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We consider the analytical properties of the outgoing Green’s function for complex potentials of finite range to
study the relationship between its residues at the complex poles, the resonant states, and the spectral singularities
of continuum wave functions. We obtain that the resonant state corresponding to a spectral singularity is a
well-defined function, which we call the spectral singularity resonant function, and find a general expression
that yields the position of the spectral singularity on the real wave number axis in terms of the imaginary part
of the complex potential and the spectral singularity resonant function. We derive an analytical expression for
continuum wave solutions as an expansion in terms of resonant states and the corresponding expression near a
spectral singularity. Our findings are illustrated by considering an imaginary δ-shell potential for s waves.
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I. INTRODUCTION

Spectral singularities correspond to points that may appear
in the continuous spectra of open quantum systems involving
complex potentials, where a continuum wave solution to the
Schrödinger equation of the problem becomes singular. Some
authors consider this situation to be a mathematical obstruction
for the completeness of the continuum solutions [1]. See,
however, Ref. [2] for a different conclusion. A consequence of
the above is that the scattering coefficients become infinite
at these spectral values [1,3]. They were mainly studied
by mathematicians in the 1950s and 1960s [4–6] but in
recent years have attracted the attention of investigations
on the properties of PT -symmetric and non-PT -symmetric
scattering potentials [7–9].

In recent work, Mostafazadeh [7,10] called the attention
to the relationship of spectral singularities with resonant
poles having a vanishing width. However, Mostafazadeh did
not elaborate further on this appealing relationship. Spectral
singularities have also been considered in other model complex
potentials [11,12]. It worth mentioning work referring to the
possible application of spectral singularities in waveguide
physics [1,10,13].

In this work we generalize the formalism of resonant states
[14,15] to complex potentials to investigate the relationship
of resonant states and its corresponding poles with spectral
singularities. We also derive exact analytical expressions
for the expansion of the continuum wave solutions to the
Schrödinger equation of the problem in terms of resonant
states on the half-line and find the corresponding approximate
expressions close to a spectral singularity.

In general, for real potentials, resonant states correspond to
solutions to the Schrödinger equation which at large distances
consist of purely outgoing waves. This implies that the corre-
sponding energy eigenvalues are complex and therefore that
the amplitude of the resonant function increases exponentially
in space. A consequence of the above is that the usual rules
concerning normalization, orthogonality, and completeness

*lorea@ciencias.unam.mx
†gaston@fisica.unam.mx

do not apply. Resonant states were introduced in quantum
mechanics by Gamow in his studies on α decay in nuclei and
constituted, in spite of the above apparent limitations, one of
the first successful applications in the early days of quantum
mechanics to tunneling phenomena [16,17]. Later on, resonant
states were considered by Siegert [18] to derive a dispersion
formula for nuclear reactions and by Humblet and Rosenfeld,
who developed a formalism of nuclear reactions based on
S-matrix resonant expansions [19]. It is worth pointing out that
those expansions require only to know the resonant function
at a given spatial point, usually the cutoff potential radius, and
as a consequence the amplitude of the corresponding resonant
states remains finite. Subsequent work addressed the issues of
normalization and completeness of resonant states and led to a
number of related approaches [14,20–22]. Our work is based
on the analytical properties of the outgoing Green’s function
of the problem [23] and constitutes a description of resonant
processes where the issues of normalization and completeness
have been satisfactorily solved [14,15]. It provides an exact
analytical description of transient phenomena in scattering
[24,25] and for the exponential and nonexponential regimes of
quantum decay [26–29]. Since the outgoing Green’s function is
a single-valued function of the wave number k, our analysis is
given in terms of this variable and its extension to the complex
k plane and not on the energy E = (h̄2/2m)k2, which requires
of two Riemann energy sheets [12,30].

It might be of interest to some readers to mention a line
of research where resonant states (named Gamow states) are
considered as objects in a rigged Hilbert space formulation
which characterizes itself because it modifies one of the axioms
of quantum mechanics [31]. In recent years, however, that
approach has become controversial [32,33]. Our approach
differs in many respects from the Bohm-Gadella rigged Hilbert
approach, as for example the normalization condition and the
resonant expansions, which in our case refer to r ∈ (0,a) and
in theirs encompass the full half line r ∈ (0,∞). To the best
of our knowledge the rigged-Hilbert space formulations have
not been concerned with the subject of the present work.

All the works on resonant states mentioned above refer
to real potential interactions and hence do not provide the
conditions for the existence of spectral singularities, which
require, as pointed out above, complex or purely imaginary
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potentials [1]. One finds in the literature a number of works that
have addressed the issue of the complex poles for the S matrix
on the k plane for complex potentials in three dimensions
[34–36] and also works considering the notion of resonant
state to express the inelastic width, respectively, in one and
two dimensions [37,38]. See Ref. [39] for a review on complex
absorbing potentials.

The paper is organized as follows. In Sec. II, we discuss
the extension of the formalism of resonant states to complex
potentials and derive an expression of the spectral singularity in
terms of resonant functions. Section III discusses the relation-
ship of continuum wave functions with the outgoing Green’s
function and presents an expression relating a continuum wave
solution with a resonant state close to a spectral singularity.
Section IV discusses in detail the example of the distribution
of the complex poles to the outgoing Green’s function for both
purely absorptive and emissive δ-shell potentials for s waves.
Finally, Sec. V gives the concluding remarks.

II. RESONANT STATES FOR COMPLEX POTENTIALS

For the sake of simplicity, we restrict the discussion to
s waves in spherical symmetric potentials in three dimensions.
This, however, is equivalent to a discussion on the half line
r ∈ (0,∞). The analytic continuation of the solutions to the
Schrödinger equation to complex values of the wave number
k, where k = [2mE]1/2/h̄, with E the energy and m the
mass of the particle, depends on general properties on the
behavior of the interaction potential as a function of distance.
For well-behaved potentials (nonsingular at the origin) that
vanish exactly beyond a finite distance, the outgoing Green’s
function to the problem G+(r,r ′; k) is a meromorphic function
in the whole complex k plane [23,40]. Although most work on
resonant states refers to potential interactions that are real, the
above result holds also if the potential is complex [23].

