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Multilevel distillation of magic states for quantum computing
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We develop a procedure for distilling magic states used in universal quantum computing that requires
substantially fewer initial resources than prior schemes. Our distillation circuit is based on a family of concatenated
quantum codes that possess a transversal Hadamard operation, enabling each of these codes to distill the eigenstate
of the Hadamard operator. A crucial result of this design is that low-fidelity magic states can be consumed to purify
other high-fidelity magic states to even higher fidelity, which we call multilevel distillation. When distilling in
the asymptotic regime of infidelity ε → 0 for each input magic state, the number of input magic states consumed
on average to yield an output state with infidelity O(ε2r

) approaches 2r + 1, which comes close to saturating
the conjectured bound in another investigation [Bravyi and Haah, Phys. Rev. A 86, 052329 (2012)]. We show
numerically that there exist multilevel protocols such that the average number of magic states consumed to
distill from error rate εin = 0.01 to εout in the range 10−5–10−40 is about 14 log10(1/εout) − 40; the efficiency
of multilevel distillation dominates all other reported protocols when distilling Hadamard magic states from
initial infidelity 0.01 to any final infidelity below 10−7. These methods are an important advance for magic-state
distillation circuits in high-performance quantum computing and provide insight into the limitations of nearly
resource-optimal quantum error correction.
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I. INTRODUCTION

Quantum computing can potentially solve a handful of
otherwise intractable problems such as factoring large integers
[1] or simulating quantum physics [2]. Though the number
of applications with a known quantum speed-up is small,
some are quite valuable, such as the preceding examples.
Quantum computations depend on coherent entangled states
that are very sensitive to noise, so fault-tolerant quantum
computing addresses imperfections in physical hardware with
error-correcting codes [3,4], the most studied of which are
stabilizer codes [5]. However, while quantum codes protect
against noise, no code natively supports a universal set of
transversal gates for simulating any quantum circuit [6,7]. To
achieve universal quantum computing with error correction,
Bravyi and Kitaev proposed a solution [8] that has received
considerable attention: Inject faulty magic states into the
code, purify them using the error-corrected gates, and then
consume them to implement otherwise unavailable quantum
circuits. These states are magic because it is possible to distill
a subset of high-fidelity states from an ensemble of faulty
states and because they enable universal fault-tolerant quantum
computation.

Magic-state distillation has been the subject of intense
investigation in recent years. Knill introduced a distillation
procedure for |H 〉, the + 1 eigenstate of the Hadamard
operation [9], independently of the work by Bravyi and Kitaev
[8]. Reichardt showed that these protocols were equivalent and
introduced an improvement that increased the threshold error
rate [10]. More recently, Meier et al. introduced a 10-to-2
distillation procedure based on a code with two encoded
qubits [11] and Bravyi and Haah introduced a (3k + 8)-to-k
procedure using so-called triorthogonal codes with even k

encoded qubits [12]. The distillation procedures we develop
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herein continue this trend of using larger, multiqubit codes.
The relationship of magic-state distillation to other aspects of
quantum information has also been an area of active study.
Fowler and Devitt have proposed methods to reduce the size
of distillation circuits when using topological quantum error
correction [13]. Magic-state distillation has been demonstrated
experimentally in NMR [14]. Additionally, distillation proto-
cols for qudits have been proposed and analyzed [15,16].

For a quantum state, we quantify the probability of it having
an error using the infidelity 1 − F , where F = 〈ψ |ρ|ψ〉 is
the fidelity between some mixed state ρ and the ideal state
|ψ〉. The initial |H 〉 states are prepared in a faulty manner
before being injected into a fault-tolerant quantum code and
Reichardt proved that the theoretical-limit infidelity for |H 〉
states to be distillable is about 0.146 [10]. Campbell and
Browne examined further properties of mixed states that may
be distilled [17]. The efficiency of distilling high-infidelity
magic states to low infidelity is of great importance to fault-
tolerant quantum computing. Although magic states are the
widely preferred method for achieving universality, distillation
circuits are currently estimated to require the majority of
resources in a quantum computer [18,19]. Therefore, advances
in distillation protocols are important steps toward making
quantum computing possible.

This paper presents two important, related results. First, we
specify a family of [[n,(n − 4),2]] Calderbank-Shor-Steane
(CSS) quantum stabilizer codes [20,21] known as H codes
with transversal Hadamard operation, for even n � 6. A
transversal quantum operation is one where a gate acting
on a logical, encoded qubit is implemented by independent
gates on each qubit in that code block (see p. 483 of
Ref. [4]). The H codes are dense because the ratio of
logical qubits to physical qubits (n − 4)/n → 1 as n → ∞.
Second, we demonstrate that concatenated versions of H

codes allow for distillation of high-fidelity encoded magic
states by consuming low-fidelity magic-state ancillas. We call
this multilevel distillation because each such protocol takes
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two types of magic-state inputs, which have different levels
of infidelity and are applied at different concatenation levels
within the distillation circuit. Multilevel protocols lead to the
most efficient procedure for distilling magic states reported so
far. For suitably small infidelity ε in each input magic state
with independent errors, there exists a sequence of multilevel
protocols that yields output magic states with infidelity O(ε2r

)
and requires asymptotically 2r + 1 input states per distilled
output state. This efficiency comes close to the optimality
bound conjectured in Ref. [12]. For the purposes of developing
quantum devices, this result is useful for exposing limits
for optimizing quantum error correction. While this result
is interesting theoretically, we also numerically study the
distillation efficiency for εin = 0.01, which is of practical
importance to fault-tolerant quantum computing. We find
that multilevel distillation is superior to previously reported
protocols when the final infidelity is below 10−7.

