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Quantum-state transfer via resonant tunneling through local-field-induced barriers
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Efficient quantum-state transfer is achieved in a uniformly coupled spin-1/2 chain, with open boundaries, by
application of local magnetic fields on the second and last-but-one spins, respectively. These effective barriers
induce the appearance of two eigenstates, bilocalized at the edges of the chain, which allow a high-quality transfer
also at relatively long distances. The same mechanism may be used to send an entire e-bit (e.g., an entangled
qubit pair) from one to the other end of the chain.
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I. INTRODUCTION

Quantum-state transfer (QST), i.e., the reliable transfer
of an arbitrary quantum state between different quantum
processing units, is one of the major tools of distributed
quantum computing and provides the basic “building
block” for any quantum communication protocol [1,2].
When the information is encoded in intrinsically localized
units, an efficient quantum communication channel can
be realized with effective spin systems [3], in order to
avoid the difficult problem of interfacing with flying qubits.
This channel becomes especially useful for short-ranged,
on-chip communication (see Ref. [4], and references
therein).

For the QST of one qubit (which may be part of an
entangled or, more generally, a correlated pair [5]), a number
of protocols have been described employing spin- 1

2 chains
as a quantum data bus to transfer information between their
first and last spins (the sender and receiver, respectively).
In particular, a high-fidelity transmission can be obtained if
additional resources are employed with respect to the original
plain scheme of Ref. [3]. Examples include the encoding
of quantum states on spatially extended wave packets [6,7],
the use of local end-chain operations [8], of local memories
and parallel quantum channels [9], or of protocols employing
time-dependent interactions [10]. A perfect state transfer,
which is unattainable in a uniformly coupled chain, can be
achieved instead by a proper preengineering of the coupling
strengths. The key advantage in this case is that no external
time-dependent controls are needed, as the transfer is realized
through the intrinsic dynamics of the chain. Perfect QST,
which may be thought of as a particular instance of a
more generic swap operation [11], is entailed by accurate
settings of the intrachannel coupling strengths giving rise to a
linear dispersion relation for excitations propagating across
the channel [12]. However, dispersion during transmission
occurs in most spin chains due to the nontrivial structure
of the many-body Hamiltonian describing the channel, and
the design of a nondispersive channel requires a demanding
engineering of the Hamiltonian parameters. A systematic
analysis on how to set the couplings to allow for a perfect
state transfer can be found in Refs. [13,14].

On the other hand, a quasiperfect transfer [15] can be
obtained by modifying only a few couplings of an otherwise
homogeneous quantum channel [16], in order to obtain a
ballistic excitation transfer [17], or Rabi-like oscillations
between eigenstates having support only on the sender and
receiver sites [18–22].

In this work, we propose a transfer protocol of the latter kind
and analyze the efficiency and reliability of state transmission
in the presence of a minimal engineering, which depends on the
resonant tunneling of spin excitations induced by application
of local magnetic fields near the sending and receiving sites.
Specifically, we require the sender and receiver to have access
and control over the local fields applied on their neighboring
spins, which are increased by ω with respect to the rest of
the chain (see the sketch in Fig. 1). As discussed in Refs.
[20,21,23], in an open spin-1/2 chain of N nodes, these
extra local fields induce the appearance of two single-particle
states, which are “bilocalized” on sites 2 and N − 1 and
can be exploited to perform QST between them [10,22] in
a time t ∼ ωN−2. However, this is not the only effect produced
by the local fields. The geometric confinement, due to the
open boundary conditions imposed on the chain, induce the
appearance of a further pair of eigenstates which are localized
on the first and last sites and can be exploited for a much
faster QST. Indeed, once the spin chain is fermionized via
the Jordan-Wigner transformation, it is easy to recognize
that the local fields create effective potential barriers for the
single-particle excitations. If these barriers have equal heights
(thus establishing a mirror symmetry [24]), a coherent resonant
tunneling occurs between the first and last sites, giving rise to
information transfer.