The outgoing Green’s function to the problem is the relevant
quantity to study the properties of resonant states. It satisfies
the equation

G′′+(r,r ′; k) + [k2 − U (r)]G+(r,r ′; k) = (2m/h̄2)δ(r − r ′),
(1)

with boundary conditions

G+(0,r ′; k) = 0, [G′+(r,r ′; k)]r=a = ikG+(a,r ′; k), (2)

where G′′+ and G′+ denote, respectively, the second and first
partial derivatives of G+ with respect to r and the interaction
potential U (r) is defined by

U (r) = (2m/h̄2)[V0(r) ∓ iW (r)] = V0(r) ∓ iW(r). (3)

We consider that V0(r) and W (r) are potentials that vanish
beyond the finite interval r = a, namely, V (r) = 0,r > a

and W (r) = 0,r > a. We define W (r) as a positive definite
function and hence the minus sign in (3) indicates that the
imaginary part of the potential is absorptive and, respectively,
that the plus sign corresponds to a process of emission by
the potential. It is worth noticing that the absorptive potential
preserves the causality condition [34,41,42], whereas this is
not so for emission by the potential.

The outgoing Green’s function may be written as [23]

G+(r,r ′; k) = −(2m/h̄2)
φ(k,r<)f+(k,r>)

J+(k)
, (4)

where the notation r< means the smaller of r and r ′ and r>

means the larger. The functions φ(k,r) and f±(k,r) stand,
respectively, for the regular and irregular solutions to the
Schrödinger equation to the problem

ψ ′′(k,r) + [k2 − U (r)]ψ(k,r) = 0, (5)

obeying the boundary conditions

φ(k,0) = 0, [φ′(k,r)]r=0 = 1; lim
r→∞ f±(k,r) = e±ikr , (6)

and J±(k) refer to the Jost functions defined by the Wronskian
J±(k) = W [f±,φ] = (f±(k,r)φ′(k,r) − f ′

±(k,r)φ(k,r)). In
the above expressions the prime and double prime denote,
respectively, the first and second derivatives with respect to
the variable r . We adopt such a notation from now onwards.

As is well known the two solutions f+(k,r) and f−(k,r)
of (5) are linearly independent and hence the regular solution
may be expressed as a linear combination of them [23],

φ(k,r) = 1

2ik
[J−(k)f+(k,r) − J+(k)f−(k,r)]. (7)

It is of interest to write the integral representation of the Jost
functions J±(k),

J±(k) = 1 + k−1
∫ ∞

0
sin kr U (r)f±(k,r) dr. (8)

The functions φ(k,r) and f±(k,r) are entire functions of k and
hence the poles of the outgoing Green’s functions correspond
to the zeros of J+(k). There is an infinite number of them seated
on the complex k plane [40]. These poles are, except in special
cases that depend on specific combination of the parameters of
the potential, simple, and we assume that this is the case here.
For real potentials, it follows from time-reversal considerations
that the complex poles lie on the lower half of the k plane and
are distributed symmetrically with respect to the imaginary
k axis. Thus, for a given pole κn seated on the fourth quadrant,
there is a pole κ−n = −κ∗

n seated on the third quadrant. One
may also find, depending on the potential parameters, that
there might be a finite number of purely imaginary poles
located on the imaginary k axis. Those situated on the positive
imaginary axis correspond to bound states, whereas those on
the negative imaginary axis correspond to antibound sates
[15,19,23]. As a function of the potential parameters, the poles
follow trajectories on the complex k plane. In particular, these
trajectories reflect the symmetry mentioned above. Adding an
imaginary part to the potential destroys the above symmetry
and, hence, the trajectory that follows a pole κn on the fourth
quadrant of the k plane ceases to be related by time-reversal
invariance to that of the pole κ−n. For both real and complex
potentials with a negative imaginary part, causality prevents
the presence of complex poles on the first quadrant of the
complex k plane [34,41,42]. This ceases to hold for complex
potentials with a positive imaginary part [34].

Resonant states follow from the residues at the complex
poles of the outgoing Green’s function to the problem. As
shown in Appendix A, the derivation of the residue for real
potentials [14,15] follows also for complex potentials. The
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residue rn = limk→κn
(k − κn)G+(r,r ′; k) at a complex pole κn

seated on the complex k plane is given by

rn = (2m/h̄2)
vn(r)vn(r ′)

2κn

, (9)

provided resonant states are normalized according to the
condition ∫ a

0
v2

n(r) dr + i
v2

n(a)

2κn

= 1. (10)

The resonant functions vn(r) satisfy the Schrödinger equation,

v′′
n(r) + [

κ2
n − {V0(r) ∓ iW(r)}]vn(r) = 0, (11)

and in general obey purely outgoing boundary conditions at
r = a, namely,

vn(0) = 0, [v′
n(r)]r=a = iκnvn(a), (12)

where we define

κn = αn − iβn. (13)

Consequently, the complex energy eigenvalue reads

En = h̄2κ2
n/2m = En − i�n/2, (14)

where En and �n represent, respectively, the energy position
and the energy width of the resonance. Using (13) in (14), one
obtains the useful relationships

En = h̄2

2m

(
α2

n − β2
n

)
, �n = h̄2

2m
4αnβn. (15)

As shown in Appendix B the outgoing Green’s function to
the problem may be expanded in terms of resonance states in
a similar fashion as considered for real potentials [14,15]. It
reads

G+(r,r ′; k) = (2m/h̄2)
∞∑

n=−∞

vn(r)vn(r ′)
2κn(k − κn)

, (r, r ′)† � a, (16)

where (r, r ′)† � a denotes that r and r ′ are smaller than the
interaction radius a or r = a with r ′ < a and vice versa.
Substitution of (16) into the equation for G+(r,r ′; k) given
by (1), after addition and subtraction of (k2 − κ2

n)G+(r,r ′; k),
yields

∞∑
n=−∞

k + κn

2κn

vn(r)vn(r ′) = δ(r − r ′), (r,r ′)† � a. (17)