Throughout this paper, we adopt the following notation for
single-qubit Pauli operators, for readability: X ≡ σx , Z ≡ σ z,
and I is the identity operator on a qubit. Additionally, we
use “physical qubit” to denote those qubits used to produce
a quantum code, whereas “logical qubits” are the protected
information inside the code, again for readability. It may
be the case that physical qubits for one encoding level are
themselves the logical qubits of another code, which is a
standard technique of quantum code concatenation [3,4,22].

II. FAMILY OF CODES WITH A TRANSVERSAL
HADAMARD OPERATION

We define a family of CSS quantum codes that encode
an even number k logical qubits using k + 4 physical qubits
and possess a transversal Hadamard operation, so we call
them collectively H codes and denote Hn as the code using
n = k + 4 physical qubits. Any H code may be defined
as follows. The stabilizer generators are S1 = X1X2X3X4,
S2 = Z1Z2Z3Z4, S3 = X1X2X5X6 · · · Xn, S4 = Z1Z2Z5Z6 · · · Zn,
where subscripts index over physical qubits and tensor
product between Pauli operators is implicit. The logical Pauli
operators (corresponding to logical qubits), denoted with an
overbar and indexed by i = 1, . . . ,k, are Xi = X1X3Xi+4 and
Zi = Z1Z3Zi+4. The Hadamard transform exchanges X and Z

operators, so application of transversal Hadamard gates at the
physical level enacts a transversal Hadamard operation at the
logical level, which will be a useful property when we later
concatenate these codes. All H codes have distance 2, which
means they can detect a single physical Pauli error. The product
of two logical Pauli operators of the same type for two distinct
logical qubits has weight 2 (number of nonidentity physical,
single-qubit Pauli operators); the product of same-type Pauli
operators on all logical qubits is also weight 2 at the physical
level. The stabilizers come in matched X-Z pairs, so there are
no weight-1 logical operators.

The +1 eigenstate |H 〉 = cos(π/8)|0〉 + sin(π/8)|1〉 of the
Hadamard operator H = (1/

√
2)(X + Z) is a magic state for

universal quantum computing [8–12]. In particular, two of
these magic states can be consumed to implement a controlled-
H operation [9,11], enabling one to measure in the basis of
H [see Fig. 1(a)]. Our distillation procedure is as follows:
(a) Encode faulty |H 〉 magic states in an H code, (b) measure
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FIG. 1. Distillation of |H 〉 magic states using an H code:
(a) controlled-Hadamard gate constructed using RY (−iπ/4) =
exp(iπσ Y /8) and its inverse, each requiring one |H 〉 state [11], and
(b) initial |H 〉 states (left) encoded with four additional qubits,
initialized to |0〉 here. The boxes “Encode” and “Decode” represent
quantum circuits for encoding and decoding, which are not shown
here.

in the basis of the transversal Hadamard gate by consuming
|H 〉 ancillas, and (c) reject the output states if either the
measure-Hadamard or code-stabilizer circuits detect an error.
For example, when an Hk+4 code is used for distillation, k, |H 〉
states are encoded as logical qubits using k + 4 physical qubits.
Each transversal controlled-Hadamard gate consumes two |H 〉
states [11] and this gate is applied to all physical qubits, which
results in the (3k + 8)-to-k input-output distillation efficiency
of these codes. A diagram of the quantum circuit for distillation
using H6 is shown in Fig. 1(b).

III. MULTILEVEL DISTILLATION

Multilevel distillation uses concatenated codes with
transversal Hadamard operation for distillation, in such a
manner that the protocol takes as input magic states at two
different levels of infidelity, and the two types of magic
states enter at different concatenation levels in the code. The
|H 〉 ancillas consumed for transveral controlled-Hadamard
measurement are of lower fidelity than the encoded logical |H 〉
states being distilled. When two quantum codes with transver-
sal Hadamard operation are concatenated, the resulting code
also has transversal Hadamard operation. Under appropriate
conditions, the distance of the concatenated code is the product
of the distances for the individual codes: d ′ = d1d2 [11]. Thus
the concatenation of two H codes yields a distance-4 code with
transversal Hadamard operation and r-level concatenation has
distance 2r .

The concatenation conditions for H codes are that, through
all levels of concatenation, any pair of physical qubits has at
most one encoding block (at any level) in common. The reasons
for this restriction are that logical errors in the same block are
correlated and that the statement above that distance multiplies
through concatenation assumes independence of errors, so two
qubits from the same encoding block can never be paired again
in a different encoding block. The required arrangement of
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FIG. 2. Concatenation of H codes: (a) six physical qubits coupled
into an H6 code with two logical qubits and (b) a 6 × 6 array of
physical qubits coupled into a concatenated two-level H6 code.

qubits can be given a geometric interpretation. Arrange all
physical qubits at points on a Cartesian grid in the shape of
a rectangular solid, with the number of dimensions given by
the number of levels of concatenation. A square, cube, or
hypercube are possible examples at dimensionality 2, 3, or 4.
Each dimension is associated with a level of concatenation
and there must be an even n � 6 qubits in each dimension
to form an H code. Construct H codes in the first dimension
by forming an encoding block with each line of qubits in
this direction, as in Fig. 2(a). This will give rise to k = n − 4
logical qubits along each line in this direction. Repeat this
procedure by grouping these first-level logical qubits in lines
along the second dimension to form logical qubits in a two-
level concatenated code, as in Fig. 2(b). Continuing in this
fashion through all dimensions ensures that any pair of qubits
has at most one encoding block in common.