The paper is organized as follows: In Sec II the model with
the magnetic field “barriers” is solved, and the appearance
of the bilocalized states mentioned above is discussed; in
Sec. III the transmission fidelity is studied and the effectiveness
of the local fields allowing for a very high-quality QST is
demonstrated. Furthermore, in Sec. III B the resilience with
respect to noise is analyzed, while in Sec. III C the possibility
of transferring more than one qubit is briefly touched upon.
After that, in Sec. IV, a time-dependent protocol based on the
switching of the local fields is presented and, finally, some
concluding remarks are drawn in Sec. V.
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FIG. 1. (Color online) Sketch of the spin chain with sender and
receiver located at the first and last sites, and with local field barriers
of height ω applied to the second and last-but-one sites.

II. THE MODEL AND ITS PROPERTIES

We consider a linear chain of spin-1/2 particles residing at
sites n = 1,2,...,N in a lattice of unit lattice constant. The N

spins are coupled through the homogeneous nearest-neighbor
XX model

H = −J

{
1

2

N−1∑
n=1

(
σx

n σ x
n+1 + σy

n σ
y

n+1

) +
N∑

n=1

Knσ
z
n

}
, (1)

here expressed in h̄ = 1 units, which will be used throughout
this paper. In Eq. (1), σα

n (α = x,y,z) are the usual Pauli
matrices for the spin at the nth site, probed by a local magnetic
field of intensity Kn, and J is the exchange coupling strength
between two nearest-neighboring sites. In the following J will
be set to 1 and taken as our energy unit (therefore, times will
be given in 1/J units).

As in the protocol of Ref. [3], we begin with the chain
being prepared with all spins up, say, in the initial state
|0〉 = |0〉⊗N in which |0〉 and |1〉 denote the spin-up and
-down states along the z axis, respectively. Next, we initialize
the first spin of the chain to the state |ψin〉= α|0〉 + β|1〉
and let the chain follow the time evolution generated by
the Hamiltonian (1). Since [H,

∑N
n=1 σn

z ] = 0, the dynamics
take place in the invariant subspaces with 0 and 1 flipped
spins, where the former is made up of the state |0〉 alone,
while the latter is spanned by the computational basis states
|j〉 = σ+

j |0〉 ≡ |01,02, . . . ,0j−1,1j ,0j+1, . . . 〉.
The state of the last spin, ρN (t), is obtained from the

time evolved state of the chain by tracing out all but
the N th spin, and the aim of the QST protocol is to retrieve
the state encoded in the first spin from the last one. The
efficiency of the state transfer is then quantified by the fidelity
F (t) = 〈ψin|ρN (t)|ψin〉, which equals 1 in the case of a perfect
transfer. In order to evaluate the channel quality independently
of the specific input state, we refer to the average fidelity F (t)
by integrating F (t) over all possible pure input states of a
qubit. This leads to

F (t) = |fN1(t)|
3

+ |fN1(t)|2
6

+ 1

2
, (2)

where fN1(t) = 〈N|e−iHt |1〉 is the transition amplitude of a
spin excitation from the first to the last site of the chain. In the
following, with the term fidelity we will refer to the quantity
given by Eq. (2).

The same effective channel can be used to transfer entan-
glement, with the first spin sharing an initial singlet state with
an external and uncoupled qubit. The amount of (transferred)
entanglement between the last spin of the chain and the external
one at a subsequent time t , as measured by the concurrence, is

given by [3]

C(t) = |fN1(t)|. (3)

Therefore, in order to perform efficiently both of the tasks,
namely, the state and entanglement transfers, it is necessary to
achieve a value of |fN1(t)| as close as possible to 1 at a certain
time t∗.

Because of the time invariance of the subspaces with a given
number of flipped spins, the calculation of fN1(t) is reduced to
diagonalizing the Hamiltonian in the single excitation sector,
where Eq. (1) can be expressed as a tridiagonal matrix whose
elements are H(1)

nm = 2Knδnm − (δn,n+1 + δn,n−1). Indeed, the
transition amplitude fN1 can be written as

fN1(t) =
N∑

k=1

〈N|ak〉〈ak|1〉e−iλk t , (4)

where λk are the eigenvalues and |ak〉= ∑N
j=1 akj |j〉 are the

corresponding eigenvectors of H(1), arranged in increasing
order, i.e., λk′ > λk for k′ >k.

