 1

kL

(2πl̂ + θ̂ ), (9)

P̂ = h̄kL(̂k + β̂), (10)

where the eigenvalues of l̂ and k̂ are integers and the eigenval-
ues of θ̂ ∈ [−π,π ) and the eigenvalues of the quasimomentum
β̂ ∈ [−1/2,1/2). It is important to point out that the operator
β̂ commutes with both k̂ and θ̂ . Using Eqs. (9) and (10) to
substitute ẑ and P̂ in Eq. (8) yields

Ĥ = [h̄kL (̂k + β̂)]2

2M
+ h̄�|e〉〈e|

+KδT (t) cos(θ̂)(|e〉〈g| + |g〉〈e|). (11)

It must be noted that Eq. (11) does not depend on the
operator l̂ and therefore β̂ is a preserved quantity. Then if
the initial condition belongs to a subspace corresponding to
a well-defined eigenvalue of β̂, the dynamics is such that
the system remains in said subspace and the evolution of the
system will be only determined by the conjugate operators θ̂

and k̂. Therefore we may restrict ourselves to the study of the
evolution constrained to a subspace corresponding to a given
eigenvalue of β. In this case the composite Hilbert space for the
Hamiltonian, Eq. (11), is the tensor productHs ⊗ Hc.Hs is the
Hilbert space associated to the discrete momentum on the line
and it is spanned by the set {|k〉}. Hc is the chirality (or coin)
Hilbert space spanned by two orthogonal vectors {|g〉,|e〉}.
In this composite space the system evolves, at discrete time
steps t ∈ N, along a one-dimensional lattice of sites k ∈ Z.
The direction of motion depends on the state of the chirality.
Taking this into account it is clear that the Hilbert space of the
2L-QKR (with the preceding restriction) is identical to that of
the usual QW on the line.

The evolution of the system is governed by the Hamiltonian
given by Eq. (11), so that, as is the case for the usual QKR,
the unitary time evolution operator for one temporal period
T can be written as the application of two operators, one
representing the unitary operator due to the kick and another
being the unitary operator of the free evolution [44]

Û = e−i[h̄�|e〉〈e|+τ (̂k+β̂)2]eiκ cos θ̂σx , (12)

where σx is the Pauli matrix in the x direction,

τ = k2
Lh̄

2M
T, (13)

and

κ = K

h̄
. (14)
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The unit operator, Eq. (12), in the momentum representation
and in the chirality base {|e〉,|g〉} has the following shape:

U (β)jk = fjk(β,κ,τ )

(
e−i�̃δk−j 2l e−i�̃δk−j 2l+1

δk−j 2l+1 δk−j 2l

)
,

(15)

where

fjk(β,κ,τ ) = ik−j Jk−j (κ)e−i(j+β)2τ , (16)

δkj is the Kronecker delta, l is an integer number, and

�̃ = T � = 2M

k2
Lh̄

τ�. (17)

The wave vector in the momentum representation can be
expressed as the spinor

|
(t)〉 ≡
( |
e(t)〉

|
g(t)〉
)

=
∞∑

k=−∞

∫ 1/2

−1/2

(
ak+β ′ (t)
bk+β ′ (t)

)
δ(β − β ′)|k + β ′〉dβ ′,

(18)

where β is the value of β ′ for the chosen subspace and(
ak+β(t)
bk+β(t)

)
=

( 〈k + β|
e(t)〉
〈k + β|
g(t)〉

)
(19)

are the upper and lower components that correspond to the left
and right chirality of the QW.

The discrete quantum map is obtained using Eqs. (15)
and (18):(

ak+β (t + T )
bk+β (t + T )

)
=

∞∑
j=−∞

U (β)kj

(
aj+β (t)
bj+β (t)

)
. (20)

The dynamical evolution of the system up to t = nT is
obtained applying the above rule, Eq. (20), n times.