As with the H codes, multilevel codes use a transversal
logical Hadamard-basis measurement to detect whether any
one encoded qubit has an error (an even number of encoded
errors would not be detected). If the logical |H 〉 states have
independent error probabilities εl , then the distilled states
will have infidelity O(ε2

l ) with perfect distillation. We must
also consider whether the Hadamard-basis measurement has
an error. For a two-level code arranged as a square of side
length n, the transversal controlled-Hadamard gates at the
lowest physical level require 2n2 |H 〉 magic states, each of
which has infidelity εp. However, this is a distance-4 code, so
for independent input-error rates, the probability of failing to
detect errors at the physical level is O(ε4

p) + O(εlε
2
p) (rigorous

analysis is provided later). The code can detect more errors
in the magic states at the lower physical level, so these
|H 〉 states can be of lower fidelity than the magic states
encoded as logical qubits and successfully perform distillation.
This is the essential distinction between multilevel distillation
and all prior distillation protocols. When multiple rounds of
distillation are required [19], low-fidelity magic states are less
expensive to produce, so multilevel protocols achieve higher
efficiency.

Multilevel distillation protocols are applied in rounds,
beginning with a small protocol (such as an H code) and
progressing to concatenated multilevel codes. Let us denote

the output infidelity from a single round by the function
εout = E

n1×···×nt

t (εl,εp). For each such function, t is the dimen-
sionality (number of levels of concatenation) and n1, . . . ,nt

are the sizes of each dimension, which need not all be the
same. As before, εl and εp refer to the independent error
probabilities on logical and physical magic states, respectively.
A typical progression of rounds using a source of |H 〉 states
with infidelity ε0 might be ε1 = En

1 (ε0,ε0), ε2 = En×n
2 (ε1,ε0),

etc.
Multilevel distillation circuits tend to be much larger in both

qubits and gates than other protocols. Because there can be
many encoded qubits, the protocol is still very efficient, but the
size of the overall circuit may be a concern for some quantum
computing architectures. At any number of levels, the distilled
output states have correlated errors, so distilled magic-state
qubits in our protocol must never meet again in a subsequent
distillation circuit (we require that errors are independent
within the same encoding block, as in Refs. [11,12]). Let us
suppose that one performs two rounds of distillation, where
the first round uses one-level distillers with k encoded magic
states and the second round uses two-level distillers with k2

encoded states. Because the inputs to each distiller in the
second round must have independent errors, there must be k2

independent distillation blocks in the first round. Therefore,
to distill k3 output states through two rounds, we require k3

(logical inputs) + 2k2(k + 4) (physical inputs) + 2k(k + 4)2

(physical inputs) = 5k3 + 24k2 + 32k input states.
Consider a similar sequence through r rounds with each

distiller in round q having kq encoded qubits. The total number
of logical magic states is kr × kr−1 × · · · × k = kr(r+1)/2 to
ensure that errors are independent between logical magic states
in every round. In the first round, the number of consumed
magic states is 2(k + 4)kr(r+1)/2−1; in any subsequent round
q � 2, the number of consumed magic states is 2q−1(k +
4)qkr(r+1)/2−q (recall that the Hadamard measurement is
implemented 2q−2 times, meaning it is repeated for q � 3).
The total number of input magic states can thus be expressed
as ⎡

⎣1 + k + 4

k
+

r∑
q=1

2q−1

(
k + 4

k

)q

⎤
⎦ kr(r+1)/2. (1)

For r = 2, this reproduces the expression above. What also
becomes clear is that the total size of multilevel protocols
becomes unwieldy as r and k increase. For example, the case of
r = 3 and k = 10 would require about 1.87 × 107 input magic
states and a comparable number of quantum gates to distill
106 output magic states. However, since efficient multilevel
distillation protocols, measured in the ratio of low-fidelity
|H 〉 input states consumed to yield a single high-fidelity
|H 〉 output, use k 	 1 and multiple rounds, the greatest
benefit from their application is seen in large-scale quantum
computing, where a typical algorithm run may require 1012

magic states, each with error probability 10−12 [19]. Moreover,
alternative designs can circumvent these issues. If the first
round uses a different protocol without correlated errors across
logical magic states, such as Bravyi-Kitaev 15-to-1 distillation,
then having multiple distillation blocks is unnecessary in the
second round using a two-level concatenated protocol, which
would lead to smaller multiround, multilevel protocols. Indeed,

042305-3



CODY JONES PHYSICAL REVIEW A 87, 042305 (2013)

Sec. IV shows that optimal protocols found by numerical
search happen to take this approach.