As we will show below, a large value for |fN1| can be
obtained by modifying only two local fields in such a way that
only two eigenvectors among the |ak〉’s have a non-negligible
superposition with |1〉 and |N〉. Correspondingly, the time
evolution induced by H gives rise to an effective Rabi
oscillation of the spin excitation between the first and the last
sites of the chain.

Specifically, we assume that the local magnetic fields
are applied to the second and last-but-one spins, which in
the following will be denoted as barrier qubits, by setting
Kn = ω(δn,2 + δn,N−1) in Eq. (1), which gives rise to the model
depicted in Fig. 1. This yields an effective decoupling of the
first and the last spins of the chain whose dynamics take place
mainly in a subspace spanned by two particular eigenstates of
H(1), which are close enough in energy and bilocalized at the
edges of the chain.

To confirm these expectations, we study the spectrum of
H(1), reported in Fig. 2 for spin chains of N = 17,18 sites. The
cases of even and odd site numbers are analyzed separately, as
they display slightly different features.

In order to quantify the localization of the eigenvectors
|ak〉, induced by the magnetic field ω, we use the inverse
participation ratio (IPR), whose application to state transfer
has been discussed in Ref. [25], which is defined as

IPR(|ak〉) =
∑N

i=1 |aki |2∑N
i=1 |aki |4

.

When a state is localized on a single site n, i.e., aki = δni , the
IPR takes its minimum possible value IPR = 1. On the other
hand, an extended state distributed over a large number of sites
yields an IPR value of the order of the chain length. Notice that
the IPR gives information about the degree of localization of a
given eigenstate only, but it does not say anything about its spa-
tial distribution (with the exception of the IPR = N case, cor-
responding to a state uniformly spread over the whole system).

In Fig. 3, we report the IPR of the eigenstates, ordered
by ascending eigenvalues, for N = 17 and 18. The effect of
increasing ω is twofold. First, it causes a strong localization
of the two eigenvectors |a1,2〉: IPR(|a1,2〉) 	 2. These are the
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FIG. 2. (Color online) Spectrum of a spin chain with N = 17
(upper panel) and N = 18 sites (lower panel) versus ω: In both
cases, the two lowest eigenenergies move outside the band as ω

increases, while the two positive eigenenergies closest to zero become
quasidegenerate. The latter are represented by red, solid lines. A
zero-energy eigenstate occurs in the odd chain, whose eigenvalue
is represented by the green dot-dashed line. All energy values are
reported in units of J .

two lowest-lying eigenvalues, emerging out the unperturbed
(ω = 0) energy band λk ∈ (−2,2) (see Fig. 2). By increasing ω,
these states localize on the two barrier qubits and therefore their
contribution to the quantity in Eq. (4) is negligible. Second,
another pair of eigenvectors is found, with positive energies
close to zero, which reduce their IPR to a value asymptotically
tending to 2 for even site numbers [Fig. 3(b)], while remaining
slightly above 2 for odd site numbers [Fig. 3(a)].

The localization properties of these eigenstates are crucial
for quantum-information transfer as they turn out to give
the main contributions in Eq. (4). The remaining intraband
eigenstates hold their extended nature and, for even N , they
have a negligible superposition with the states {|1〉,|N〉}, so
that the dynamics occur in an effective two-level subspace. On
the other hand, in the odd-N case, an eigenvector with zero
energy eigenvalue is present, which, independently of ω, has a
constant amplitude on the sender and receiver sites, given by√

2
N+1 . As a consequence, its contribution to Eq. (4) cannot be

neglected for short chains, and the resulting effective dynamics
involve three levels. Furthermore, from Fig. 2 we see that other
intraband eigenvalues experience a downward shift and the
eigenvalues of the bilocalized states become quasidegenerate
with energies close to zero.