In order to satisfy (17), the following relationships must be
obeyed,

1

2

∞∑
n=−∞

vn(r)vn(r ′) = δ(r − r ′), (r, r ′)† � a, (18)

which correspond to a closure relationship, and the sum rule

∞∑
n=−∞

vn(r)vn(r ′)
κn

= 0, (r, r ′)† � a. (19)

Noticing that

1

2κn(k − κn)
= 1

2k

[
1

k − κn

+ 1

κn

]
(20)

makes it possible to write the expansion of G+(r,r ′; k), in view
of (19), as

G+(r,r ′; k) = (2m/h̄2)
1

2k

∞∑
n=−∞

vn(r)vn(r ′)
k − κn

, (r,r ′)† � a.

(21)

Now substitution of (21) into (1) and proceeding in a similar
fashion as above yields the additional sum rule

∞∑
n=−∞

vn(r)vn(r ′)κn = 0, (r,r ′)† � a. (22)

It is worth mentioning that an arbitrary function F (r) may
be expanded in terms of resonant states along the region
(r,r ′)† � a using the closure relationship given by Eq. (18),
so one may write

F (r) = 1

2

∞∑
n=−∞

Cnvn(r), r � a, (23)

where

Cn =
∫ a

0
F (r)vn(r) dr. (24)

An interesting example of a choice F (r) has been given by
Exner and Fraas [43], who considered F (r) to be a constant
within the interaction region of a δ-shell potential that yields a
highly irregular, most likely fractal, behavior for the nondecay
probability.

If the function F (r) is normalized along the internal region,
then multiplying (23) by F ∗(r) and performing an integration
from r = 0 to r = a yields

1

2

∞∑
n=−∞

CnC̄n = 1, (25)

where

C̄n =
∫ a

0
F ∗(r)vn(r) dr. (26)

The coefficients Cn and C̄n cannot be interpreted as
probability amplitudes since they are complex quantities. This
is related to the occurrence in all these equations of the square
of the resonant eigenfunctions and not of their square modulus.
Nevertheless, as exemplified in Sec. IV D, since (25) adds up to
unity, each real term in that sum yields a measure of the strength
of the expanded function for the corresponding resonant state.

A. Distribution of poles on the k plane and spectral singularities

Here we find it convenient to discuss separately the cases
of absorption and emission.

1. Absorption

Here we refer to the potential V0(r) − iW(r). Using (14),
one may write the time-dependent resonant state function as

vn(r,t) = vn(r)e−iEnt/h̄e−�nt/h̄. (27)

It is of interest to notice that the variation with time of
the total probability density along the internal region of the
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potential satisfies the continuity equation. Using (27), one
obtains immediately

d

dt
(Ine

−�nt/h̄) = −Jn(a,t) − h̄

m
Yne

−�nt/h̄, (28)

where In reads

In =
∫ a

0
|vn(r)|2 dr, (29)

Jn(a,t) = Jn(a) exp(−�nt/h̄) stands for the probability cur-
rent with Jn(a) given by

Jn(a) = h̄

m
Im

[
v∗

n(r)
d

dr
vn(r)

]
r=a

, (30)

and

Yn =
∫ a

0
|vn(r)|2W(r) dr. (31)

Using the boundary condition at r = a given in (12) in (30)
makes it possible to write Jn(a,t) as

Jn(a,t) = h̄

m
αn|vn(a)|2e−�nt/h̄. (32)

Hence, using (32) in (28), in view of (15), yields

αn

[
|vn(a)|2 − 2βnIn + Yn

αn

]
= 0. (33)

Equation (33) inform us that if αn �= 0 then

βn = 1

2In

[
|vn(a)|2 + Yn

αn

]
. (34)

From (34) we can learn about some general features of the
distribution of the complex poles κn on the complex k plane in
the presence of an absorptive potential.

Let us first consider the case for values of Re k > 0,
i.e., with poles characterized by αn > 0, which refers to the
quadrants I and IV of the k plane. Then it follows by inspection
of the right-hand side of Eq. (34), recalling that we have
defined κn as κn = αn − iβn, that βn > 0, which means that
there are no complex poles that may seat on the first quadrant
of the k plane. This is in accordance with the requirements of
causality [34,41,42]. The above implies that in this case the
complex poles are distributed only on the fourth quadrant, as
occurs also for real potentials. Moreover, Eq. (34) also inform
us that for complex potentials there are no poles seated on the
imaginary k axis. This requires that αn = 0 and one sees from
(34) that then βn goes to infinity.

Next, let us consider the case with Re k < 0, which
corresponds to poles having αn < 0 and refers to quadrants II
and III of the k plane. Then one sees, by inspection of Eq. (34),
that three situations may occur depending on whether the term
within brackets on the right-hand side of (34) is, respectively,
larger, smaller, or equal to zero. For the first two situations,
the pole κn seats, respectively, on the second or on the third
quadrant of the complex k plane. More interestingly, however,
is the situation where the bracket vanishes identically, because
then it means that βn = 0. This situation corresponds to a
spectral singularity [1], namely, to the situation of a pole with a
vanishing width. Let us denote this solution by the subscript s;

that is, from Eq. (34), βs = 0 implies that

αs = −
∫ a

0 |vs(r)|2W(r) dr

|vs(a)|2 . (35)

The above equation provides an expression for the position
of the spectral singularity in terms of both the imaginary part
of the complex potential W and the function vs(r) that may
be named spectral singularity resonant function. Notice that
in the absence of an imaginary potential contribution, i.e., for
a real potential, the solution αs does not exist. The above
considerations permit one to write, using (15), (35), and (27),
the time-dependent spectral singularity resonant function as

vs(r,t) = vs(r)e−iEs t/h̄, (36)

where Es = (h̄2/2m)α2
s . We recall that vs(r) is normalized

according to Eq. (10). Notice that for r > a, it behaves as
vs(r) ∼ exp(−iαsr).