The scaling exponent γ of a distillation protocol character-
izes its efficiency. Specifically, O( logγ (εin/εout)) input states
are required to distill one magic state of infidelity εout. Scaling
exponents for previous protocols are γ ≈ 2.46 (15-to-1 [8,9]),
γ ≈ 2.32 (10-to-2 [11]), and γ ≈ 1.6 (triorthogonal codes
[12]). Moreover, Bravyi and Haah conjecture that no magic-
state distillation protocol has γ < 1 [12]. In this work, if each
round of distillation uses one higher level of concatenation
in the multilevel protocols, then the number of consumed
inputs doubles. In the limits of k → ∞ and ε → 0, multilevel
protocols require 2r + 1 input states to each output state for r

rounds of distillation, where the rth round is a level-r distiller.
The final infidelity is O((εin)2r

), so the scaling exponent is
γ = log(2r + 1)/ log(2r ) → 1 as r → ∞, which is the closest
any protocol has come to reaching the conjectured bound. We
show later through numerical simulation that γ ≈ 1 for error
rates relevant to quantum computing.

IV. ANALYSIS

We make the conventional assumption that all quantum
circuit operations are perfect, except for the initial |H 〉 magic
states we intend to distill. This is a valid approximation if all
operations are performed using fault-tolerant quantum error
correction where the logical gate error is far below the final
infidelity for distilled magic states [3,19]; for a more explicit
construction of fault-tolerant distillation circuits, see Ref. [13].
Additionally, following the methodology in Refs. [8,11], we
can consider each magic state with infidelity ε as the mixed
state ρ = (1 − ε)|H 〉〈H | + ε|−H 〉〈−H |, where |−H 〉 is the
−1 eigenstate of the Hadamard operation.

Determining the infidelity at the output of distillation
becomes simply a matter of counting the distinct ways that
errors lead to the circuit incorrectly accepting faulty states.
This process is aided by the geometric picture from earlier,
and details are given in Appendix A. It is essential that
error probabilities εl and εp for each input magic state are
independent. Then a one-level (3k + 8)-to-k distiller using the
Hk+4 code has output-error rate on each |H 〉 state as

Ek+4
1 (εl,εp) = (k − 1)ε2

l + (2k + 2)ε2
p + · · · , (2)

where higher-order terms denoted by the ellipsis are omitted.
Our numerical results justify the use of lowest-order approx-
imations as higher-order terms are negligible in optimally
efficient protocols. The lowest-order error rates are both
second order because the Hadamard-basis measurement and
Hk+4 code can together detect a single error in any magic state.
The probability of the distiller detecting an error, in which
case the output is discarded, is kεl + 2(k + 4)εp + · · · . If εl =
εp = ε, then the output-error rate of (3k + 1)ε2 conditioned
on success is the same as in Ref. [12]. Using the two-level
distiller constructed from concatenated Hk+4 codes, the output
infidelity for each distilled |H 〉 state is

E
(k+4)×(k+4)
2 (εl,εp) = (k2 − 1)ε2

l + 8(k2 + 4k + 3)ε4
p

+ (k + 4)2εlε
2
p + · · · . (3)
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FIG. 3. (Color online) Average number of input |H 〉 states with
εin = 0.01 consumed to produce a single output |H 〉 state with fidelity
εout. Multiple-round distillation can use different protocols in each
round and the markers indicate just the last round of distillation.
The gray-shaded squares, triangles, and circles show, respectively,
the best distillation possible with only 15-to-1 [8], 10-to-2 [11],
and triorthogonal-code [12] protocols. The dashed line is a linear
fit 14 log10(1/εout) − 40.

The probability of the two-level distiller detecting an error
is k2εl + 2(k + 4)2εp + 2k2(k + 4)2εlεp + · · · . Similar error
suppression extends to higher multilevel protocols, as exam-
ined in Appendix A.

Figure 3 shows the performance of optimal multiround
distillation protocols identified by numerical search, indicating
the number of input states with ε0 = 0.01 required to reach a
desired output infidelity εout. The markers indicate the type
of protocol in the last round of distillation, including Bravyi-
Kitaev [8], Meier-Eastin-Knill [11], and multilevel H codes
(see Appendix B for details). The search attempts to identify
the best distillation routines using any combination of known
methods. Note that the recent Bravyi-Haah protocols [12] have
the same performance as one-level H codes. As expected,
there is a trend of using higher-distance multilevel protocols
in the last round as the output-error rate εout decreases (earlier
rounds may use different protocols). Where present, open
markers indicate the best possible performance of previously
studied protocols without the advent of multilevel distillation
and multilevel distillation is dominant for εout � 10−7, which
is the regime pertinent to quantum computing. Moreover,
in this regime, input-error rates are sufficiently small that
only lowest-order terms in the E(·) output-error functions are
significant. The linear fit provides empirical evidence that the
scaling exponent is γ ≈ 1 in this regime, which demonstrates
that multilevel protocols are close to the conjectured optimal
performance in practice.

V. CONCLUSION

H codes can distill magic states for T = exp[iπ (I − σ z)/8],
which may enable distillation of three-qubit magic states
for controlled-controlled-Z, which is locally equivalent to
the Toffoli gate [4] (see Appendixes C and D for details).
As a first pass at studying distillation protocols, this work
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considered only average input-to-output efficiency. Future
work will more rigorously examine the entire costs in qubits
and gates required to fault-tolerantly distill magic states using
multilevel codes [23]. Multilevel distillation is an important
development for large-scale fault-tolerant quantum computing,
where the distillation of magic states is often considered the
most costly subroutine [18,19]. Other codes with high-density,
high-distance, and transversal Hadamard operations may yet
be discovered, though for the present, H codes are useful for
their high efficiency and simple construction.
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APPENDIX A: ERROR ANALYSIS IN MULTILEVEL
H-CODE DISTILLATION

The multilevel codes analyzed here use concatenated H

codes. When two H codes are concatenated, the logical qubits
of the first level of encoding are used as physical qubits for
completely distinct codes at the second level. Consider a two-
level scheme: If the codes at the first and second levels are
[[n1,(n1 − 4),2]] and [[n2,(n2 − 4),2]], respectively, then the
concatenated code is [[n1n2,(n1 − 4)(n2 − 4),4]], as shown in
Fig. 2(b) of the main text. This process can be extended to
higher levels of concatenation.

