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Generation of long-time maximum entanglement between two dipole emitters via a hybrid
photonic-plasmonic resonator
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We explore the entanglement generation between two dipole emitters via a hybrid photonic-plasmonic resonant
structure which consists of two metal nanoparticles (MNPs) and a high-Q whispering-gallery-mode (WGM)
microcavity. Because the coupling strength between the dipole emitter and the cavity can be substantially
enhanced with the help of MNPs and maintained by the WGM cavity, the maximum entanglement plateau
between two dipole emitters can be deterministically created even in the presence of the spontaneous emission
of the dipole emitters and the decay induced by the microcavity and MNPs. The width of the plateau depends
on the coupling strengths (or the radii of the MNPs) and the initial state, but is insensitive to the dipole-cavity
detuning. These results are useful in real experiments.
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I. INTRODUCTION

Quantum entanglement and quantum entangled states are
of crucial importance in many quantum information processes,
such as quantum cryptography [1], teleportation [2,3], compu-
tation [4], and dense coding [5]. Numerous different systems
have been proposed to prepare entangled states of matter,
among which the cavity quantum electrodynamics (CQED)
system provides one of the most promising and qualified
candidates for quantum information processing [6–9]. In
order to generate entanglement, it is important to create a
light-matter strong interaction. Cavity QED offers an almost
ideal platform to realize this strong-coupling regime even
on experiments [10]. In particular, whispering-gallery mode
(WGM) mirocavities [11] are promising due to their ultrahigh-
quality factor (Q) and allowing for mass production on a
chip. Unfortunately, the relatively large cavity mode volume
of WGM mirocavities makes it difficult to realize strong
coupling [12]. On the other hand, when a metal nanoparticle
(MNP) is driven by an external electromagnetic field, the MNP
can magnify the local optical field, which can significantly
enhance interactions with atomic media [13] due to localized
surface plasmon resonance (LSPR) [14]. This enhancement
has been studied for increasing atomic radiative efficiency [15].
Recently, the interaction between a dipole emitter and a metal
nanoparticle investigated by several works led to interesting
interference effects [16–18].

Based on this achievement, we investigate the entanglement
generation between two dipole emitters via a hybrid photonic-
plasmonic resonant structure which consists of two MNPs
and a WGM-type microcavity. Such a composite system
possesses the advantages of both high-Q and ultralow-loss
WGMs and highly localized plasmons. Two identical dipole
emitters (quantum-mechanical two-level atoms) are placed
in the vicinity of two MNPs, respectively. The interaction
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between dipole emitters and WGMs can be enhanced with
the help of MNPs. We use entanglement concurrence to
demonstrate the entanglement degree of two dipole emitters.
There is a relative long-time maximum entanglement plateau
whose width closely associates with the coupling strength
between the dipole emitters and WGMs. We also demonstrate
the influence of the dipole-cavity detuning, and the initial state
of the coupled system on the degree of entanglement. Our main
results are as follows: (i) The maximum entanglement of two
dipole emitters can be deterministically generated in a very
short time and the width of the entanglement plateau is ∼2 ns.
(ii) The entanglement plateau strongly depends on the radii of
the MNPs and the initial state of the system but is insensitive
to the dipole-cavity detuning. (iii) Over enough time, the
entanglement concurrence trends toward a steady value which
can reach about 0.5 for appropriate system parameters.

II. PHYSICAL MODEL AND BASIC FORMULA

Figure 1 shows a schematic of the coupled system.
Two spherical MNPs are placed close to the surface of a
microtoroidal cavity which supports two counterpropagating
WGMs with degenerate frequency ωc, denoted as acw and
accw. Two identical diploe emitters are located in the vicinity
of two MNPs, respectively. The distance between two MNPs is
far enough, so the interaction of two MNPs can be neglected.
Experimentally we can use atomic force microscope manipula-
tion to controllably position the MNPs and dipole emitters. The
dipole moment is μx̂ (x̂ is a unit vector pointing in the direction
of dipole moment). When the MNP is driven by an external
monochromatic field E0(r,t) = Re[E0e