It is worth mentioning that for the complex poles seated
on the second quadrant, which are located at positions κn =
−αn + iβn, the corresponding resonant functions are square
integrable, i.e., for r > a, vn(r) ∼ exp(−iαnr) exp(−βnr).
In this case, as for bound states in real potentials, the
normalization condition given by Eq. (10) may be expressed
as an integral over the whole space.

2. Emission

Emission follows by considering the plus sign in the
imaginary part of the complex potential in Eq. (11). Hence, the
procedure considered above involving the continuity equation
leads to an expression for βn that differs from Eq. (34) precisely
in the change of sign of Yn, namely,

βn = 1

2In

[
|vn(a)|2 − Yn

αn

]
. (37)

It follows immediately by inspection of Eq. (37), that the case
for emission with values Re k > 0, i.e., with αn > 0, corre-
sponds exactly with the discussion given for the absorptive
case with values Re k < 0 and similarly, that the case for
emission with values Re k > 0, i.e., with αn < 0, corresponds
exactly with the absorptive case with Re k > 0.

It is worth stressing two points. First, for absorption, the
spectral singularity lies along the negative real k axis, as
specified by Eq. (35), whereas for emission, the spectral
singularity seats on the positive real k axis,

αs =
∫ a

0 |vs(r)|2W(r) dr

|vs(a)|2 . (38)

Second, for emission there appear poles seated on the first
quadrant of the k plane, characterized by values κn = αn +
iβn, with (αn,βn) > 0, that yield time-dependent solutions that
grow exponentially with time.

III. EXPANSION OF CONTINUUM WAVE SOLUTIONS
IN RESONANT STATES

The continuum solutions ψ+(k,r) for the complex potential
defined by (3) satisfy the Schrödinger equation

ψ ′′+(k,r) + [k2 − U (r)]ψ+(k,r) = 0, (39)
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with the boundary conditions

ψ+(k,0) = 0, (40)

and

ψ+(k,r) = i

2
[e−ikr − S(k)eikr ], r � a, (41)

where S(k) stands for the S matrix to the problem defined by

S(k) = J−(k)

J+(k)
. (42)

Clearly, in the absence of a potential S(k) = 1 and then the
solution behaves as the free solution ψ+

f (k,r) = sin(kr).
It is well known that the Jost function satisfies the

relationship [23]

J ∗
+(k∗,U ∗) = J−(k,U ), (43)

where U stands for the complex potential defined by (3). Using
(42) and (43) leads to the properties

S(k)S(−k) = 1, (44)

S∗(k,U )S(k∗,U ∗) = 1, (45)

and using the above two expressions,

S∗(−k∗,U ∗) = S(k,U ). (46)

From (44) one immediately sees that if k is a pole of S then −k

is a zero of that function. As pointed out in Ref. [34], this result
is independent of whether the potential is or is not complex
and it is only a consequence of the spherical symmetry of the
potential. Equation (46) is interesting because it informs us
that if k is a pole or zero of S(k,U ), then −k∗ will be a pole or
zero of S(k,U ∗). This implies that for a complex potential
the usual mirror symmetry with respect to the imaginary
k axis which holds for real potentials breaks down. The poles
and zeros of S(k,U ) and those corresponding to S(k,U ∗) lie
distributed symmetrically with respect to the imaginary k axis.
As a consequence, as was obtained in Sec. II A, knowing the
position of the poles, say for the absorptive case, makes it
possible to determine immediately the poles that correspond
to the emissive case.

It is well known that the continuum solution ψ+(k,r) may
be written in terms of the regular solutions φ(k,r) as [15]

ψ+(k,r) = kφ(k,r)

J+(k)
. (47)

Clearly, from Eqs. (41) and (42), one sees that at a spectral
singularity k = ks , both S(k) and ψ+(k,r) diverge to infinity
since J+(ks) = 0.

A relationship between the continuum wave solution and
the outgoing Green’s function follows using Eqs. (1) and (47),
namely [44,45],

ψ+(k,r) = −(h̄2/2m) k G+(a,r; k)e−ika, r � a. (48)

Using Eq. (16) one may write the continuum wave solution
along the internal interaction region as an expansion in
resonant states [44],

ψ+(k,r) = −
∞∑

n=−∞

kvn(a)e−ika

2κn(k − κn)
vn(r), r < a. (49)

For values of k close to a spectral singularity, k ≈ κs , one may
write ψ+(k,r) using (49) as

ψ+(k,r) ≈ −kvs(a)e−ika

2κs(k − κs)
vs(r), r < a. (50)

Equation (50) yields a relationship between the continuum
wave solution and the spectral singularity resonant function in
the vicinity of the spectral singularity κs and shows explicitly
that ψ+(k,r) → ∞ as k → κs .

Alternatively, using the closure relation (18), one may
expand ψ+(k,r) along the internal region as [44]

ψ+(k,r) = 1

2

∞∑
n=−∞

Cn(k)vn(r), r < a, (51)

with

Cn(k) =
∫ a

0
ψ+(k,r)vn(r) dr. (52)

Notice that either (49) or (51) establishes an exact analyti-
cal relationship between continuum wave solutions and the
resonant states of the problem.

