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We study the ground-state entanglement in systems of spins forming the boundary of a quantum spin network
in arbitrary geometries and dimensionality. We show that as long as they are weakly coupled to the bulk of
the network, the surface spins are strongly entangled, even when distant and not directly interacting, thereby
generalizing the phenomenon of long-distance entanglement occurring in quantum spin chains. Depending on
the structure of the couplings between surface and bulk spins, we discuss in detail how the patterns of surface
entanglement can range from multipair bipartite to fully multipartite. In the context of quantum information
and communication, these results find immediate application to the implementation of quantum routers, that is,
devices able to distribute quantum correlations on demand among multiple network nodes.
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I. INTRODUCTION

Quantum spin networks are being actively investigated for
quantum technological applications ranging from quantum
teleportation to the quantum internet. Their dynamical prop-
erties have been extensively studied in order to assess their
functionality for quantum-state engineering and quantum-
state transfer [1–15], while their static properties have been
analyzed in order to identify ground or equilibrium thermal
states useful as entangled quantum resources [16–25]. In
principle, they can be simulated with a variety of atom-optical,
molecular, and solid-state platforms [26–32], which makes
them extremely flexible models for the implementation of
quantum technologies. On the other hand, a very important
task in many fundamental protocols of quantum information
and communication is the harnessing of entanglement between
remote quantum objects. In particular, the distribution of
entanglement between distant, not directly interacting systems,
which may be part of a network, has been proposed and
explored in many different physical settings [21–25,33–46].
In this context, a relevant concept is that of long-distance
entanglement (LDE) [21–25], namely, the emergence of a
sizable end-to-end entanglement in spin chains whenever
the coupling of the end spins to the remainder of the
system is sufficiently weak. The occurrence of this intriguing
phenomenon in one-dimensional systems naturally suggests
investigating the existence of analogous or more general effects
in higher dimensions and nontrivial geometries.

In the present work we extend the notion of LDE [21–25]
to higher-dimensional lattices and generic geometries. We
introduce the concept of surface entanglement, which refers
to the emergence of entanglement in the reduced ground-
state density matrix of the boundary spins of the network,
that is, the surface spins. In this respect, the LDE can be
seen as a particular case of this more general phenomenon,
corresponding to the case in which the surface coincides with
two end spins of a linear spin chain. As we shall see, the main
feature of surface entanglement, at odds with LDE, is that it
can involve a large number of distant, noninteracting spins so
that many different structures of the shared correlations can
be identified between them, ranging from large collections of
bipartite-entangled spin pairs to complex patterns of strong
multipartite entanglement. On the other hand, similar to LDE,

one of the conditions for the onset of surface entanglement
is that the couplings between the spins of the surface and
the ones in the bulk be much smaller than the coupling
strengths among the spins in the bulk. This feature implies that
surface entanglement can be controlled by adjusting locally
the interactions between the surface spins and the bulk, while
the actual interactions within the rest of the network are up to
a certain degree (as suitably specified below) irrelevant.
This makes the present approach appealing for the realistic
implementation of quantum routers [8,47–51], namely, devices
able to distribute quantum correlations between distant nodes
of a network of quantum systems.

This paper is organized as follows. In Sec. II we introduce
the class of quantum spin models to investigate, and we derive
an effective Hamiltonian for the surface spin dynamics in
the limit of small coupling between surface and bulk spins,
showing that in this limit the effective Hamiltonians always
share the same symmetries of the original models. In Sec. III A
we address the most elementary case in which the surface is
made of only two spins, an immediate generalization of the
LDE in linear chains to bulks of arbitrary dimensionality and
geometry. In Sec. III B we consider the general situations in
which the surface is made of an arbitrary number of spins,
and we discuss how the tailoring of the interactions between
surface and bulk spins can yield either large arrangements
of bipartite entangled spin pairs on the surface or complex
patterns of multipartite entanglement involving many or even
all of the surface spins. Finally, in Sec. IV we draw our
conclusions and discuss possible outlooks.