−iωt ] (Re[·] indicates
the real part of the bracketed quantity), the total field which
includes the response of the MNP is given by [13]: E(r) = (1 −
β)E0x x̂ (r � rm), E(r) = (1 + 2βr3

m/r3)E0x x̂(r > rm). E0x is
the xth component of E0 (here we consider the transverse
coupling case). rm is the radius of the MNP (rm is much smaller
than the light wavelength) and r is the radial coordinate of the
position vector r (with respect to the center of the MNP). So
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FIG. 1. (Color online) (a) Schematic illustration of the composite
system composed of a microtoroidal cavity and two MNPs (not to
scale). Two diploe emitters (such as two-level atoms) are located in the
vicinity of two MNPs, respectively. The distance between two MNPs
is far enough, so the interaction of two MNPs can be neglected.
(b) The dipole-MNP system and two different incident field ori-
entations, longitudinal and transverse. ε1(ε2) denotes the relative
permittivity of the MNP (the surrounding medium). rm is the radius
of the MNP and d is the distance between the dipole emitter and the
surface of the MNP. The inset is the energy diagram of the dipole.

we have r = rm + d and d is the distance between the dipole
emitter and the surface of the MNP. The complex coefficient β

can be calculated to be β = (ε1 − ε2)/(ε1 + 2ε2); here ε1(ε2)
denotes the relative permittivity of the MNP (the surrounding
medium). The dielectric constant ε1 can be well modeled by a
Drude dispersion relation owing to the metallic of the MNPs,
i.e., ε1(ω) = 1 − ω2

p/[ω(ω + iγm)] [12,13], where ωp is the
plasma frequency of the metal and γm accounts for energy
dissipation due to Ohmic losses in the medium.

Under the rotating-wave approximation, the Hamiltonian
of this composite system can be written as [12]

H = H1 + H2, (1a)

H1 = h̄

(
ωe − i

γs

2

) ∑
j=1,2

|e〉j 〈e|

+ h̄

(
ωc − i

κ0

2

) ∑
n=cw,ccw

a†
nan

+
∑
j=1,2

∑
n=cw,ccw

h̄Gc,j (a†
nσ

−
j + anσ

+
j ), (1b)

H2 = h̄
∑
j=1,2

(hj − iκRj − iκmj )
∑

n,n′=cw,ccw

a†
nan′ , (1c)

where ωe is the transition frequency of the dipole emitters
(ground state |g〉 and excited state |e〉). γs denotes the
spontaneous emission rate of the dipole emitters (we assume
that two dipole emitters have the same spontaneous emission
rate). ωc is the cavity frequency of a microtoroidal cavity which
supports twin counterpropagating WGMs (acw and accw). κ0 is
the decay rate of the cavity modes. The third part of H1 [see
Eq. (1b)] describes the dipole interaction between the dipole
emitters and WGMs with the single-photon coupling strength
Gc,1 and Gc,2. As mentioned before, in the presence of the
MNP, the coupling strength Gc can be enhanced and calculated
to be |1 + 2βr3

m/r3|G. Here G = μfc(R)[ωc/(2h̄ε0εcVc)]1/2

is the coupling strength without the MNP. ε0 and εc are
the permittivity of vacuum and relative permittivity of the

microcavity, respectively. Vc and fc(R) (R is the position of
the spherical MNP) denote the mode volume and normalized
field distribution of the WGMs. σ−

j = |g〉j 〈e| and σ+
j =

|e〉j 〈g| (j = 1,2) stand for the descending and ascending
operators of the j th dipole emitter. The coupling strength
hj = 2πr3

mjε2ωc|β|2f 2
c (R)/(εcVc) [see Eq. (1c)] describes the

scattering induced by the j th MNPs into the same (n = n′)
or the counterpropagating (n �= n′) quantized WGM fields.
On the other hand, the scattering can also result in the
decay from WGMs to reservoir modes with the damping rate
κRj = ε

5/2
2 (4πr3

mj )2|β|4ω4
cf

2
c (R)/(6πc3εcVc). The last term

of H2 describes the absorption of the j th MNPs which
results in Ohmic losses with the decay rate κmj = 4πr3

mj |1 −
β|2ω2

pγmf 2
c (R)/(3εcω

2
cVc) [12].

In the single excitation manifold together with the ground
state, the bases of the whole coupled system are as follows:
{|1〉 = |e1,g2,0cw,0ccw〉, |2〉 = |g1,e2,0cw,0ccw〉, |3〉 = |g1,g2,

1cw,0ccw〉, |4〉= |g1,g2,0cw,1ccw〉, and |5〉 = |g1,g2,0cw,0ccw〉},
where |e1(2)〉,|g1(2)〉 denote the state of the first (second) dipole
emitter, and |0cw(ccw〉,|1cw(ccw)〉 denote the number of photons
in the cw and ccw WGMs. For simplicity, we ignore subscripts
in the following.