Along the external interaction region, r � a, the resonant
expansion of ψ+(k,r) follows by expanding S(k) in (41). This
has been discussed by Humblet and Rosenfeld, who considered
the Mittag-Leffler theorem to expand S(k) [19]. This yields,
in addition to a discrete sum, an integral contribution that,
however, is not necessarily negligible [45]. A more appropriate
resonant expansion may be obtained via the outgoing Green’s
function. Substitution of (41) at r = a into (48) makes it
possible to write

S(k) = [1 − 2ik(h̄2/2m)G+(a,a; k)]e−2ika. (53)

Although G+(a,a; k) diverges as |k| → ∞ along the k plane,
it does so linearly with k [44,46], and hence a convergent res-
onant expansion with two subtraction terms may be obtained
using the Cauchy theorem [45],

G+(a,a; k) = G+(a,a; 0) + kĠ+(a,a; 0)

+ (2m/h̄2)k2
∞∑

n=−∞

v2
n(a)

2κ3
n(k − κn)

, (54)

where Ġ+(a,a; 0) denotes the derivative of G+(a,a; k) with
respect to k evaluated at k = 0. Substitution of (54) into
(53) and the resulting expression into (41) provides a con-
vergent resonant expansion plus a nonresonant contribution
for ψ+(k,r) along the external region, namely,

ψ+(k,r) =−
∞∑

n=−∞

k3v2
n(a)e−2ika

2κ3
n(k − κn)

eikr +(h̄2/2m)Q(k,r), r � a,

(55)

where the nonresonant contribution Q(k,r) reads Q(k,r) =
(2m/h̄2)(i/2)[exp(−ikr)−exp(−2ika) exp(ikr)]−k[G+(a,a;
0) + kĠ+(a,a; 0)] exp(−2ika) exp(ikr).

Again, for values of k very close to a spectral singularity
located at κs , we may write the continuum wave function along
the external region as

ψ+(k,r) ≈ −k3v2
s (a)e−2ika

2κ3
s (k − κs)

eikr , r � a, (56)
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which exhibits explicitly that the continuum wave solution
along the external region diverges at k = κs .

It should be stressed, as shown by Eqs. (49) and (55), that
one requires to know resonant functions only in the interval
0 � r � a to characterize the continuum wave solutions along
the full interval (0,∞).

It is worth mentioning some recent work on the full line that
shows that by using an auxiliary function that is very easy to
calculate one may obtain a purely discrete expansion involving
resonant states for the reflection amplitude, which is the full-
line counterpart of S(k) [47]. That work has been relevant
for an exact analytical description of quantum transients in
one-dimensional scattering [48].

IV. EXAMPLE

As an example, we refer in detail to the case of a
purely absorptive potential. Hence, from Eq. (3), W(r) =
(2m/h̄2)W (r) and we choose the δ-shell potential W (r) =
(h̄2/2m)bδ(r − a), so we may write

U (r) = −iW(r) = −ib δ(r − a), (57)

where the intensity b > 0. For simplicity of the discussion we
take as units h̄ = 2m = 1. Clearly, the case of an emissive δ

potential follows by changing the sign in (57). We refer to this
case in Sec. IV D. Our aim is to obtain the set of complex
poles {κn} and resonant states {vn(r)} for this problem and, in
particular, for the spectral singularities.

Substitution of (57) into (11), in view of the boundary
conditions (12), makes it possible to write the solution to the
problem as

vn(r) =
{

An sin(κnr), r � a,

Bn eiκnr , r � a.
(58)

It follows immediately by continuity of the solutions and the
discontinuity of its derivatives with respect to r (due to the
δ interaction), at the radius r = a, that the values of κn are
solutions to the equation

2κn − b (e2iκna − 1) = 0, (59)

which correspond precisely to the zeros of the Jost function of
the problem as may be easily verified by substitution of (57)
into the expression given by (8), namely,

J+(k) = 1 − b

2k
(e2ika − 1). (60)

Using (60) and (42) we may write the S matrix to the problem
as

S(k) = −2k + b (e−2ika − 1)

2k − b (e2ika − 1)
. (61)

A. Distribution of the poles on the k plane

Equation (59) possesses an infinite number of solutions
which unfortunately cannot be obtained exactly in an analytical
fashion. However, within certain limits to be discussed below,
one may obtain approximate analytical solutions that may be
used as an input in well-known iteration procedures, as the
Newton-Raphson method [49], to obtain the solutions to a
desired degree of approximation.

Since time-reversal invariance does not hold for a imaginary
potentials, it is convenient to refer first to the solutions on
the fourth quadrant of the k plane. These solutions may be
characterized by

κn = αn − iβn, (62)

with n = 1,2,3, . . . and αn,βn > 0. Substitution of (62) into
(59) leads to a couple of equations that may be written as

2αn + b

b
= cos(2αna) e2βba (63)

and

−2βn

b
= sin(2αna) e2βna. (64)

Then, dividing (64) by (63) one gets

tan(2αna) = − 2βn

2αn + b
, (65)

and squaring and adding both (63) and (64) gives

βn = 1

4a
ln

[ (
1 + 2αn

b

)2

+
(

2βn

b

)2 ]
. (66)

It is easily verified that in the limit b → ∞, (65) and (66)
give, respectively, tan(2αna) = 0 and βn = 0. The solutions to
the first equation are, of course, αn = nπ/a and correspond
to quantum states trapped inside the region 0 < r < a. This
is peculiar because the potential is purely imaginary and
absorptive. For very large but finite b, i.e., b � 1 one may
write, in general,

αn = nπ

a
+ εn, (67)

where 0 < εn < nπ/a. Substitution of (67) into (65) leads to
the following expression for εn:

εn = − 1

2a
tan−1

(
2βn/b

1 + 2αn/b

)
. (68)

It is not difficult to see that if b � nπ one may substitute to first
order αn = nπ/a in (68) and also if b � βn and nπ � βna,
one may write εn approximately as

εn ≈ −1

a

βna

ba
, (69)

where βna/ba � 1. Noticing that (2nπ/ba) � (2βna/ba),
one may use the above results into (66) to find the expression

βn ≈ 1

a

nπ

ba
. (70)

Using (70) in (69) makes it possible to see that εn is indeed
an extremely small quantity. Therefore, it follows that the
approximate analytical solutions to Eq. (59) are given by

κn ≈ nπ

a
− i

1

a

nπ

ba
, (71)

where we recall that (71) holds provided ba � 1 and ba � nπ ,
which correspond to poles lying very close to the real k axis.