With these results at hand, we are now in a position to
evaluate the transition amplitude fN1, and then the fidelity (2)
and the concurrence (3).
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FIG. 3. (Color online) IPR for the eigenstates |a〉k of a chain of
N = 17 (upper plot) and N = 18 (lower plot) sites, sorted by increas-
ing eigenvalues, versus ω (in units of J ). The first two eigenstates, |a〉1

and |a〉2, rapidly reach IPR 	 2, becoming bilocalized on the barrier
qubits. The states corresponding to k = 10,11, which bilocalize on
the sender and receiver qubits, reach the value IPR 	 2 for the even
chain, whereas one of them remains slightly above that value for the
odd chain.

III. FIGURES OF MERIT FOR THE TRANSMISSION

The average transmission fidelity and the transmitted
concurrence are reported in Fig. 4, both as functions of
time and chain length, for fixed values of the auxiliary local
fields ω applied to the second and last-but-one sites. To
better appreciate the results, they are compared with the
homogeneous case ω = 0. In Fig. 4(a) we observe a significant

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80
0

0.2

0.4

0.6

0.8

1

0 105 15 20 10 3

(a) (b)

FIG. 4. (Color online) (a) Fidelity (red thick line) and concur-
rence (blue thin line, starting from C = 0 at t = 0) for a chain
of N = 100 spins with ω = 100J . The dashed red and blue lines
are, respectively, the maximum value of the fidelity and of the
concurrence attainable for the homogeneous chain with ω = 0. Time
is expressed in units of J −1. (b) Maximum of fidelity (red thick line)
and concurrence (blue thin line) versus the number of sites N for
ω = 10J (solid line) and ω = 0 (dashed line).

042313-3



LORENZO, APOLLARO, SINDONA, AND PLASTINA PHYSICAL REVIEW A 87, 042313 (2013)

0 1 2 3 4 5 6 7 8 9

20

40

60

80

0.7

0.8

0.9

1

FIG. 5. (Color online) Maximum fidelity in the time interval J t ∈
[0,4000] as a function of ω (in units of J ) and N . Notice that for
ω = 0 the fidelity is larger than 0.9 only for short chains, while as ω

increases, the fidelity is significantly enhanced.

improvement of fidelity and concurrence in the presence of ω

with respect to the homogeneous case, while Fig. 4(b) shows
that the difference becomes more and more pronounced with
increasing the chain length. Indeed, at ω = 0, many terms
enter the sum (4), giving rise to a destructive interference that
rapidly suppresses the transfer efficiency (as measured both by
fidelity and concurrence). On the other hand, in the presence
of the auxiliary fields ω, only two eigenvectors significantly
enter the transition amplitude fN1(t) so that both the state and
entanglement transfers are of high quality.

In Fig. 5 we report the density plot of the maximum fidelity
as a function of the number of sites and intensity ω of the local
fields to show that even modest values of ω are sufficient for
high-fidelity state transfer.

By increasing ω, the localization effect is enhanced and,
as a result, a better quantum-state transfer is obtained. This
is demonstrated in Fig. 6, where the attainable fidelity tends
towards 1 both for even and for odd site numbers. Nevertheless,
as the eigenvalues of the bilocalized eigenvectors become
closer and closer to each other, by increasing ω, the transfer
time increases. Since the transfer is based on Rabi-like
oscillations between the two eigenvectors with IPR 	 2, the
transfer time tMAX can be obtained from their eigenvalues:
tMAX = π/(λ2 − λ1), where λ2 > λ1. Furthermore, as shown
by a straightforward perturbation analysis, the eigenvalue
difference scales as (Nω)−1 for odd site numbers, while it
behaves as ω−2 for even ones, resulting in shorter transfer
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FIG. 6. (Color online) (a) Maximum fidelity achievable in the
time interval J t ∈ [0,4000]. (b) Optimal times at which the best
transmission is attained. The plots refer to chains of N = 22 (red
solid line) and N = 23 sites (green dashed line). For odd (even) N ,
tMAX is linear (quadratic) in ω.

times for odd N [see Fig. 6(b)]. Notice that the optimal transfer
time does not directly depend on N for even site numbers, but
ω needs to be increased (almost linearly) with increasing N in
order to have a fidelity that stays close to unity.