II. SURFACE SPINS: TOTAL AND EFFECTIVE
HAMILTONIANS AND SYMMETRIES

In this paper we analyze the properties of ground-state
entanglement in various classes of spin-1/2 models for lattices
of generic geometries and dimensions. We consider structures
that can be characterized by two subsets of spins, B and S,
where B indicates the set of bulk spins and S is the set of
surface spins. These sets are not arbitrary; set B of bulk spins
is assumed to be described by a Hamiltonian whose ground
state is nondegenerate, thus implying that the total number of
spins in the bulk is even; set S of surface spins is assumed to be
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FIG. 1. (Color online) (top) Two possible simple schemes of spin
networks with a surface consisting of only two spins. (left) A two-
dimensional square configuration. (right) A three-dimensional cubic
configuration. Spins are denoted by circles, while the lines connecting
the circles indicate the spins that interact directly. The bulk spins
interact with a rescaled dimensionless coupling normalized to unity.
The couplings λ identify the two surface spins {S1,S2}, i.e., the (not
directly interacting) spins at the boundary of the network that interact
weakly with the bulk. (bottom) Concurrence between the surface
spins S1 and S2 as a function of λ for the square (black lines) and
the cubic (gray lines) configurations. These results correspond to XX
interactions (solid lines) with J x

jk = J
y

jk = Kx
� = K

y

� = J , ∀ j,k ∈ B

and ∀ � ∈ S, and XXZ interactions (dashed lines), with 2J z
jk = 2Kz

� =
J x

jk = J
y

jk = Kx
� = K

y

� = J , ∀ j,k ∈ B and ∀ � ∈ S. In both cases
the interactions are antiferromagnetic (J > 0). The inset shows the
energy gap as a function of the two-spin surface concurrence.

such that the spins in S do not interact among themselves, and
each spin in S interacts with a single spin in B with a strength
that is significantly smaller than the typical one between the
spins in B (see Figs. 1 and 3 for examples). In order to be as
general as possible we assume that the spins are coupled by
anisotropic Heisenberg XYZ exchange interactions. This ample
class of models includes, as particular cases, the Ising, XY, XX,
XXZ, and isotropic Heisenberg XXX models. Therefore, all the
systems which we will discuss in the following are described
by a total Hamiltonian of the following form:

HT = HB + HSB, (1)

where HB accounts for the interactions between the spins in
the bulk and HSB describes the interactions of the surface spins
with the spins in the bulk. They are defined as

HB =
∑

j,k∈B

∑

α∈{x,y,z}
J α

jk σ α
Bj

σ α
Bk

, (2)

HSB =
∑

j∈S

λj

∑

α∈{x,y,z}
Kα

j σα
Sj

σ α
Bj

, (3)

where σα
Sj

(σα
Bj

), with α ∈ {x,y,z}, are the standard spin
operators for the surface (bulk) spins. All the coupling
strengths J α

j,k and Kα
j are of the same order of magnitude.

On the other hand, the bulk-surface interactions are weighted
by the coefficients λj , which can take any positive value in the
range [0,1].

An important preliminary result is that in the limit of λj �
1, the dynamics of the surface spins can be approximated by
an effective interaction Hamiltonian between them that shares
the same symmetries (XY, XYZ, XXZ, or XXX) of the original
model, Eq. (1). In order to prove this property, let us consider a
model for which all the weighting coefficients coincide: λj ≡
λ∀ j ∈ S, and let us define the set {|φ�〉} of eigenstates of HB

and the corresponding eigenvalues E� (which satisfy HB |φ�〉 =
E�|φ�〉). Under the assumptions that the ground state |φ0〉 of
HB is nondegenerate and that the gap between the ground and
first excited states is much larger than λKα

j one can resort to
perturbation theory in the parameter λ in order to study the low-
energy eigenstates of the total Hamiltonian HT = HB + HSB .
At zeroth order, the ground space of HT is degenerate, with
degeneracy equal to the dimension of the Hilbert space for
the surface spins, and it is spanned by the states of the form
|φ0〉 ⊗ |ψp〉, where the states |ψp〉 form a basis in the Hilbert
space of the surface spins. Thereby, the effective interaction
Hamiltonian at second order in λ for the surface spins reads

Heff = −
∑

� �=0

〈φ0|HSB |φ�〉〈φ�|HSB |φ0〉
E� − E0

. (4)