Changing n → −n in Eq. (71) yields a solution to Eq. (59)
that lies on the second quadrant of the k plane, namely,

κ−n ≈ −nπ

a
+ i

1

a

nπ

ba
. (72)
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π

FIG. 1. (Color online) Plot of the trajectories of the complex poles
κn along the complex k plane corresponding to a purely absorptive
δ-shell potential U (r) = −ibδ(r − a), with a = 1. For b = ∞
the poles lie at values κn = ±nπ , with n = 1,2,3, . . . . As b →
0, Im κn → −∞. At the intensity values bs = (2s − 1)π/2a one
finds spectral singularities at the real pole positions αs = −bs ,
s = 1,2,3, . . . . See text.

One may use the approximate analytical solution (72) as
an input in the Newton-Rapshon method [49] to evaluate the
solutions with any degree of accuracy. In our case the method
consists in solving by iteration the equation

κr+1
n = κr

n − J+
(
κr

n

)
J̇+

(
κr

n

) , (73)

where r = 1,2, . . ., J+(k) is given by (60), and J̇+(k) stands
for the derivative of J+(k) with respect to k, namely, J̇+(k) =
2[1 − iba exp(2ika)]. Once a pole has been calculated its
trajectory along the k plane may be obtained as a function of b.
Denote this pole by κn(b) and use it as an input in Eq. (73) for
a slightly smaller value of b − δb. This leads to the new pole
κn(b − δb) and by repeating this procedure one then generates
the trajectory that each pole follows on the k plane.

Figure 1 illustrates the trajectories followed by the poles
κn and κ−n with n = 1,2,3. One sees that as b diminishes, the
poles on the second quadrant follow trajectories that eventually
leads them to the third quadrant. In crossing the real k axis,
each of these poles attains a vanishing imaginary value that
corresponds precisely to a spectral singularity. That occurs at
distinct values of b for each pole. On the other hand, in a
similar fashion, one sees that the poles on the fourth quadrant
follow trajectories that take them away from the real k axis.

1. Asymptotically large complex poles

There is still another approximate analytical solution for
the complex poles κn. This follows in the limit of very large
poles. The former condition ba � 1 still holds, so the starting
points of the approximation are Eqs. (66) and (68), onto which
we impose the condition nπ � ba. It is then easily seen that
the approximate solution κn for asymptotic large values of n

FIG. 2. (Color online) Plot of the distribution of the first
20 complex poles on the k plane, corresponding to the purely ab-
sorptive δ-shell potential U (r) = −ibδ(r − a) with b = b5 = 9π/2
and a = 1, which yields a spectral singularity at α5 = −b5. See text.

for poles seated on the fourth quadrant of the k plane are

κn ≈ nπ

a
− i

1

4a
ln(2n)2. (74)

Changing n → −n yields now an approximate solution that
seats on the third quadrant of the k plane, namely,

κ−n ≈ −nπ

a
− i

1

4a
ln(2n)2. (75)

The above solutions are rather interesting; they imply that
at asymptotically large values of n one seems to recover
the condition for time-reversal invariance κ−n = −κ∗

n . This
deserves further investigation.

B. Spectral singularities

In our simple example one may determine the distinct
values of b > 0 at which the spectral singularities occur. We
denote these solutions by the subindex s and they follow
immediately by substitution of κn = αs into Eq. (59). This
leads to the equations

2αs − b cos(2αsa) + b = 0 (76)

and

sin(2αsa) = 0. (77)

The solution to Eqs. (76) and (77) is of the form

αs = (2s − 1)π/2a, (78)

with s = 1,2,3 . . ., which holds provided the intensity b

acquires the values

αs = −bs. (79)

The above expression implies that for absorption, αs is always
seated on the negative real k axis, and provides the value of the
intensity of the δ-shell potential to guarantee the existence of
a spectral singularity for that potential. Equation (79) follows
also from (35) since W(r) = b δ(r − a).

Figure 2 exhibits the distribution of the first 20 poles of our
problem for parameters b5 = 9π/2 and a = 1. Notice that a
spectral singularity occurs precisely at α5 = −9π/2. For that
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FIG. 3. (Color online) Plot of the probability density of the spec-
tral singularity resonant function |v2(r)|2 as a function of distance,
corresponding to a spectral singularity seated at α2 = −3π/2 with
a = 1. See text.

value, s = 5, one finds four complex poles seated on the second
quadrant of the k plane. In general, for a spectral singularity
with s = m there will be m − 1 complex poles located on the
second quadrant of the k plane.

C. Resonant states

Here we discuss briefly some features of the resonant
functions for the absorptive case. The normalization of the
resonant states follows by inserting the solution along the
internal interaction in (58) into the normalization condition
given by (10). The result yields, after some mathematical
manipulation, using (59),

An =
[

2(−iba − 2iκna)

a(1 − iba − 2iκna)

]1/2

. (80)

Notice that in the limit b → ∞, the normalization An →√
(2/a), which corresponds to the trapped quantum states

discussed above for an infinitely absorptive potential. For
the spectral singularity resonant states where κs = αs and
substituting (79) into (80) the normalization condition As reads

As =
[ −2iαs

(1 − iαsa)

]1/2

. (81)

From (58) one sees by continuity of the solutions at r = a

that Bn = An sin(κna) exp(−iκna) and hence for n = s, using
(81), allows one to calculate the spectral singularity resonant
state.

Figure 3 exhibits a plot of the probability density of the
spectral singularity resonant state as a function of distance
for s = 2. Choosing a = 1, the intensity of the δ potential
is b2 = 3π/2 and hence the spectral singularity is located at
α2 = −3π/2.

D. Closure relationship for a test function

Here, we provide an example of Eq. (25) for the test function

F (r) =
√

2

a
sin(9πr/2a). (82)

Notice that this is not an infinite wall box function [50]. Since
the test function is real, Cn = C̄n, we find it convenient to write

FIG. 4. (Color online) Plot of the real (dotted line) and imaginary
parts (dashed line) of the closure relationship given by Eq. (25). See
text.