A. Effective Hamiltonian description

In this section, we compare our results with those obtained
using weak-end bonds [18]. To this end, we consider a uniform
magnetic field applied to a chain with sender and receiver sites
coupled more weakly to their neighboring spins than the other
nearest-neighboring sites. Such a week bond is characterized
by an interaction strength J ′, being smaller than the intrachain
exchange J . It turns out that a large fidelity can be obtained
provided the ratio J ′/J is suitably reduced with increasing
the chain’s length. Moreover, with weak-end bonds, a similar
behavior of the transfer time is obtained, with an even-odd
asymmetry akin to the one discussed above.

The similarity is explained by observing that the magnetic
field barriers on the second and last-but-one spins give rise
to effective weak-end bonds, which, however, display some
differences with respect to the setup of Ref. [18]. From a
perturbation analysis in terms of the small parameter J/ω � 1,
we infer that the main effect of the local fields is to modify the
exchange interaction strengths between pairs of spins near the
sender and receiver sites. Indeed, the effective Hamiltonian for
the first three spins of the chain reads

Heff = −(λ+|ψ+〉〈3| − λ−|ψ−〉〈3| + H.c.), (5)

where, up to normalization factors, |ψ+〉 ∝ λ−|1〉 + |2〉,
|ψ−〉 ∝ λ+|1〉 + |2〉, and λ± = (ω ± √

ω2 + 1). In the
ω/J → ∞ limit, we get |ψ+〉 → |2〉 and |ψ−〉 → |1〉, so that
the leading effect of the local fields is the appearance of
effective couplings J13 and J23 between the corresponding
spins. The latter are given by

J13 	 − 1

2ω
, J23 	 −1

2

(
1 − 1

ω2

)
.

Summarizing, the effective Hamiltonian of the first three
spins of the chain becomes Heff = J13(σx

1 σx
3 + σ

y

1 σ
y

3 ) +
J23(σx

2 σx
3 + σ

y

2 σ
y

3 ) + λ−σ z
1 + λ+σ z

2 ; moreover, due to the
presence of the large magnetic field on spin 2, its dynamics is
frozen in the |0〉 state. Similar results hold for the spins near
the receiver.

Once the spins at sites 2, N − 1 are adiabatically eliminated,
we are effectively left with a chain of N − 2 spins in a zero
magnetic field, uniformly coupled but for the end bonds, where
the (effective) couplings between the spins (1,3) and (N −
2,N ) have strength J13.

A further perturbative analysis in the J13 � 1 limit,
performed along the lines of Ref. [18], allow us to write an
overall effective Hamiltonian involving the spin-up states at
the sending and receiving sites only. More precisely, this is
strictly true only if N is even; for a chain with an odd number
of sites, instead, the inclusion of an auxiliary state is necessary,
corresponding to the zero-energy eigenstate, whose effects
have been discussed in Sec. II.

As a result, for N even and odd, respectively, the
state transfer is described by the following effective

042313-4



QUANTUM-STATE TRANSFER VIA RESONANT TUNNELING . . . PHYSICAL REVIEW A 87, 042313 (2013)

FIG. 7. (Color online) Scheme of the setup used for entanglement
transfer from the qubit pair (0,1) to the pair (0,N ), where the qubit 0
is decoupled from the chain.

Hamiltonians:

H even
eff = −

(
1

4ω2
|1〉〈N| + H.c.

)
, (6)

H odd
eff = 1

2ω

(
1 − 4

N − 3

)
(|1〉〈1| + |N〉〈N|)

−
√

1

2(N − 3)

1

ω
(|1〉〈a|(N+1)/2 + |N〉〈a|(N+1)/2 + H.c.).

(7)

B. Robustness against noise

In this section we investigate how a static disorder in the
magnetic fields acting on the qubits n = 3, . . . ,N − 2 affects
the efficiency of information transfer, and in particular, to be
specific, of entanglement transfer, performed according to the
scheme depicted in Fig. 7. In this setting the entanglement,
initially contained in the state |�+〉 = 1√

2
(|01〉 + |10〉) of the

qubit pair (0,1), is transferred to the pair (0,N ) and is quantified
by the concurrence as given by Eq. (3).