Taking into account that the anisotropic Heisenberg Hamilto-
nian HB in the bulk preserves the parity with respect to the three
fundamental directions, i.e., [HB,Pα] = 0 with Pα = ∏

j σ α
Bj

and α ∈ {x,y,z}, we can rewrite Heff as

Heff =
∑

α∈{x,y,z}

∑

j,k∈S

�α
j,kσ

α
Sj

σ α
Sk

, (5)

where the effective coupling strength �α
j,k is equal to

�α
j,k = −2λ2Kα

j Kα
k

∑

� �=0

Re〈φ0|σα
Bj

|φ�〉〈φ�|σα
Bk

|φ0〉
E� − E0

. (6)

We see that this effective Hamiltonian describes, in general, a
fully connected XYZ model (or XY model if Kz

k ≡ 0 ∀ k) for
the surface spins; that is, each surface spin interacts with all
other surface spins.

Moreover, if the bulk Hamiltonian HB commutes also with
the total magnetization along the z axes, Sz = ∑

j σ z
Bj

, for
instance, if it is a Hamiltonian of the XXZ form, then the
coefficients �x

j,k and �
y

j,k can be rewritten as

�x
j,k = −2λ2Kx

j Kx
k

∑

� �=0

Re〈φ0|σ+
Bj

|φ�〉〈φ�|σ−
Bk

|φ0〉
E� − E0

,

�
y

j,k = −2λ2K
y

j K
y

k

∑

� �=0

Re〈φ0|σ+
Bj

|φ�〉〈φ�|σ−
Bk

|φ0〉
E� − E0

, (7)

where σ+
Bj

and σ−
Bk

are the raising and lowering spin operators

and �
y

j,k = K
y

j K
y

k

Kx
j Kx

k

�x
j,k . Thus, if also HSB is of the XXZ type,

with K
y

k ≡ Kx
k ∀k, then also the effective Hamiltonian Heff
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is of the XXZ type. Finally, in the case that the original total
Hamiltonian HT belongs to the class of isotropic Heisenberg
XXX models, which commute with the total magnetization
with respect to any axes, applying the same reasoning as in the
previous cases, it is fairly straightforward to show that also in
this instance the effective Hamiltonian is of the XXX type.

In conclusion, the effective interaction Hamiltonian Heff for
the surface spins shares the same symmetries of the original
total Hamiltonian HT , and it is, in general, fully connected,
regardless of the range of the interactions in the original model.
As a consequence, on the one hand, the ground-state properties
of Heff will be dictated by the symmetries of HT , and on
the other hand, given the fully connected nature of Heff , one
can anticipate that, in general, its ground state will exhibit
complex patterns of bipartite and multipartite entanglement.
This qualitative picture is confirmed quantitatively by the
results of an extended numerical analysis performed directly
on the original model HT and is reported in Sec. III.

III. NUMERICAL RESULTS: EXACT DIAGONALIZATION
OF THE TOTAL HAMILTONIAN

In this section we analyze the entanglement properties
of the reduced ground-state density matrix of the surface
spins, obtained by tracing out the degrees of freedom of
the bulk spins after exact numerical diagonalization of the
total Hamiltonian HT for different dimensions, geometries,
and symmetries. We will also analyze in detail the energy
gap between the ground and first excited states because this
quantity is of central importance in assessing the thermal
stability of the ground-state entanglement, in particular that
of the surface spins. Furthermore, in the perspective of an
experimental realization of surface entanglement based on
adiabatic ground-state preparation protocols [52], the size of
the gap sets a limit to the maximum allowed velocity for
adiabatic manipulation.

A. Two-spin surface

We consider first the simplest situation in which the surface
is made of only two spins. This situation can be seen as a
generalization of the LDE in quantum spin chains [21–24] to
networks whose bulk has an arbitrary geometry but a minimal
number (j = 1,2) of surface spins, defined as the (not directly
interacting) boundary spins that interact weakly with the bulk
via couplings λj . In the limit of λj � 1 and in agreement with
the findings of the previous section, the two-spin ground-state
reduced density matrix approaches a maximally entangled Bell
state, with the exception of the cases in which the ground
state of the two-spin effective Hamiltonian is degenerate, as in
the Ising and the ferromagnetic isotropic Heisenberg models.
Examples of results for the two-spin surface entanglement
are reported, for two- and three-dimensional systems and
for XX and XXZ interactions, in Fig. 1. We observe that
in all cases, when λ1 = λ2 ≡ λ is sufficiently small, the
concurrence of the reduced density matrix of the two surface
spins approaches unity, meaning that in this limit the reduced
state correctly approaches a Bell state, as was to be expected
from the discussion in the previous section. Moreover, since
the effective coupling strengths �α