Eq. (25) as

1

2

∞∑
n=1

(
C2

n + C2
−n

) = 1. (83)

We obtain a set of poles {κn} and resonant states {vn} for the
δ-shell potential given by Eq. (57) with parameters b = 9π/2
and a = 1 and then calculate the coefficients C2

n , using (24),
to evaluate (83). Notice that the above value of the intensity,
in view of (79), corresponds to a spectral singularity at s = 5.
An interesting consequence of this choice is that the real and
imaginary parts of the coefficient C2

−5 are, respectively, close
to unity and to a vanishing value. In fact, the overlap of the
test function with the rest of resonant states is very small.

Figure 4 yields a plot of both the real part of the left-hand
side of (83) (dotted line) and the corresponding imaginary
part (dashed line) as functions of the number n of poles. One
sees already that 50 poles satisfy to a good approximation the
closure relationship given by Eq. (83).

E. Emission case

As mentioned at the beginning of this section, the case for
emission corresponds to the δ-shell potential

U (r) = iW(r) = ibδ(r − a), (84)

where b > 0. It then follows using Eq. (46) that the trajectories
and distribution of the poles for the emission case may be
obtained directly from those of the absorptive case by reflection
with respect to the imaginary k axis. For example, the case of
the distribution of poles for a fixed value of the intensity of
the δ potential depicted in Fig. 2 for b = 9π/2 becomes the
distribution displayed in Fig. 5. It is worthwhile to note that
for emission there appear poles that seat on the first quadrant
of the k plane. One sees that the spectral singularity is located
at α5 = 9π/2. In general, for emission we have

αs = bs. (85)

The normalization condition for emission may be easily
obtained. It gives the same expression as (81).
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FIG. 5. (Color online) Plot of the distribution of the first
20 complex poles on the k plane, corresponding to the purely emissive
δ-shell potential U (r) = ibsδ(r − a), with b5 = 9π/2 and a = 1,
which yields a spectral singularity at α5 = b5. See text.

F. Resonant spectra for absorption and emission

For real potentials the quantity |S(k)|2 = 1 due to flux con-
servation. However, for purely imaginary potentials, |S(k)|2
yields information on the resonant structure of the system.
Indeed, using the δ-shell potential discussed above, let us
first consider the distribution of poles for the absorptive case
displayed in Fig. 2, which corresponds to b5 = 9π/2 and
a = 1. Figure 6 provides the corresponding plot of |S(k)|2
vs k/π . One observes a series of peaks, with maxima of unity
value, that are closely related to the positions corresponding
to the resonance poles, ar ≈ nπ . At these peak values the flux
is conserved. We have no explanation for the distinct values
attained by the observed minima of |S(k)|2. It is not difficult to
figure out the behavior of the absorptive cross section, which
is defined as [51]

σ (k) = π

k2

[
1 − |S(k)|2] . (86)

One sees that the peak values of |S(k)|2 correspond to vanishing
values of σ (k). This refers to situations where the continuum

FIG. 6. (Color online) Plot of the function |S(k)|2 for the absorp-
tive δ-shell potential vs k in units of π , with the same parameters as
in Fig. 2. See text.

FIG. 7. (Color online) Plot of the function |S(k)|2 for the emission
δ-shell potential vs k in units of π , with the same parameters as in
Fig. 5. See text.

wave solution (41) behaves as the free solution, i.e., as if there
were no potential at these values of k.

Another interesting feature appearing in Fig. 6 is that at
k/π = 4.5, i.e., at k = 9π/2, the value of |S(k)|2 = 0. It is
not difficult to see that this is the signature of the spectral
singularity κ5 = −9π/2 as shown in Fig. 2. This follows
from Eq. (44), which informs us that for the case of a
spectral singularity of S(k) situated at −κs there corresponds
a zero seated at κs . Using Eq. (86) one sees that for this
case σ (k = 9π/2) = 4/(81π ), which says that the spectral
singularity for absorption does not produce a singular behavior
in the absorptive cross section.

The case for emission is displayed in Fig. 7. One observes
also a peaked behavior of |S(k)|2 as a function of k/π . The
most relevant feature of Fig. 7 is that |S(k)|2 attains an infinite
value at k/π = 4.5 which corresponds precisely, as follows
from inspection of Fig. 5, to the spectral singularity pole seated
at κ5 = 9π/2. The other peak maxima are related to the poles
seated both on the first and fourth quadrants. All poles are close
to the positions ar = (2n + 1)π/2. Notice that the four peaks
situated on the left of the spectral singularity peak correspond,
respectively, to the four poles seated on the first quadrant of
the k plane. For emission, the peak maxima of |S(k)|2 do not
correspond to unity values as occurs for the case of absorption,
but rather, to the minimum values occurring at k/π = n. We
have no explanation for this nor for the distinct values of the
peak heights except for the one that corresponds to the spectral
singularity. Notice that in this case Eq. (86) yields negative
values, which indicates that this expression is not suitable for
emission.

It follows by inspection of Eq. (61) that as k → ∞,
|S(k)|2 → 1. The former case is consistent with Sec. IV A1,
which says that unitarity is restored for asymptotically large
poles. Figure 8 yields a plot of |S(k)|2 vs log10 k for the
absorption case that exhibits the behavior mentioned above for
b = 9π/2 and a = 1. Similarly, Fig. 9 yields the corresponding
behavior for the emissive case. The above figures exemplify
that unitarity is restored far away from the region where
k ∼ b. This behavior holds in general for arbitrary finite range
imaginary potentials.
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FIG. 8. (Color online) Plot of the function |S(k)|2 vs log10 k for
the absorption δ-shell potential with the same parameters as in Fig. 2.
See text.