The kind of disorder we consider is given by the presence
of random local magnetic fields between the barrier qubits.
In other words, we are assuming that local random magnetic
fields, uniformly distributed in an interval −b < Kn < b, with
b denoting the disorder strength, act on the spins residing
on sites n = 3, . . . ,N − 2. This choice is justified by the
fact that the Hamiltonian parameter of the qubits (1,N ) are
generally considered to be more precisely controllable in
order to efficiently perform the state encoding and readout
procedure, and therefore, they will be practically unaffected
by the disorder. Furthermore, we allow the same degree of
control for the neighboring spins 2,N − 1, whose local fields
are assumed to be precisely fixed. In Fig. 8, we see that
the attainable concurrence (3), averaged over 105 samples of
disorder, remains quite high provided that b � ω. Indeed, the
bilocalized nature of the relevant eigenstates is not significantly
perturbed. On the contrary, this is no longer the case for values
of b comparable to—or greater than—ω. Similar results are
obtained for the fidelity of the QST.

Depending on the specific physical implementation of the
model, other sources of errors (and, specifically, of static
disorder) can be identified. In particular, we would like to
mention that the robustness of different transfer schemes
against bond disorder (that is, static disorder in the spin-
coupling strengths) has been investigated in Ref. [26]. It turns
out that the localization properties of the eigenstates play an
important role for efficient state transfer in the presence of
nonuniform bonds, and that a mechanism based on localized
states, like the one we are describing, is more resilient than
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FIG. 8. (Color online) (Left panel) Averaged concurrence vs
auxiliary field strength ω for different values of the disorder parameter
b. (Right panel) Concurrence vs disorder strength b for different
values of ω. The curves for ω > 20 are almost indistinguishable and
no relevant change in the effects of the disorder is observed. In both
panels, the length of the chain is N = 10 and averages are performed
over 105 realizations of disorder. All energy values are expressed in
units of J .

a ballistic transport-based one. On the other hand, since we
consider high magnetic field applied locally to sites 2 and
N − 1, a leakage effect is certainly possible, affecting the
neighboring sites. To check the robustness of our transfer
scheme against this lack of control, we can consider random
magnetic fields, with amplitude decaying with the distance,
to affect the dynamics of spins 3, 4, N − 3, and N − 2 (on
the other hand, as discussed above, we assume a very high
degree of control on the sending and receiving sites, and on
the barrier fields). The results of such an analysis are reported
in Fig. 9, where the transmission fidelity averaged over 105

realization of these static random fields is displayed. For very
small values of the local fields ω, the quality of the transfer is
strongly reduced by the presence of this kind of disorder, while
its effect is shown to substantially decrease for larger values of
barrier fields, despite the fact that residual static random fields
are always bounded by the same fractions of ω.

The plots suggest that, both for chains with odd and even
N , an optimal value of the local barrier fields exists in the
case in which a given fraction of it is assumed to leak to the
neighboring sites. If such an optimal value of ω is selected
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FIG. 9. (Color online) Averaged fidelity vs auxiliary field strength
ω for different lengths of the chain. In this case a residual magnetic
field is supposed to act on sites 3,N − 2 and 4,N − 3, with random
values uniformly distributed between 0 and ω/10 for the sites
near the barriers, and between 0 and ω/40 for the next to nearest
sites, respectively. The plots show averages performed over 105

realizations.
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FIG. 10. (Color online) Sketch of the configuration for the
transfer of an e-bit.

(which scales almost linearly with the size N ), the average
fidelity is kept very close to unity.

C. Transport of an entire e-bit

We have shown above that a qubit encoded on the first
spin of the chain is almost perfectly transferred to the other
end, thanks to the application of local magnetic fields to the
adjacent spins to the sender and the receiver sites. In this
section we extend this idea to the transfer of an entangled
pair. Considering the setup depicted in Fig. 10, we aim at
transferring the entanglement shared by qubits 1 and 2 to qubits
N − 1 and N by use of auxiliary magnetic fields applied to sites
3 and N − 3. We thus allow Kn = ω(δn,3 + δn,N−2) in Eq. (1).
Then, we start from the fully polarized state |0〉, and initialize
the first two spins in a state belonging to the single excitation
subspace so that the initial state of the whole chain reads

|�(0)〉 = α|1〉 + β|2〉, (|α|2 + |β|2) = 1, (8)

whose evolution is given by

|�(t)〉=
N∑

j=1

pj |j〉, pj = α〈j|e−iH t |1〉+ β〈j|e−iH t |2〉.
(9)