A. Resonance τ = 2π in the β = 0 subspace with ˜� = 2mπ

In this section we solve analytically the evolution of the
system given by the map, Eq. (20). We consider here the
principal resonance τ = 2π in the subspace β = 0. Due
to the quasimomentum conservation the value of β does
not change. Therefore the accessible momentum spectrum
is discrete and from now on the theoretical development is
similar to that of the usual QKR in resonance. Additionally
we choose �̃ = 2mπ with m integer in order to obtain the
wave function analytically. We will show afterwards, using
numerical calculation, that the qualitative behavior will be
similar for arbitrary �̃. With these conditions the matrix of
Eq. (15) only depends on j − k. In order to simplify the
notation we define

Ukakb
(κ) = fkakb

(0,κ,2π )

(
δka−kb 2l δka−kb 2l+1

δka−kb 2l+1 δka−kb 2l

)
. (21)

Using Eq. (20) the initial condition is connected
with the wave function at the time t = nT by the

equation(
akn

(nT )
bkn

(nT )

)
=

∑
kn−1

∑
kn−2

∑
kn−3

· · ·
∑
k2

∑
k1

∑
k0

Uknkn−1 (κ)Ukn−1kn−2 (κ) · · ·

×Uk2k1 (κ)Uk1k0 (κ)

(
a0

k0

b0
k0

)
, (22)

where a0
k0

= ak0 (0) and b0
k0

= bk0 (0).
Using the relation∑

kn−1

Uknkn−1 (κ1)Ukn−1kn−2 (κ2) = Uknkn−2 (κ1 + κ2) (23)

obtained in Appendix A, Eq. (22) is reduced to(
ak(nT )
bk(nT )

)
=

∑
j

ij−kJj−k (nκ)

{
δj−k 2l

(
a0

j

b0
j

)

+δj−k 2l+1

(
b0

j

a0
j

)}
, (24)

where l is now an arbitrary integer number.

B. Antiresonance τ = 2π in the β = 0 subspace with
˜� = (2m + 1)π

We now find the time evolution of the wave function for
�̃ = (2m + 1)π . Equation (15) shows that in this case the
matrix U (β = 0)jk satisfies the relation∑

kn−1

Uknkn−1 (κ)Ukn−1kn−2 (κ) = δkn kn−2I, (25)

where I is the identity matrix. This last expression together
with Eq. (20) implies that(

ak(nT )
bk(nT )

)
= δn 2l+1

∑
j

Ukj (κ)

(
a0

j

b0
j

)
+ δn 2l

(
a0

k

b0
k

)
.

(26)

Then it is clear that the 2L-QKR shows a periodic behavior
when the parameters of the system take the values here con-
sidered. This behavior has no analog in the usual QKR since
the parameter �̃ does not exist in said system. Furthermore,
it is interesting to point out that this antiresonance occurs for
τ = 2π , a value for which the usual QKR is in resonance and
does not present periodic behavior.

III. PROBABILITY DISTRIBUTION OF MOMENTUM

The evolution of the variance σ 2 = m2 − m2
1 of the proba-

bility distribution of momentum is a distinctive feature of the
QKR in resonance. It is known that it increases quadratically
in time in the quantum case, but only linearly in the classical
case. In this section we study the evolution of the variance
of the 2L-QKR, once again restricting ourselves to the β = 0
subspace and taking τ = 2π , which corresponds to the primary
resonance of the usual QKR model. We will obtain the variance
from the evolution of the first and second moments, defined
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as m1(t) = ∑
k kPk(t) and m2(t) = ∑

k k2Pk(t), respectively,
where Pk(t) = |ak(t)|2 + |bk(t)|2 is the probability to find the
particle with momentum p = h̄kLk at time t .

We first consider the resonance defined by �̃ = 2mπ . In
this case we are able to calculate the first and second moments
analytically using Eq. (24) and the properties of the Bessel
functions (see Appendix B), obtainin:

m1(n) = κn

∞∑
j=−∞

Im
[
a0

j b
0∗
j+1 − a0

j b
0∗
j−1

] + m1(0), (27)

m2(n) = (κn)2

2

⎛⎝1 +
∞∑

j=−∞
Re

[
a0

j a
0∗
j+2(0) + b0

j b
0∗
j+2

]⎞⎠
+κn

∞∑
j=−∞

(2j + 1)Im
[
a0

j b
0∗
j+1 + a0

j b
0∗
j−1

] + m2(0),

(28)

where Re[x] and Im[x] are, respectively, the real part and
imaginary part of x. m1(0) and m2(0) are the moments at
time t = 0. These last equations show that the behavior of
the variance σ 2 = m2 − m2

1 has a quadratic time dependence
irrespective of the initial conditions taken.