If the initial state is |	(0)〉, after time t , the state of
the system becomes |	(t)〉 = ∑5

i=1 Ci(t)|i〉. In order to
investigate entanglement of the two dipole emitters, we need
to trace out the cavity modes and obtain the reduced density
matrix of two dipole emitters, i.e., ρa(t). To quantify the degree
of entanglement of the two dipole emitters, we use ρa(t) to
calculate the concurrence [19]

C(t) = C(ρa) = 2 max{0,λ1 − λ2 − λ3 − λ4}, (2)

where λi (i = 1–5) is the square roots of the eigenvalues of
ρaρ̃a with ρ̃a = (σy ⊗ σy)ρ∗

a (σy ⊗ σy) in decreasing order, and
σy being the Pauli operator. In our case, the concurrence can
be written as [20]

C(t) = 2|C1C
∗
2 |

|C1|2 + |C2|2 + |C3|2 + |C4|2 . (3)

We consider a silica microtoroidal cavity in air whose intrin-
sic quality factor can achieve Q0 = 107 [21]. We obtain other
practical parameters: εc = 1.452, ε2 = 1, Vc ∼ 200 μm3,
fc(R) ∼ 0.3, and κ0/2π = (ωc/2π )/Q0 = 55 MHz. On the
other hand, for a gold MNP and the dipole emitter [such as
chemically synthesized cadmium selenide (CdSe) quantum
dot], we extracted the experimental parameters ωp ∼ 6 ×
106 GHz, γm ∼ 3 × 105 GHz, μ = 2.4 × 10−28 C m, and
γs = 2π × 1.6 GHz [12,22,23]. Using these experimental data
and considering the LSPR [14], we can obtain the follow-

ing relationship: ε1(ω) = ε1(ωc), Gc/2π 	 |1 + 2β
r3
m

(rm+d)3 | ×
0.76 GHz, h/2π 	 9.88 × 1022r3

m GHz, κR/2π 	 2.69 ×
1046r6

m GHz, and κm/2π 	 1.72 × 1022r3
m, respectively.

III. RESULTS AND DISCUSSION

First of all, we analyze the influence of the coupling
strength Gc,j (j = 1,2) on the entanglement degree of the
two dipole emitters. In Fig. 2, we plot the concurrence of
the two dipole emitters versus the time t for four different
radii under the initial state |	(0)〉 = |1〉 = |eg00〉. Here we
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FIG. 2. (Color online) Concurrence of two dipole emitters versus
the time t for four different radii [i.e., (a) rm = 12 nm, (b) 15 nm,
(c) 20 nm, and (d) 30 nm] under the initial state |	(0)〉 = |1〉 =
|eg00〉. Two MNPs have the same radius rm1 = rm2 = rm and no
dipole-cavity detuning � = 0. The distance between the dipole
emitter and the surface of the MNP is d = 3 nm.

set Gc,1 = Gc,2 = Gc, h1 = h2 = h, κR1 = κR2 = κR , and
κm1 = κm2 = κm (or rm,1 = rm,2 = rm), i.e., two MNPs are
identical. The dipole-cavity detuning � (� = ωe − ωc) is
taken as zero and the distance d between the dipole emitter and
the surface of the MNP is 3 nm. From Fig. 2, we can observe
that, when the radius of the MNPs is small, i.e., rm = 12 nm in
Fig. 2(a), the concurrence curve oscillates rapidly and finally
arrives at a steady value (C ∼ 0.5) which needs a relative long
time. With the radius increasing, the concurrence achieves the
maximum (C = 1) more rapidly and holds it for some time,
then the curve oscillates again and reaches one steady value
at last, as shown in Figs. 2(b)–2(d). In other words, there is
a plateau whose width becomes larger with increasing rm.
A similar phenomenon has been discussed by Montenegro
et al. [24]. We also find that the last steady value decreases
with increasing rm. We can understand this phenomenon as
follows. The concurrence reaches the maximum quickly, at
first, and it is maintained for some time because there is a
strong interaction between each dipole emitter and the WGMs
in the presence of MNPs which can be maintained by the WGM
cavity. As time goes on, the influence of decay terms such as
γs , κ0, κR , and κm is gradually enhanced, so the concurrence
begins to decrease and finally reaches a stable equilibrium
value.

It is worth mentioning that, when the initial state is chosen
as |	(0)〉 = |2〉 = |ge00〉, the concurrence is the same as in
the initial state |	(0)〉 = |1〉 = |eg00〉 due to the equivalence
of two dipole emitters.