Finally, we obtain the state of the qubits N − 1 and N

by performing the partial trace over the first N − 2 spins.
Considering an initially entangled (1,2) pair (that is, α,β �= 0),
the amount of entanglement transferred to the pair (N − 1,N )
and measured by the concurrence is given by CN−1,N =
2|pN−1pN |. As shown in Fig. 11 where an initial maximally
entangled state has been taken, i.e., α = β = 1√

2
, also the

entanglement may be efficiently transferred in the presence of
the auxiliary magnetic fields.

101
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FIG. 11. (Color online) Concurrence transferred from the max-
imally initial entangled qubits pair (1,2) to the pair (N − 1,N ) for
a chain of N = 33 and ω = 5,15,45 (from left to right). Higher
values of the local field, besides increasing the amount of transferred
entanglement, regularize the dynamics.

IV. TIME-DEPENDENT QUANTUM-STATE
TRANSFER PROTOCOL

In this section we investigate a QST protocol in which
we allow for time control of the magnetic fields acting on
the barrier qubits. The aim of this control is to provide a
precise timing for the beginning and end of the sending
stage, as given by the switching of the local fields. At the
same time, the control relaxes the need of a fast (in fact,
instantaneous) extraction of the received information at the site
N once the transmission is performed. The idea is to encode
the quantum state on the sender site and leave it there for a
future transmission by means of a strong magnetic field on its
neighbor barrier qubits. In this first step the information stays
localized on the sender as no tunneling of the spin excitation
is possible due to the energy mismatch with other sites. The
sending stage is then realized by switching on the magnetic
field of the other barrier, at the (N − 1)th site. During this
second step, the Rabi oscillation described in the previous
sections takes place. Finally, in the third stage, only the barrier
on the last-but-one spin is left on, in order to trap the received
quantum state, while the local field near the sender site is
switched off.

To implement this proposal, we exploit the time-dependent
Hamiltonian

H(t) = −1

2

N−1∑
n=1

(
σx

n σ x
n+1 + σy

n σ
y

n+1

) −
∑

i=2,N−1

ωi(t)σ
z
i , (10)

where

ω2(t) =

⎧⎪⎨
⎪⎩

K1

K2

0

, ωN−1(t) =

⎧⎪⎨
⎪⎩

0, t0 � t < t1

K2, t1 � t � t2

K1, t > t2.

(11)

Here, t2 = t1 + �t , with �t being an optimal transfer time
interval, which we define below. With this time-dependent field
configuration, the spin at the first site is “frozen” until t < t1
as the state |1〉 is an approximate eigenstate of H(t < t1);
then, after the resonant tunneling to the receiving site t1 � t �
t1 + �t , for t > t2, the information is definitely stored in the
N th spin, as |N〉 is an approximate eigenstate of H(t > t2) (see
the upper panel in Fig. 12).

Since the transition amplitude is given by 〈N |U (t)|1〉, in or-
der to obtain the fidelity, one needs to solve the time-dependent
Schrödinger equation for the state U (t)|1〉 = ∑N

k=1 βk(t)|k〉
that reduces to an N × N system of differential equations:

i
dβ1(t)

dt
= −β2(t),

i
dβ2(t)

dt
= − β1(t) − ω2(t)β2(t) − β3(t),

. . .

i
dβj (t)

dt
= − βj−1(t) − βj+1(t) (j = 3, . . . ,N − 2),

. . .

i
dβN−1(t)

dt
= −βN−2(t) − ωN−1(t)βN−1(t) − βN (t),

i
dβN (t)

dt
= −βN−1(t).