Determining the potential errors and their likelihood in mul-
tilevel protocols requires careful analysis. Let us enumerate
the error configurations that are detected by the protocols; the
error probability is given by summing the probability of all
error configurations that are not detected and lead to error(s)
in the encoded |H 〉 states. As a first step, we may simplify
the analysis of multilevel codes by considering each input
magic state to our quantum computer as having an independent
probability of σY error, as discussed in Refs. [8,11]. This
allows us to consider only one type of error stemming from
each magic state used in the protocol.

Identifying undetected error events in multilevel distilla-
tion, which lead to the output-error rate, is aided by the
geometric picture introduced in the main text. Qubits that will
form the code are arranged in a rectangular solid and then
grouped in lines along each dimension for encoding. There are
two error-detecting steps that together implement distillation:
the Hadamard-basis measurement and the error detection of
the H codes. The Hadamard measurement registers an error for
odd parity in the total of encoded state errors and physical-level
errors in the first round of RY (−π/4) gates and there is one
of these for each qubit site in the code (see Fig. 1 of the main
text).

The second method for H codes to detect errors is by
measuring the code stabilizers. The code stabilizers detect
any configuration of errors that is not a logical operator in
the concatenated code. Because of the redundant structure

using overlapping H codes, only a very small fraction of error
configurations evade detection. Before moving on, note that at
each qubit site, there are two faulty gates applied and two errors
on the same qubit will cancel (however, the first error will
propagate to the Hadamard-basis measurement). Conversely,
a single error in one of the two gates will propagate to the
stabilizer-measurement round, but only an error in the first
gate will also propagate to the Hadamard measurement. The
stabilizer-measurement round will only see the odd-even parity
of the number of errors at each qubit site.

One type of error event that occurs at concatenation levels
3 and higher requires special treatment. If there is an error
in an encoded magic state and errors on two physical states
used for the same controlled-Hadamard gate at the physical
level, then this combination of input errors is not detected
by the distillation protocol, leading to logical output error.
This event leads to the O(εlε

2
p) error probability from the

main text, which is not an issue for two-level protocols, but
it must be addressed in levels 3 and higher. The solution for
t-level distillation, where t � 3, is to repeat the controlled-
Hadamard measurement 2t−2 times, consuming 2t−1 magic
states at the physical level. After each transversal controlled-
Hadamard operation, the code syndrome checks for detectable
error patterns. With this procedure, one encoded-state error
would also require at least 2t−1 errors in physical-level magic
states to go undetected, leading to probability of error that
scales as O(εlε

2t−1

p ).
Consider the pattern of errors after the two potentially

faulty gates on each qubit in the t-dimensional Cartesian grid
arrangement. The many levels of error checking in the H codes
can detect a single error in any encoding block at any encoding
level. For this analysis, let us separate the k + 4 qubits in a
single H code block into two groups: The first four qubits are
preamble qubits, while the remaining k qubits are index qubits.
The reason for distinction is that the logical Yi operators,
which would also be undetected error configurations, have
common physical-qubit operators in the preamble, with a
degeneracy of two: Yi = −Y1Y3Yi+4 = −Y2Y4Yi+4, because
of the stabilizer Y1Y2Y3Y4. Conversely, the logical operators
are distinguished by the ith logical Pauli operator having a
physical Pauli operator on the ith index qubit (numbered i + 4
when preamble is included).

With the preamble-index distinction, we can now identify
the most likely error patterns. For any size H code, there
are two weight-2 errors in the preamble: Y1Y2 and Y3Y4.
Logically, these represent the product of Y operators on all
encoded qubits. In the index qubits, any pair of errors is
logical: Yi+4Yj+4 = YiYj . However, a pair of errors split with
one each in preamble and index is always detectable by the
code stabilizers. Thus any single encoded qubit could have a
logical error stemming from a pair of errors in two different
configurations in the preamble or k − 1 configurations in
the index qubits. There is also one weight-3 error. Each
physical-state error configuration is multiplied by a degeneracy
factor that is the number of ways an even number of
errors occur before the CNOT in Fig. 1, thereby evading the
Hadamard measurement. Thus the probability of logical error
is 2(k + 1)ε2

p + 4ε3
p + O(ε4

p). The Hadamard measurement
fails to detect an even number of errors in the logical input
states. There are k − 1 ways that a pair of encoded input errors
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could corrupt any given qubit and (k − 1)(k − 2)(k − 3)/6
ways four errors could corrupt any given qubit (assuming
k � 4). This contributes error terms (k − 1)ε2

l + (1/6)(k − 1)
(k − 2)(k − 3)ε4

l + O(ε6). Finally, it is possible for a single
logical error and an odd number of physical errors before the
CNOT in Fig. 1 of the main text, potentially in conjunction
with other physical errors after CNOT, to occur simultaneously
in a way that evades both checks. This contributes a term
(k + 4)εlε

2
p + 8(k − 1)εlε

3
p + O(εlε

4
p).