Secondly, we consider the off-resonance interaction of
the cavity field with the dipole emitters, i.e., � �= 0. The
concurrence of two dipole emitters as a function of time t

is plotted in Fig. 3 with three different detunings � (i.e.,
�/2π = 0, 10, and 50 GHz). The time which is spent to reach
the maximum C = 1 becomes longer with � increasing but the
moment of the obtained steady value is almost independent of
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FIG. 3. (Color online) Concurrence of two dipole emitters versus
the time t with three different emitter-cavity detunings �. The initial
state is set to |	(0)〉 = |1〉 = |eg00〉. The other system parameters
are chosen as rm = 20 nm and d = 3 nm.

the detuning �. That is to say, the width of the plateau becomes
narrower. We also find that this narrowness is very small, i.e.,
there is a wide plateau even for the large dipole-cavity detuning
� [see Fig. 3(c)]. On the other hand, the last steady value
decreases rapidly with increasing �.

In what follows, we illustrate explicitly the above results
from the perspective of normal modes of the resonator, which
are just linear combinations of the cw and ccw modes. In
this case, the two dipole emitters actually couple to a single
normal mode of the resonator, i.e., (acw + accw)/

√
2, with

frequency ωc + 4h. The system is therefore equivalent to a pair
of two-level dipole emitters coupled off resonantly to a single
cavity mode. Any initial excitation is coherently exchanged
between the field mode and the dipole emitters and during
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FIG. 4. (Color online) Concurrence of two dipole emitters versus
the time t with five different scale factors s (s = Gc,2/Gc,1).
The initial state is set to |	(0)〉 = |1〉 = |eg00〉. The other system
parameters are chosen as rm,1 = 20 nm and � = 0.
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FIG. 5. (Color online) Concurrence of two dipole emitters versus
the time t under the initial state |	(0)〉 = α|1〉 +

√
(1 − α2)|2〉. The

other system parameters are chosen as rm = 20 nm, d = 3 nm, and
� = 0.

certain intervals of time the state of the system is entangled, as
one can expect. For large h, the cavity normal mode is far off
resonant from the transition frequency of the dipole emitter
and mediates an effective dipole-dipole interaction between
the dipole emitters, which periodically produces maximally
entangled states of the dipole emitters [3].

In order to show the influence of the coupling strengths
Gc,j (j = 1,2) more clearly, we consider that two MNPs hold
different coupling strengths, i.e., Gc,1 �= Gc,2 (or rm,1 �= rm,2).
We define a parameter s to be the ratio of the coupling strength
between each dipole emitter and the WGMs, i.e., Gc,2 =
sGc1 = sGc. It can be found from Fig. 4 that concurrence can
reach the maximum (C = 1) more rapidly and the width of the
plateau becomes longer with the increase of the scale factor s,
but the last steady value becomes smaller (see s ∼ 1.14).

Finally, we investigate the influence of the initial state of
the system. We consider the situation in that the initial state is
a superposition state |	(0)〉 = α|1〉 +

√
(1 − α2)|2〉. Figure 5

shows clearly that the width of the plateau becomes narrower
and narrower with decreasing α. For example, when α = 1, the
width �t 	 1.5 ns, and when α = 0.72, the width �t 	 0.6 ns.
It is easy to see that, when α = 1/

√
2, the width �t → 0,

i.e., the concurrence will maintain the oscillation state until it
reaches the steady value. Moreover, different α cannot change
the last steady value.

If we consider that the initial state is |	(0)〉 = |3〉 or |4〉,
there is no plateau as shown in Fig. 6. The concurrence curve is
oscillatory between zero and the maximum (not to exceed 0.5).
The maximum greatly decreases when the radius of the MNPs
increase and the oscillation aggravates (see rm = 15 nm).
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FIG. 6. (Color online) Concurrence of two dipole emitters versus
the time t under the initial state |	(0)〉 = |3〉 or |4〉. The other system
parameters are chosen as d = 3 nm and � = 0.

When the radius is increased to 25 nm, there is no oscillation
and the concurrence obtains the maximum (C ∼ 0.21) and
soon decays to zero. From Figs. 5 and 6, it is clearly shown
that the initial state can greatly influence the entanglement
generation except for the single-photon coupling strength Gc.

IV. CONCLUSION

In summary, we have studied a composite of two MNPs
and dipole emitters localized near the microtoroidal cavity.
The coupling strengths between the dipole emitters and the
microcavity have been substantially enhanced owing to the
help of the MNPs. The coupling strengths increase with
the radius rm of the MNPs increasing. This effective strong in-
teraction leads to the generation of the maximum entanglement
between the two dipole emitters in a much shorter time. The
corresponding maximum entanglement plateau can be held for
a relative long time. The width of the plateau strongly depends
on the coupling strength Gc (or the radius rm of the MNPs) and
the initial state but is insensitive to the dipole-cavity detuning.
Our result is useful in real experiments.
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