(12)
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FIG. 12. (Color online) (Upper panel) Average fidelity for a
chain of N = 30 sites with K1 = 60 and K2 = 30, where the
three steps of the QST protocol are clearly visible from the time
behavior of the two fields, which are switched according to the
recipe of Eq. (11). (Lower panel) Same as in the upper plot, but
with finite switching times for the fields. In this case, ω2(t) and
ωN−1(t) are smoother versions of the step functions of Eq. (11), with
exponential corrections: ω2(t) = K2/[exp{α(t − t2)} + 1] + (K1 −
K2)/[exp{α(t − t1)} + 1], and a similar behavior for ωN−1(t). The
three curves correspond to three values of α and it turns out that
the achievable F decreases with the steps becoming smoother and
smoother (that is, with increasing α).

The solution, in each time interval where ω2(t) and ωN−1(t)
are constant, is

βs(ti+1) = (−1)s+1
∑
λj

N∑
k=1

Qk,s(λ)
dP (λ)

dλ

∣∣∣∣
λj

e−iλj tβk(ti), (13)

where λj are the eigenvalues of H (ti), while P (λ) and Qk,j (λ)
are, respectively, the determinant and the minors of the matrix
[H (ti+1) − λ11]. In order to perform the state transfer along
the chain, the optimal time �t is proportional, again, to the
inverse of the eigenvalue difference of the intermediate stage
Hamiltonian, and reads

�t =
{ π

2 K2
2 , N even

π
4 (N − 3)K2, N odd.

The procedure works quite well for even N , as illustrated
in Fig. 12, where the detrimental effect of finite switching
times for the field is also explored. Unlike adiabatic transfer
schemes [27], here a fast switching of the magnetic fields
is desirable because the overlap of the initial (final) state
|1〉 (|N〉) with the bilocalized states is maximized by a
step function, whereas a smoother switching function would
introduce into the dynamics destructively interfering states

that do not possess the required localization properties. This
is illustrated in the lower panel of Fig. 12, where the average
fidelity is plotted for different switching rates.

For odd chains, on the other hand, the presence of the
zero-energy eigenstate taking part in the dynamics, makes the
state transfer more involved, because the trapping stages both
at the beginning and end of the protocol are not so efficient.

V. CONCLUSIONS

Spin chain models describe a great variety of different
physical systems, ranging from trapped ions interacting with
lasers [28], via flux qubits [29] and arrays of coupled cavity,
to ultracold atoms in one-dimensional optical lattices [30,31],
including coupled quantum dots [32], nitrogen vacancy centers
in diamond [33], or magnetic molecules [34]. All these possi-
ble implementations have their own strengths and weaknesses
and allow for different possible kinds of controls on the single
units. It is therefore of interest to put forward QST protocols
that may fit better to a specific experimental realization of the
quantum channel.

In many of the above-mentioned implementations, only a
restricted access is possible to the Hamiltonian parameters. It is
therefore desirable, to study efficient and reliable transmission
protocols that require only a limited amount of controls. In
this paper we have shown that a high-quality quantum-state
transfer can be achieved in an XX-spin chain by means
of strong local magnetic fields applied on the second and
last-but-one spins, that cause the appearance of two specific
eigenstates, bilocalized on the sender and receiver sites located
at the edges of the chain. Unlike other QST protocols, this
implies that no engineering of the Hamiltonian parameters
is required. A much more limited control is needed only on
some local properties of the spins close to the sender and the
receiver sites. By increasing the magnetic fields ω, the transfer
fidelity has been shown to approach unity, with a transfer
time scaling as ω−1 and ω−2 for chains with odd and even
numbers of sites, respectively; furthermore, a good resilience
to the presence of static disorder in the local Hamiltonian
parameters of the channel has been demonstrated. The model
works also for the transfer of a two-qubit state, and more
general n-qubit state transmission can be easily envisaged
using similar schemes. Furthermore, this setup allows for an
efficient time-dependent protocol, based on fast switching of
the magnetic fields, which has the benefit of avoiding the
need for a fast and well synchronized state retrieval. The latter
is a common requirement for many existing QST proposals.
Indeed, with our setup, the transferred state can be trapped,
with a high fidelity of storage, at the end of the transmission
protocol, thus allowing for a much easier extraction of the
information.
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