The numerical analysis detailed below shows that efficient
use of one-level H codes has similar error rates for εl and
εp and both are below 0.01, so the relevant terms in the
error functions for one-level H codes are Ek+4

1 (εl,εp) =
(k − 1)ε2

l + (2k + 2)ε2
p + · · · , which reproduces Eq. (1) of

the main text. As a result, the higher-order terms above can be
neglected for this range of parameters so long as k is not too
large. Simply put, if the higher-order terms become relevant
(i.e., εl , εp, or k is sufficiently large in magnitude), then the
distillation protocol is being used ineffectively and it may in
fact cause more errors than it corrects. These findings are
supported by the numerical search for optimal protocols and
we proceed using this approximation.

When H codes are concatenated, the analysis of undetected
error patterns becomes more complicated. In particular, logical
errors from one layer of encoding must be matched with
errors from other encoding blocks to go undetected at the
next level. Consider the case of the level-2-concatenated
square-array distiller and focus on one of the encoded states.
As before, a pair of encoded-state input errors evades the
Hadamard measurement, which contributes a term (k2 − 1)ε2

l .
The undetected errors resulting from consumed magic states
are more complicated. Within the upper encoding block,
there are two ways a logical error could be caused by a
pair of errors in the preamble and k − 1 possibilities for
logical error from a pair of index errors. However, each
of the inputs to the second level are the logical qubits of
distinct H codes at the first level, which has additional error
detection. The most likely errors from the first level come
in pairs, but these pairs are sent to different codes at the
second level. As a result, the error patterns from the first
level must come in matched pairs that are also not detected
at the second level. For any particular error configuration
going into a block at the second level, there are four preamble
configurations and k − 1 index configurations at the first level
that could have caused it. There are k + 1 undetected error
configurations at the second level and the degeneracy factor
of four physical errors is 8, so the consumed magic states
contribute a term 8(k + 1)(k + 3)ε4

p. Finally, the most likely
way that physical and encoded errors can occur in conjunction
is a logical error on the magic state in question and two physical
errors on the same qubit anywhere, which has probability
(k + 4)2εlε

2
p. Combined, these error terms reproduce the

results in Eq. (2): E
(k+4)×(k+4)
2 (εl,εp) = (k2 − 1)ε2

l + 8(k2 +
4k + 3)ε4

p + (k + 4)2εlε
2
p + · · · . We drop terms at higher

order because they are found to be negligible in optimal
protocols. For example, the first optimal two-level protocol
has parameters k = 8, εl = 3.5 × 10−5, and εp = 9 × 10−4,
where both input types come from earlier rounds of distillation
(Bravyi-Kitaev and Meier-Eastin-Knill, respectively). More
details of the numerical search are given below.

Continuing this approach, one can show the significant error
terms at level t � 3 are given by

E
(k+4)t
t (εl,εp) = (kt − 1)ε2

l + 22t+t−3(k + 1)(k + 3)t−1ε2t

p

+ (k + 4)t(2
t−2)εlε

2t−1

p + · · · . (A1)

These terms incorporate degeneracy in error configurations
and repeated Hadamard measurements. The coefficients of
the second and third terms on the right-hand side of Eq. (1)
represent physical error configurations and encoded-physical
combinations, respectively, and these grow rapidly as a
function of r . Accordingly, the optimal-protocol search does
not advocate the use of three-level protocols until the desired
output error rate is below 10−25, which is beyond the needs
of any quantum algorithm so far conceived. No four-level
protocols were found to be optimal for output error rates above
10−40, which under practical considerations means they are
not likely to ever be used. The next section considers the size
of multilevel distillation circuits, which can also limit their
usefulness.

APPENDIX B: OPTIMAL MULTI-ROUND DISTILLATION

The claimed efficiency of multilevel distillation was ex-
amined quantitatively with a numerical search for optimal
multiround distillation protocols. Each of the protocols is
optimal in the sense that, for a given final infidelity εout, no
other sequence requires fewer average input states and, for
a given average number of input states, no other protocol
achieves lower εout. Note that probability of rejection upon
detected error is incorporated by considering average cost for
distillation when failure-and-repeat steps are included. The
protocols plotted in Fig. 3 of the main text are just the last round
of a distillation sequence. Earlier rounds can be, and usually
are, different protocols. The search space was constrained such
that the number of rounds r � 5, number of encoded logical
qubits k � 20 for all H codes, and multilevel codes are square
(k + 4) × (k + 4), etc.

Generally speaking, smaller protocols handle large input-
error rates in early rounds better, while larger multilevel proto-
cols are more inefficient at distillation when input-error rates
are low enough. For example, the protocols listed in Table I are
the same ones plotted in Fig. 3. Note that when εout is smaller
than 10−7, multilevel protocols are most efficient. Should
one desire εout < 10−25, level-3 protocols have the highest
efficiency. Higher levels of concatenation (up to level 5)
were part of the search, but they were not efficient for
εout > 10−40. The error-function notation E(·) from the main
text is used to show how the inputs to later rounds of distillation
may be the outputs of an earlier round. This notation neglects
the total size of the distillers, which must be determined by
using parallel distillation blocks whenever correlated errors on
logical magic states are present.