1,2 are proportional to λ2,
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FIG. 2. Concurrence in the reduced ground state of the surface
spins S1 and S2 for the square (black line) and cubic (gray line)
network configurations of Fig. 1 with XXZ interactions (J x

jk = J
y

jk =
Kx

� = K
y

� = J > 0, ∀ j,k ∈ B and ∀ � ∈ S) as a function of Kz ≡
Kz

� , ∀ � ∈ S. Both curves are plotted for λ = 0.1.

the energy gap tends to vanish as λ is reduced, thus making
the surface entanglement extremely unstable against thermal
fluctuations in the limit of vanishing λ. On the other hand, as
the concurrence decreases for larger λ, the energy gap increases
correspondingly.

One notices from Fig. 1 that, depending on the geometry, an
anisotropy in the spin-spin interaction along the transverse z

direction may be instrumental to the surface entanglement.
In particular, the cubic network configuration with XXZ
interactions possesses larger entanglement with respect to the
same geometry with XX interactions. In general, the optimal
value of Kz which maximizes the entanglement is geometry
dependent. For example, as shown in Fig. 2, at fixed λ and in
the case of the cubic configuration of Fig. 1, the concurrence
reaches its maximum at Kz 
 J , i.e., for XXX isotropic
Heisenberg interactions, whereas for the square configuration
it is maximal at Kz ∼ 0.065 J .

For the assigned geometry, symmetries of the interactions,
and surface-to-bulk coupling λ, the concurrence slowly decays
with the dimension of the bulk (i.e., the number of spins in the
lattice, excluding the two surface spins). This is shown in
Fig. 3, where the surface concurrence is reported for diverse
models whose bulks have a ringlike shape with ab increasing
number of spins. Maximum entanglement is obtained for
the smallest (in terms of number of spins) configurations.
In contrast, the gap mildly increases with the number of
spins. Therefore, this geometry is promising for an actual
implementation of a rooter based on surface entanglement:
depending on the desired working point, it entails a constrained
optimization of the two contrasting requests of significantly
sizable entanglement and energy gap.

It should be noted that the models studied in Figs. 1 and 3
satisfy the generalized Toulouse criteria for frustration-free
systems, as introduced in [53], and therefore they are not
geometrically frustrated. In general, a model that does not
satisfy the generalized Toulouse criteria and that therefore
is geometrically frustrated has a surface-spin concurrence
which decays much faster with increasing surface-to-bulk
coupling λ compared to the corresponding nonfrustrated
model. This behavior is illustrated in Fig. 4, where models
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FIG. 3. (Color online) (top) Ring-shaped quantum spin network
of increasing size. (bottom) Surface concurrence (top panel) and
energy gap (bottom panel) as functions of the total number of spins
for this type of network. The parameter λ denotes the weak coupling
between the two surface spins and the bulk of the network. The
interactions are of the XX ferromagnetic type, with J x

jk = J
y

jk = Kx
� =

K
y

� = J , ∀ j,k ∈ B and ∀ � ∈ S.

that do not satisfy the generalized Toulouse criteria are
realized with antiferromagnetic nearest-neighbor interactions
on square and pentagonal bulk geometries with an odd
number (five) of interaction bonds. These are compared
with the corresponding ferromagnetic models, which satisfy
the generalized Toulouse criteria and are thus geometrically
unfrustrated [53]. Therefore, quantum spin networks with
geometrically nonfrustrated bulk configurations should always
be preferred for an optimization of the corresponding surface
entanglement.