When �̃ = (2n + 1)π , it was shown in the previous section
that the 2L-QKR has a periodic dynamics and therefore the
behavior of the statistical moments will be periodic as well.
The case when �̃ 
= nπ is cumbersome to solve analytically,
so we restrict ourselves to a numerical study. The evolution
of the second statistical moment was obtained for different
values of �̃ through numerical iterations of the map given by
Eq. (20). It was found, for all the considered values of �̃ 
=
nπ , that the long-time behavior of the second moment (and
therefore of the variance) is quadratic after an initial transient.
The duration of the initial transient depends on the initial
conditions and the value of �̃. This feature can be appreciated
in Fig. 1. The figure shows the time evolution of the second
moment for the initial conditions |
(0)〉 = |k = 0〉|g〉. It can
be appreciated that the second moment approaches a quadratic
behavior after an oscillatory transient. It was found that the
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FIG. 1. (Color online) The dimensionless second moment for
�̃ = 0.97π as a function of the dimensionless time.

nearer the parameter �̃ is to (2n + 1)π , the more pronounced
this oscillation is.

An interesting question is whether the behavior described in
the previous sections still holds for values of β different than
zero. This question is addressed in Ref. [44] for the system
with only one internal energy level, given by the Hamiltonian

Ĥ = [h̄kL (̂k + β̂)]2

2M
+ KδT (t) cos(θ̂), (29)

which yields the usual QKR Hamiltonian in the β = 0
subspace.

Considering the case when τ = lπ , with l an integer, the
authors [44] find that the primary resonance condition for
generic β is

l(1 + 2β) = 2m, (30)

where m is an integer. This condition is found by imposing
that the operator corresponding to the free evolution of the
system between two kicks, UL = exp(−i

[h̄kL (̂k+β̂)]2

2MTh̄
), be equal

to the identity. Evaluating the previous condition for β = 0,
this yields l = 2m, the primary resonance condition in the
QKR.

The authors also find the condition for antiresonance for
general β as

l(1 + 2β) = 2m + 1. (31)

This condition can be found by imposing that the Floquet
operator of the system, UT , satisfy U 2

T = 1.
For the case of the system considered in this paper, the

previous conditions hold when � = 2nπ . In this case the
operator |e〉〈e| disappears from the dynamics of the system,
and the same derivations that give way to the previous
conditions hold, regardless of the presence of the Pauli matrix
σx . When � 
= 2nπ , the previous derivations no longer hold,
given that the operator |e〉〈e| does not commute with σx .

IV. ENTANGLEMENT

Considering a quantum system consisting of two quantum
subsystems, the phenomenon of entanglement is related to
the appearance of correlations between observables belonging
to each of the two subsystems. In a quantum system with
Hilbert space given by the product of two Hilbert spaces, H =
H1 ⊗ H2, a state |
〉 in H is said to be entangled if it cannot
be expressed as |
〉 = |
〉1 ⊗ |
〉2, with |
〉1 and |
〉2 being
vectors belonging to H1 and H2, respectively. If |
〉 could be
expressed as a product state, then the expectation of the product
of any two observables A1 and A2, acting on H1 and H2,
respectively, would be 〈A1A2〉 = 〈A1〉 〈A2〉 and they would
be uncorrelated.

In this frame, it is interesting to study whether the evolution
of a system consisting of the product of two Hilbert spaces,
such as the 2L-QKR or the QW, generates an entangled
state from an unentangled initial condition. It is in fact
possible to quantify, through a certain measure, the amount
of entanglement generated by the time evolution for different
initial conditions. In the context of QWs several authors
[46–58] have been investigating the relationship between
the asymptotic coin-position entanglement and the initial
conditions of the walk. In order to compare the model
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considered in this paper with the QW, we investigate the
asymptotic chirality-momentum entanglement in the 2L-QKR.