For reference, the best achievable results with prior proto-
cols are also shown in Table I, in reverse chronological order
of their discovery. The methods are cumulative, so the most
recent Bravyi-Haah codes could also use Meier-Eastin-Knill
or Bravyi-Kitaev distillation, but the oldest Bravyi-Kitaev
distillation is alone in its column. The best achievable results
with older protocols are also shown in Fig. 3 for comparison.
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TABLE I. Optimal distillation protocols identified by numerical search. Protocols are specified using the error functions E(·) to indicate when inputs to one
round are the outputs of another distillation circuit. The data for CBH and CMEK are obtained from Ref. [12].

− log10 − log10
(εtarget) (εout) Protocol CML CBH CMEK CBK

4 4.46 EBK(ε0) 17.44 17.44 17.44 17.44
5 5.14 EMEK(EBK(ε0)) 27.93 27.86 27.86 261.5

6 6.83 E40
BH(EBK(ε0)) 56.07 56.07 83.99 261.5

7 7.11 E12×12
2 (EBK(ε0),EMEK(ε0)) 57.38 58.30 83.99 261.5

8 8.06 E10×10
2 (EMEK(EMEK(ε0)),EMEK(ε0)) 67.52 89.26 139.3 261.5

9 9.08 E10×10
2 (EMEK(E2

BH(ε0)),E2
BH(ε0)) 100.3 139.3 139.3 261.5

10 11.1 E24×24
2 (E40

BH(EBK(ε0)),EBK(ε0)) 110.7 179.4 261.7 261.5

11 11.1 E24×24
2 (E40

BH(EBK(ε0)),EBK(ε0)) 110.7 179.4 261.7 261.5

12 12.1 E24×24
2 (E10×10

2 (EBK(ε0),EMEK(ε0)), EBK(ε0)) 113.7 187.9 418.0 3923.0

13 13.0 E24×24
2 (E10×10

2 (E8
BH(EMEK(ε0)), EMEK(ε0)),EBK(ε0)) 120.4 225.6 418.0 3923.0

14 14.1 E24×24
2 (E10×10

2 (EMEK(EMEK(ε0)), EMEK(ε0)),EBK(ε0)) 126.9 285.6 419.9 3923.0

15 15.0 E14×14
2 (E10×10

2 (EMEK(EMEK(ε0)), EMEK(ε0)),E10
BH(EMEK(ε0))) 158.5 315.5 696.7 3923.0

16 16.3 E24×24
2 (E10×10

2 (E40
BH(EBK(ε0)), EMEK(ε0)),EMEK(EMEK(ε0))) 187.9 406.2 696.7 3923.0

17 17.0 E22×22
2 (E24×24

2 (E40
BH(EBK(ε0)), EBK(ε0)),EMEK(EMEK(ε0))) 195.5 529.5 696.7 3923.0

18 18.0 E20×20
2 (E24×24

2 (E38
BH(EBK(ε0)), EBK(ε0)),EMEK(E40

BH(ε0))) 239.8 574.1 1260.0 3923.0

19 19.5 E24×24
2 (E24×24

2 (E40
BH(EBK(ε0)), EBK(ε0)),E40

BH(EBK(ε0))) 272.1 574.1 1260.0 3923.0

20 20.0 E24×24
2 (E24×24

2 (E30
BH(EBK(ε0)), EBK(ε0)),E40

BH(EBK(ε0))) 273.3 574.1 1260.0 3923.0

21 21.6 E24×24
2 (E24×24

2 (E10×10
2 (EBK(ε0), EMEK(ε0)),EBK(ε0)),E40

BH(EBK(ε0))) 275.1 575.9 1260.0 3923.0

22 22.0 E24×24
2 (E20×20

2 (E10×10
2 (EBK(ε0), EMEK(ε0)),EBK(ε0)),E40

BH(EBK(ε0))) 278.0 604.3 1308.0 3923.0

23 23.3 E24×24
2 (E24×24

2 (E10×10
2 (E8

BH(EMEK(ε0)), EMEK(ε0)),EBK(ε0)),E40
BH(EBK(ε0))) 281.9 652.3 2090.0 3923.0

24 24.2 E24×24
2 (E24×24

2 (E10×10
2 (E6

BH(EMEK(ε0)), EMEK(ε0)),EBK(ε0)),E12×12
2 (EBK(ε0),EMEK(ε0))) 287.9 731.5 2090.0 3923.0

25 25.1 E16×16×16
3 (E22×22

2 (E10×10
2 (EMEK(EMEK(ε0)), EMEK(ε0)),EBK(ε0)),EMEK(EMEK(ε0))) 295.7 853.1 2090.0 3923.0

26 26.1 E16×16×16
3 (E14×14

2 (E10×10
2 (EMEK(EMEK(ε0)), EMEK(ε0)),EBK(ε0)),EMEK(EMEK(ε0))) 311.5 914.0 2090.0 3923.0

27 27.1 E16×16×16
3 (E24×24

2 (E10×10
2 (EMEK(E2

BH(ε0)), EMEK(ε0)),E6
BH(EMEK(ε0))),EMEK(EMEK(ε0))) 333.3 947.5 2100.0 3923.0

28 28.1 E16×16×16
3 (E18×18

2 (E10×10
2 (EMEK(E2

BH(ε0)), EMEK(ε0)),EMEK(EMEK(ε0))),EMEK(EMEK(ε0))) 355.6 1015.0 2181.0 3923.0

29 29.3 E16×16×16
3 (E18×18

2 (E10×10
2 (E40

BH(EBK(ε0)), EMEK(ε0)),EMEK(EMEK(ε0))),EMEK(EMEK(ε0))) 363.7 1125.0 3483.0 3923.0

30 30.7 E16×16×16
3 (E24×24

2 (E24×24
2 (E40

BH(EBK(ε0)), EBK(ε0)),EMEK(EMEK(ε0))),EMEK(EMEK(ε0))) 369.3 1301.0 3483.0 3923.0

31 31.0 E16×16×16
3 (E20×20

2 (E24×24
2 (E40

BH(EBK(ε0)), EBK(ε0)),EMEK(EMEK(ε0))),EMEK(EMEK(ε0))) 376.5 3923.0