Finally, before considering the general case of networks
with an arbitrary number of boundary spins, we turn to the
concept of modular entanglement recently introduced for
spin chains [25], and we look for generalizations to higher
dimensions and generic geometries. It has been demonstrated
in Ref. [25] that, in the case of linear spin chains, end-to-end
entanglement increases when various subchains are serially
coupled by weak interactions to form a modular structure.
Correspondingly, the energy gap decreases exponentially with
the number of the modules. Moving to spin networks with
only two surface spins, a similar behavior is observed in
Fig. 5, where we consider an example in which the bulk of
the network is organized in linearly coupled two-dimensional
modules (blocks). Indeed, the associated surface entanglement
is enhanced as the number of modules is increased, while
the energy gap correspondingly decreases. The mechanism of
modular entanglement can thus be effectively generalized to
higher-dimensional geometries. Comparing Fig. 5 to Fig. 3,
one sees that ringlike and modular networks exhibit opposite
behaviors of surface entanglement and energy gap as a
function of the number of bulk spins (bulk modules). This
observation suggests the alternative use or the combination of
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FIG. 4. (Color online) (top) Examples of two-dimensional net-
works with bulk configurations allowing for geometrical frustration.
(left) Square with five interaction bonds. (right) Pentagon with five
interaction bonds. (bottom) Concurrence between the surface spins S1

and S2 as a function of the surface-to-bulk coupling λ. The interactions
are of the XX type (J x

jk = J
y

jk = Kx
� = K

y

� = J , ∀ j,k ∈ B and
∀ � ∈ S). Solid lines: antiferromagnetic, geometrically frustrated
case. Dashed lines: ferromagnetic, geometrically unfrustrated case.
Black lines: network with square geometry of the bulk. Gray lines:
network with pentagonal geometry of the bulk. The inset shows the
corresponding behavior of the energy gap as a function of λ.

the two configurations depending on the assigned physical or
communication task.

B. Many-spin surfaces

So far we have considered networks whose surfaces consist
of only two spins. When the boundary contains more than
two spins, many different patterns of ground-state surface
entanglement can be identified. In particular, in the following
we will consider two relevant limiting cases. First, we shall
study the situation in which the surface spins dimerize in
a series of strongly entangled pairs (bipartite entanglement
replicated in a large number of entangled pairs). Second,
we address the case in which the boundary is characterized
by strong multipartite entanglement involving essentially all
of the surface spins. These two limiting cases are important
because most of the intermediate possibilities, where complex
patterns of bipartite and multipartite entanglement may coexist
simultaneously, exhibit essentially various aspects of these two
instances. In order to clarify this complex phenomenology we
discuss separately the two limiting cases.

1. Many-pair bipartite surface entanglement

Many entangled spin pairs are realized in the reduced
ground state of the surface spins when their interaction with the
bulk follows a two by two pattern such that every two surface
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FIG. 5. (Color online) (top) Quantum spin network
with a modular structure of coupled two-dimensional
blocks of spins. (bottom) For this type of modular
network, ground-state concurrence between the surface
spins S1 and S2 (top panel) and the corresponding
energy gap (bottom panel) as functions of the total
number of blocks for different values of the weak
coupling λ. The interactions are of the XX type,
with J x

jk = J
y

jk = Kx
� = K

y

� = J , ∀ j,k ∈ B and ∀ � ∈
S, and the same results hold for ferromagnetic and
antiferromagnetic interactions.

spins share the same coupling λ, which in turn differs from
that of all other pairs, as illustrated in Figs. 6 and 7. This result
can be understood as an extension of the situation holding for
two-spin surfaces (discussed in Sec. III A) to a series of many
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FIG. 6. (Color online) (top) Single-square (left) and nested
two-square (right) two-dimensional architectures for quantum spin
networks. (bottom) Concurrence in the reduced ground state of the
pairs S1-S2 (solid lines) and S3-S4 (dashed lines) of surface spins
for the single-square (black lines) and the nested two-square (gray
lines) configurations. The interactions are of the XX type, with
J x

jk = J
y

jk = Kx
� = K

y

� = J , ∀ j,k ∈ B and ∀ � ∈ S, with the same
results holding for ferromagnetic and antiferromagnetic couplings.
The surface spins S1 and S2 are coupled to the bulk with strength λ,
while the surface spins S3 and S4 are coupled with strength λ′ = λ2.
The inset shows the behavior of the energy gap as a function of λ.