Before addressing the problem of entanglement, an inter-
esting question regarding the similarity between the QW and
the 2L-QKR is whether the evolution of the latter can be put
in terms of a coin and a shift operator as in the QW. If the
value of β is given, the value of the momenta of the particle
in the 2L-QKR is specified by the discrete eigenvalues of k̂,
which can be identified with the position along theZ grid in the
quantum walk. The internal states in the 2L-QKR are identified
with the chirality states in the quantum walk model |L〉 and
|R〉. Within this framework, the one step time evolution of
both systems can be put in the form of Eq. (20),(

ak(t + T )
bk(t + T )

)
=

∞∑
j=−∞

Ukj

(
aj (t)
bj (t)

)
. (32)

In the case of the QW, if Hij are the components of the coin
operator in the {|L〉,|R〉} basis, then Ukj is given by [59]

Ukj =
(

H11 H12

0 0

)
δkj+1 +

(
0 0

H21 H22

)
δkj−1, (33)

where the 2 × 2 matrices act on the inner states and the action
of the shift operator is given by the Kronecker deltas. From
Eq. (33) it is seen that the QW evolution only connects points
in the Z grid with their immediate neighbors. However, the
2L-QKR evolution given by Eq. (15) connects every point
in the momentum grid with each other, as the matrix Ujk in
this case has nonzero elements for any pair jk. Therefore the
2L-QKR operator cannot be put in the simple form of the QW
with a coin and a shift operator. However, since Ujk for the
2L-QKR is proportional to Jj−k(κ), then Uj−k goes to zero
rapidly in the limit of large |j − k| when κ is small. This is
due to the fact that

Jj−k ∼ 1

�(j − k)

(κ

2

)j−k

(34)

for non-negative j − k when 0 < κ � √
j − k + 1. There-

fore, in this limit, when the interaction κ is small, the map
of the 2L-QKR is more similar to the quantum walk map in
this respect. For larger κ , that is, stronger interaction, more
momentum modes are coupled by the evolution of the system.

Even though not formally identical to the QW, the unitary
evolution of the 2L-QKR generates entanglement between chi-
rality and momentum degrees of freedom in a manner similar
to that of the aforementioned system. This entanglement will
be characterized [46,57] by the von Neumann entropy of the
reduced density operator, called entropy of entanglement. The
quantum analog of the Gibbs entropy is the von Neumann
entropy

SN (ρ) = −tr(ρ ln ρ), (35)

where ρ = |
(t)〉 〈
(t)| is the density matrix of the quantum
system. Owing to the unitary dynamics of the 2L-QKR, the
system remains in a pure state, and this entropy vanishes.
In spite of this chirality and momentum are entangled, and
the entanglement can be quantified by the associated von
Neumann entropy for the reduced density operator:

S = −tr(ρc log2 ρc), (36)

where ρc = trk(ρ) is the reduced density matrix that results
from taking the partial trace over the momentum space. The
reduced density operator can be explicitly obtained using
the wave function, Eq. (18), in the subspace β = 0 and its
normalization properties

ρc =
(

Pg(n) Q(n)

Q∗(n) Pe(n)

)
, (37)

where

Pg(n) =
∞∑

j=−∞
|ak(nT )|2 , (38)

Pe(n) =
∞∑

j=−∞
|bk(nT )|2 , (39)

Q(n) =
∞∑

j=−∞
ak(nT )b∗

k (nT ). (40)

Pe(n) and Pg(n) may be interpreted as the time-dependent
probabilities for the system to be in the excited and the ground
states, respectively. In order to investigate the entanglement
dependence on the initial conditions, we consider the localized
case, that is, the initial state of the rotor is assumed to be sharply
localized with vanishing momentum and arbitrary chirality,
thus (

ak(0)
bk(0)

)
=

(
cos γ

2
exp iϕ sin γ

2

)
δk0, (41)

where γ ∈ [0,π ] and ϕ ∈ [0,2π ] define a point on the unit
three-dimensional Bloch sphere. Equation (24) takes the
following form:(

ak(nT )
bk(nT )

)
= ikJk (nκ)

{
δk 2l

(
cos γ

2
exp iϕ sin γ

2

)
+ δk 2l+1

(
exp iϕ sin γ

2
cos γ

2

)}
. (42)

Substituting Eq. (42) into Eqs. (38)–(40) and using the
properties of the Bessel functions, we obtain