32 32.4 E16×16×16
3 (E24×24

2 (E24×24
2 (E40

BH(EBK(ε0)), EBK(ε0)),EMEK(E2
BH(ε0))),EMEK(EMEK(ε0))) 411.5 3923.0

33 33.0 E14×14×14
3 (E20×20

2 (E24×24
2 (E38

BH(EBK(ε0)), EBK(ε0)),EMEK(E2
BH(ε0))),EMEK(EMEK(ε0))) 427.3 3923.0

34 35.2 E16×16×16
3 (E24×24

2 (E24×24
2 (E40

BH(EBK(ε0)), EBK(ε0)),E40
BH(EBK(ε0))),EMEK(EMEK(ε0))) 459.4 58838.0

35 35.2 E16×16×16
3 (E24×24

2 (E24×24
2 (E40

BH(EBK(ε0)), EBK(ε0)),E40
BH(EBK(ε0))),EMEK(EMEK(ε0))) 459.4 58838.0

36 36.1 E24×24×24
3 (E24×24

2 (E24×24
2 (E30

BH(EBK(ε0)), EBK(ε0)),E40
BH(EBK(ε0))),E40

BH(EBK(ε0))) 470.8 58838.0

37 37.3 E24×24×24
3 (E24×24

2 (E24×24
2 (E12×12

2 (EBK(ε0), EMEK(ε0)),EBK(ε0)),E40
BH(EBK(ε0))),E40

BH(EBK(ε0))) 471.0 58838.0

38 39.4 E24×24×24
3 (E24×24

2 (E24×24
2 (E10×10

2 (EBK(ε0), EMEK(ε0)),EBK(ε0)),E40
BH(EBK(ε0))),E40

BH(EBK(ε0))) 472.6 58838.0

39 39.4 E24×24×24
3 (E24×24

2 (E24×24
2 (E10×10

2 (EBK(ε0), EMEK(ε0)),EBK(ε0)),E40
BH(EBK(ε0))),E40

BH(EBK(ε0))) 472.6 58838.0

Accordingly, the multilevel protocols can use any of the above
protocols wherever the numerical search finds doing so to be
optimally efficient.

The numerical simulation uses error functions E(·) for
the Bravyi-Kitaev (BK) [8] 15-to-1 and Meier-Eastin-Knill
(MEK) [11] 10-to-2 protocols. The first three Taylor-series
terms of these functions near ε = 0 are

EBK(ε) = 35ε3 + 105ε4 + 378ε5 + · · · , (B1)

EMEK(ε) = 9ε2 − 56ε3 + 160ε4 + · · · . (B2)

In the numerical search, ε � 0.01, so the first term for each
dominates. The Bravyi-Haah (BH) triorthogonal codes [12]
have the same error function as H codes [see Eq. (1) of the

main text]:

Ek
BH(ε) = Ek+4

1 (ε,ε) = (3k + 1)ε2 + · · · . (B3)

This correspondence, combined with the results of Reichardt
[10], suggests a connection between these code families.

APPENDIX C: DISTILLING MAGIC STATES
FOR T GATES WITH H CODES

In addition to distilling Hadamard states |H 〉, H codes
can also distill the magic state |A〉 = (1/

√
2)(|0〉 + eiπ/4|1〉),

which is used to make the T = exp[iπ (I − σ z)/8] gate. This
construction is useful by itself, but it can also be used to make
Toffoli magic states as shown in the next section. State |A〉
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T+ T+

T+ T+

Z

=

FIG. 4. A controlled-controlled-Z gate, which is locally equiva-
lent to a Toffoli gate, can be decomposed into CNOT and T gates. A
CSS + T code has transversal CNOT and T gates, so it could be used
to distill three-qubit magic states for the Toffoli gate.

is stabilized by the operator TXT† = (1/
√

2)(X + Y), which
is also transversal in H codes. Distillation is performed by
encoding |A〉 states as logical qubits, then measuring the

controlled-TXT† using |A〉 states at the physical level, followed
by routine error detection.

APPENDIX D: DISTILLING TOFFOLI MAGIC STATES

A CSS quantum code [20,21] necessarily has a transversal
CNOT operation. A CSS code with transversal T operation (let
us use the shorthand CSS + T) will also have a transversal
controlled-controlled-Z (CCZ) operation because the latter
quantum gate can be decomposed into CNOT and T (or T†), as
shown in Fig. 4. The CCZ gate is locally equivalent to Toffoli
(via Hadamard transforms on the target qubit), so CSS + T

codes can distill a magic state for the CCZ gate, which is
equivalent to distilling Toffoli magic states (see p. 488 of
Ref. [4]), assuming Clifford operations are freely available.
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