nested two-spin surfaces where each added term is coupled
to the bulk with decreasing coupling strength. Let us, for
example, consider the case of four surface spins, such that
two of them are coupled to the bulk with a strength λ, whereas
the coupling strength of the other two is λ′, and they satisfy
the relation λ′ � λ � 1. In complete agreement with what
we have proved in Sec. III A, the two spins with the weakest
interactions λ′ become strongly entangled. Indeed, they can be
thought of as forming the surface of an enlarged bulk consisting
of the actual bulk and the two remaining spins in the surface.
In turn, also the enlarged bulk can be seen as a reduced system
with two surface spins that interact with the bulk with strength
λ, and thus also the reduced ground state of this pair is strongly
entangled. In conclusion, the total surface of the network
separates (dimerizes) in two entangled spin pairs that become
maximally entangled in the limit of vanishing surface-to-bulk
couplings. This result extends straightforwardly to surfaces
with many spins, resulting in a structure of many entangled
dimers with the inclusion of an arbitrary number of spin pairs
in the surface of the network.

We have verified this picture thoroughly by exact numerical
diagonalization, and the results are summarized in Figs. 6
and 7. The results for the basic configuration with four surface
spins are shown in Fig. 6 for interactions of the XX type. The
concurrence of the surface spin pairs is reported as a function
of the two weak couplings λ for the first pair and λ′ < λ for
the second pair. Both pairs approach a maximally entangled
Bell state in the limit of a vanishing coupling strength, thus
demonstrating the potentiality of the surface entanglement as
a resource for the parallel distribution of quantum correlations
among many nodes of spin networks. The multipair bipartite
entanglement occurs also when several pairs are considered,
as illustrated in Fig. 7, where we consider up to four entangled
pairs in the reduced ground state of the network’s surface,
and we report the bipartite entanglement of four different
pairs of surface spins with couplings in decreasing order
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FIG. 7. (Color online) (top) Ring-shaped network. (bottom) For
this type of network, the concurrences in the reduced ground states of
the different surface spin pairs, S1-S2 (circles), S3-S4 (squares), S5-S6

(triangles), and S7-S8 (crosses), as functions of different values of the
couplings λ′, λ′′, and λ′′′, as indicated in the abscissa, with the coupling
λ fixed at the value λ = 0.05 (top panel). The interactions are of the
XX type, with J x

jk = J
y

jk = Kx
� = K

y

� = J , ∀ j,k ∈ B and ∀ � ∈ S,
and the same results hold for ferromagnetic and antiferromagnetic
couplings. The corresponding energy gap is also shown (bottom
panel).

λ � λ′ � λ′′ � λ′′′. We see that as the values of the couplings
are progressively reduced in hierarchical order, all two-spin
concurrences approach unity and tend to realize a collection
of perfect Bell singlets. However, in the multipair case the
energy gap decays rapidly as the number of pairs increases,
thus making this configuration extremely sensitive to thermal
fluctuations.

2. Multipartite surface entanglement

We have seen that a structure of many entangled pairs,
approaching a dimerized configuration of many Bell singlets,
occurs when the coupling parameters λj between the different
surface spins and the bulk of the network are significantly
different from each other. Let us now consider the opposite
situation, in which essentially all the surface spins interact
with the bulk spins with the same weak coupling: λj ≡ λ � 1,
∀ j ∈ S.

In this case, as discussed in Sec. II, the effective Hamilto-
nian for the surface spins dynamics is that of a fully connected
system, in the class of the Lipkin-Meshkov-Glick model [54].
The symmetries of the geometry of the effective model imply
that the ground-state correlations have to be shared between all
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FIG. 8. (Color online) (top) Quantum spin networks with square
(left) and cubic (right) configurations, each with four surface spins
and with ferromagnetic interactions of the XX type (J x

jk = J
y

jk =
Kx

� = K
y

� = J , ∀ j,k ∈ B and ∀ � ∈ S). (bottom) Fidelity between
the multipartite entangled state in Eq. (8) and the reduced ground-state
density matrix of the surface spins as a function of the surface-
to-bulk coupling strength λ. The inset shows the behavior of the
corresponding energy gap as a function of λ. The black lines
correspond to the square configuration, and the gray lines correspond
to the cubic one.

the spins, hence resulting in a long-range pattern of multipartite
entanglement.