Pg(n) = 1

2
[1 + J0(2nκ) cos γ ] , (43)

Pe(n) = 1

2
[1 − J0(2nκ) cos γ ] , (44)

Q(n) = sin γ

2
[cos ϕ − i sin ϕJ0(2nκ)] . (45)

The eigenvalues of the density operator ρc, Eq. (37), as a
function of Pg(n), Pe(n), and Q(n) is

λ± = 1

2
[1 ±

√
1 − 4(Pg(n) Pe(n) − |Q(n)|2)], (46)

and the reduced entropy as a function of these eigenvalues is

S(n) = −λ+ log2 λ+ − λ− log2 λ−. (47)

Therefore the dependence of the entropy on the initial
conditions is expressed through the angular parameters ϕ and
γ . This means that, given certain initial conditions, the degree
of entanglement of the chirality and momentum degrees of
freedom is determined.

It is seen from Eqs. (43)–(45) that the occupation prob-
abilities and the coherence Q tend to a certain limit when
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FIG. 2. (Color online) The dimensionless entanglement entropy
as a function of the dimensionless initial conditions [see Eq. (41)].
The gray scale (color online) corresponds to different values of the
entropy between zero and one.

n → ∞. In this limit J0(2nκ) → 0 and both of the occupation
probabilities tend to 1/2, irrespective of the initial conditions.
However, in the asymptotic regime, dependence on the initial
conditions is still maintained by Q, and therefore by the
entropy as well. Thus, in the asymptotic regime we have

λ± → �± = 1
2 [1 ± cos ϕ sin γ ] , (48)

and the asymptotic value of the entropy S(n) → S0 is

S0 = −�+ log2 �+ − �− log2 �−. (49)

Figure 2 shows the dependence of the asymptotic entanglement
entropy on the parameters ϕ and γ that determine the
initial conditions given by Eq. (41). For the initial condition
ϕ = π/2 and/or γ = π on the Bloch sphere, Q → 0 and
both eigenvalues are �± = 1/2. In this case the asymptotic
entanglement entropy, Eq. (49), has its maximum value S0 = 1.
When initial conditions with γ = π/2 and φ = 0,π are
chosen, the asymptotic entanglement entropy goes to zero.

We have found that, for an un-entangled initial condition of
the form

|
(0)〉=
{

cos

(
γ

2

)
|e〉+ sin

[
γ

2
exp(iφ)

]
|e〉

}
|β = 0,k = 0〉,

the evolution of the system generates asymptotically a state
whose entanglement depends on the parameters that determine
the initial condition. This dependence is quantified in Fig. 2.
It was also seen that for certain specific initial conditions
the evolution can yield a state with either maximum or no
entanglement at all. This behavior is similar to what is seen
for the QW [46,47], although in that case it is found that there
is no localized initial condition which yields an un-entangled
asymptotic state. The qualitative similarity, between the QW
and the 2L-QKR, for the dependence on the initial condition
of the asymptotic entanglement is not surprising due to the
fact that both systems have the same Hilbert space and the
quantum evolution maps of both systems are similar. However,

quantitative aspects of these results differ due to the particular
details of each model.

Finally, it is interesting to point out that this kind of
entanglement has been used [58] to define a QW temperature
which characterizes the local equilibrium between the chirality
and position degrees of freedom. This kind of idea could be
extended to the system studied in this paper to define a thermal
equilibrium between the internal states and the momentum
degrees of freedom.

V. CONCLUSION

We have studied a modified QKR model with an additional
degree of freedom, the 2L-QKR. This system exhibits quantum
resonances with a ballistic spreading of the variance of the mo-
mentum distribution, and entanglement between the internal
and momentum degrees of freedom only depending on the
initial conditions. These results were established analytically
and numerically for different values of the parameter space of
this system. The above two behaviors also characterize the QW
on the line and help further the similarities previously studied
between the two systems. It is important to point out that these
phenomena (ballistic spreading of the variance, dependence of
the asymptotic entanglement on the initial conditions) could
be of great importance for future quantum computing applica-
tions. In particular, the ballistic spreading of the variance could
be used to render quantum search algorithms significantly
faster than their classical counterparts. The fact that these
behaviors are present in several quantum systems augments the
possibility of the realization of quantum computing devices.
The model studied in this paper, a variant of the model studied
by [44], could be realized as a modification on the existing
experimental model of the latter.

We have also found that, although our system exhibits
characteristics similar to those found in the usual QKR
model, there are still features, such as the existence of the
antiresonance described in Sec. II B, which have no analog in
the usual QKR model. These characteristics of the 2L-QKR
render the system as an interesting candidate for further study
within the framework of quantum computation.
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APPENDIX A

Starting from Eq. (21) the following expression is obtained:∑
k1

Uk1k2 (κ)Uk0k1 (κ) = ik2−k0
∑
k1

Jν2 (κ) Jν1 (κ)

(
E1 E2

E3 E4

)
,

(A1)

where

E1 = e−i2�̃δν1 2lδν2 2l′ + e−i�̃(1 − δν1 2l)(1 − δν2 2l′),

E2 = e−i2�̃δν1 2l(1 − δν2 2l′ ) + e−i�̃ δν2 2l′ (1 − δν1 2l),

E3 = e−i�̃ δν2 2l′ (1 − δν1 2l) + δν1 2l(1 − δν2 2l′ ),

E4 = e−i�̃(1 − δν1 2l)(1 − δν2 2l′ ) + δν1 2lδν2 2l′ ,
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and with ν1 = k1 − k0, ν2 = k2 − k1. In the above equations,
three different types of sums are involved, which can be carried
out using the properties of the Bessel functions (Ref. [60],
p. 992, Eq. 8.530).∑

k1

Jk2−k1 (κ)Jk1−k0 (κ) = Jμ2 (2κ), (A2)

∑
k1

Jk2−k1 (κ)Jk1−k0 (κ)δk1−k0 2l = 1

2
[Jμ2 (2κ) + δk2k0 ],

(A3)∑
k1

Jk2−k1 (κ)Jk1−k0 (κ)δk1−k0 2lδk2−k1 2l′

= 1

2
δμ2 2(l+l′)[Jμ2 (2κ) + δk2k0 ], (A4)

where μ2 = k2 − k0. Substituting the above equations into
Eq. (A1) and defining p = l + l′,∑

k1

Uk1k2 (κ1)Uk0k1 (κ2) = e−i�̃

2

[(
F1 F2

F3 F4

)
+

(
G1 0
0 G2

)]
,

(A5)

where

F1 = iμ2Jμ2 (2κ)δμ2 2p(1 + e−i�̃),

F2 = iμ2Jμ2 (2κ)(1 + e−i�̃)(1 − δμ2 2p),

F3 = iμ2Jμ2 (2κ)(1 + ei�̃)(1 − δμ2 2p),

F4 = iμ2Jμ2 (2κ)δμ2 2p(1 + ei�̃),

G1 = δk2k0 (e−i�̃ − 1),

G2 = δk2k0 (ei�̃ − 1).

APPENDIX B

The probability Pk(n) of finding the system with momentum
k at a time t = nT is obtained using Eq. (24).

Pk(n) = |ak(n)|2 + |bk(n)|2

= 1

2

∑
j,l

fjl

[
a0

j a
0∗
l + b0

j b
0∗
l

] + 1

2

∑
j,l

Re
{
fjl

[
a0

j b
0∗
l

]}
,

(B1)

where

fjl = il−j [Jk−j (nκ)Jk−l(nκ) + Jk−j (−nκ)Jk−l(−nκ)]

and a0
k and b0

k are given by the initial conditions of the system.
To calculate the moments m1(n) and m2(n) we need the
following sums:

I
(1)
j l = il−j

∞∑
k=−∞

kJk−j (κ)Jk−l(κ) = jδjl − iκ

2
(δlj+1 − δlj−1)

(B2)

and

I
(2)
j l = il−j

∞∑
k=−∞

k2Jk−j (κ)Jk−l(κ)

= κ2

2

[
δlj − 1

2
(δlj+2 + δlj−2)

]
+ iκ

[
1

2
(δlj+1 + δlj−1) + j (δlj+1 − δlj−1)

]
+ l2δjl .

(B3)

Using these expressions together with Eq. (B1) and the
definition of the moments we obtain the first and second
moments, Eqs. (27) and (28).
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