In order to gain insight into the structure of multipartite
entanglement in the reduced ground-state density matrix of
the surface spins (which is a multipartite mixed state), we have
to bypass the problem of the lack of well-defined and faithful
measures of multipartite entanglement in multipartite mixed
states. We will proceed first by introducing a reasonable ansatz
[see Eq. (8) for the pure ground state of the network’s surface
in the limit of small or vanishing coupling to the bulk], and
we will discuss the structure of the associated residual tangle,
which is a well-defined and faithful measure of multipartite
entanglement for pure states [55]. We will then show how
the reduced ground state of the network’s surface indeed
approaches the proposed ansatz state as the coupling λ of the
surface to the bulk is progressively reduced. If, for instance,
we consider a network with XX ferromagnetic interactions
with a surface composed of four spins, as illustrated in Fig. 8,
then, following the discussion in Sec. II, the effective surface
dynamics is described by a fully connected effective XX
Hamiltonian for the four surface spins; therefore the natural
pure multipartite ansatz for the network’s surface is given
by the ground state of the effective, fully connected surface
Hamiltonian. For symmetric configurations, such as those
illustrated in Fig. 8, each spin of the surface will effectively
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interact with all the other surface spins, with the same coupling
strength. It is straightforward to verify that the ground state of
the corresponding effective Hamiltonian, in the ferromagnetic
case, is the following multipartite entangled state:

|Z0〉 = 1√
6

(|↑↑↓↓〉 + |↑↓↑↓〉 + |↑↓↓↑〉
+|↓↑↑↓〉 + |↓↑↓↑〉 + |↓↓↑↑〉) . (8)

By symmetry considerations, the ground state of the effective
four-spin XX Hamiltonian must have net zero magnetization
on the XY plane, and state |Z0〉 [Eq. (8)] is the unique
state of lowest energy with this property, in accordance
with the fact that for gapless systems the ground state is
nondegenerate. The normalized residual tangle, taking values
in the interval [0,1] [55], can be computed exactly for the state
|Z0〉 [Eq. (8)], yielding 2/3 for each spin [56], a large finite
value that demonstrates the existence of strong multipartite
entanglement between the surface spins. In the limit of very
small values of the surface-to-bulk coupling λ, state |Z0〉
[Eq. (8)] approximates closely the reduced ground sate ρ0

of the surface spins. This is shown in Fig. 8, where we report
the fidelity F = Tr{ρ0|Z0〉〈Z0|} as a function of the parameter
λ. This behavior demonstrates the presence of strong genuine
multipartite entanglement among the surface spins in networks
with highly symmetric interactions.

IV. CONCLUSION AND OUTLOOK

In the present work we have introduced and discussed
the properties of surface entanglement, a generalization of
the phenomenon of long-distance entanglement in quantum
spin chains [21–24] to higher-dimensional arrays of quantum
spins. Surface entanglement is defined as the entanglement
present in the reduced ground state of distant and nondirectly
interacting spins belonging to the external boundary of a

quantum spin network. The conditions for the occurrence of
sizable surface entanglement are that the surface spins are
weakly coupled to the bulk spins and that the ground state of
the bulk is nondegenerate. We have observed that, typically,
geometrically frustrated networks exhibit a weaker surface
entanglement compared to the corresponding geometrically
unfrustrated ones. We have also discussed how the surface en-
tanglement is enhanced in networks with a modular structure,
thereby extending the concept of one-dimensional modular
entanglement [25] to structures with modules of arbitrary
geometry and dimensionality.

While long-distance entanglement allows us to entangle
only two distant spins at the ends of a quantum spin chain,
surface entanglement may involve large numbers of spins,
resulting in a great variety of entanglement patterns. Indeed,
we showed that it is possible to entangle in parallel several
spins pairs at the surface of the network or to create strong
multipartite entanglement between all the spins on the surface.
These extended entanglement properties in the outer regions
of a network with weak boundary-to-bulk links are promising
resources for routing quantum information among many
distant nodes. Indeed, the ground-state surface entanglement
that we have demonstrated is the result of effective interactions
between the surface spins that are mediated by and have
the same symmetries as the strongly correlated bulk. In this
context, an interesting and relevant question is whether it
may be possible to control the effective surface dynamics
for quantum information and communication purposes, in
particular for the efficient, parallel state transfer between many
nodes in a network [1,4,8,9].
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