V. CONCLUDING REMARKS

It is worth emphasizing Eqs. (35) and (38), which, as a
consequence of the continuity equation, establish a general
relationship between resonant states and spectral singularities,
respectively, for absorption and emission. Notice that this
result is independent of whether or not there is a real part in
the potential. The effect of a real potential lies in the resonant
functions. Another result worth emphasizing is the resonant
expansion of the continuum wave solution in terms of resonant
states given by Eqs. (49) and (55), respectively, along the
internal and external interaction regions and similarly for the
expressions of the continuum wave functions near a spectral
singularity given by (50) and (56). Another result that deserves
to be highlighted is that the residue at the pole of the outgoing
Green’s function corresponding to a spectral singularity is
a well-defined function, contrary to the continuum wave
function, which is not defined there. This might be of interest
because for real potentials, the solutions to the time-dependent
Schrödinger equation in terms of resonant states give exactly
the same results as that involving continuum wave functions
[52]. This implies that the formalism of resonant states might
provide answers of physical interest where continuum wave
functions are not defined and might also stimulate work

FIG. 9. (Color online) Plot of the function |S(k)|2 vs log10 k for
the emissive δ-shell potential with the same parameters as in Fig. 5.
See text.

towards a deeper understanding of the relationship between
resonant and continuum states. A final remark refers to the
exact numerical calculation of |S(k)|2 for the δ-shell potential
as a function of k. Our analysis shows, in general, that for
absorption the spectral singularity [a pole of S(k)] is seated
on the negative imaginary k axis that corresponds to a zero
at k = αs on the positive k axis, as illustrated in the plot of
|S(k)|2 shown in Fig. 7. However, for emission, the spectral
singularity seats on the positive imaginary k axis and hence
it leads to an infinite value of S(k) as displayed in the plot of
|S(k)|2 shown in (Fig. 8).
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APPENDIX A: DETERMINATION OF THE RESIDUE
AT A POLE OF THE OUTGOING GREEN’s FUNCTION

FOR A COMPLEX POTENTIAL

Near a pole κn, in general, one may write the outgoing
Green’s function G+(r,r ′; k) as

G+(r,r ′; k) ≈ rn(r,r ′)
k − κn

+ χ (r,r ′; k), (A1)

where χ (r,r ′; k) is a regular function of k. Substitution of (A1)
into (1) yields

1

k − κn

{r ′′
n (r,r ′) + [k2 − U (r)]rn(r,r ′)}

+ {χ ′′(r,r ′; k) + [k2 − U (r)]χ (r,r ′; k)}
− (2m/h̄2)δ(r − r ′) = 0. (A2)

Addition and subtraction of κ2
nrn(r,r ′)/(k − κn) into the above

equation and taking the limit k → κn yields the expressions

r ′′
n (r,r ′) + [

κ2
n − U (r)

]
rn(r,r ′) = 0, (A3)

and

χ ′′(r,r ′; κn) + [
κ2

n − U (r)
]
χ (r,r ′; κn)

+ 2κnrn(r,r ′) = (2m/h̄2)δ(r − r ′). (A4)

A similar procedure for the boundary conditions (2), after
adding and subtracting iκnrn(r,r ′)/(k − κn) and taking the
limit k → κn, yields

rn(0,r ′) = 0 (A5)

and

χ (0,r ′; κn) = 0, (A6)

and, similarly,

r ′
n(a,r ′) = iκnrn(a,r ′) (A7)

and

χ ′(a,r ′; κn) = iκnχ (a,r ′; κn) + irn(a,r ′). (A8)

One sees, from (11), (12), (A3), (A5), and (A7), that both vn(r)
and rn(r,r ′) satisfy the same equation and the same boundary
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conditions, which implies that they are proportional to each
other, namely,

rn(r,r ′) = vn(r)P (r ′). (A9)

Using now Green’s theorem between the equations for vn(r)
and χ (r,r ′; κn), given respectively by (11) and (A4) gives

[vn(r)χ ′(r,r ′; κn) − χ (r,r ′; κn)v′
n(r)]a0

+P (r ′)
∫ a

0
v2

n(r)dr = (2m/h̄2)vn(r ′). (A10)

It then follows using (12), (A6), (A8), and (A9) that

P (r ′) = (2m/h̄2)
vn(r ′)

2κn

{ ∫ a

0 v2
n(r)dr + iv2

n(a)/2κn

} . (A11)

Substitution of (A11) into (A9) finally gives the expression for
the residue,

rn(r,r ′) = (2m/h̄2)
vn(r)vn(r ′)

2κn

{ ∫ a

0 v2
n(r)dr + iv2

n(a)/2κn

} . (A12)

Hence, provided the normalization condition is given by (10),
one may write the residue at a pole κn of the outgoing Green’s
function as displayed by (9).

APPENDIX B: DERIVATION OF THE RESONANT
EXPANSION OF G+(r,r ′; k)

Consider the expression

T = 1

2πi

∫
C

G+(r,r ′; k′)
k′ − k

dk′, (B1)

where C is a large closed contour of radius L in the k′ plane
about the origin, as shown in Fig. 10, which excludes all the
poles κn and the value k′ = k, namely, C = CR + ck + ∑

n cn.
Notice that CR is in the clockwise direction, whereas ck and
the contours cn are in the counterclokwise direction. It follows
using Cauchy’s theorem that T = 0 and hence, using the

FIG. 10. Integration contour C = CR + ck + ∑
n cn used to ob-

tain the resonant expansion of G+(r,r ′; k′) in terms of the full set of
complex poles. See text.

theorem of residues to evaluate the distinct contours, one may
write, in view of (9),

G+(r,r ′; k) = (2m/h̄2)
N∑

n=−N

vn(r)vn(r ′)
2κn(k − κn)

+ 1

2πi

∫
CR

G+(r,r ′; k′)
k′ − k

dk′. (B2)

One may consider larger and larger values of the radius L,
encompassing in that way more and more poles into the
discrete sum in (B2). In the limit as L → ∞, there will be
an infinite number of terms in the sum. It turns out that on the
complex k′ plane the outgoing Green’s function

G+(r,r ′; k′) → 0 as |k′| → ∞, (B3)

provided r and r ′ are smaller than the interaction potential
radius a and also for r = a with r ′ < a or vice versa. We denote
these conditions by the notation (r,r ′)† � a. As a consequence,
it follows that in the above limit the integral term in (B2)
vanishes exactly and hence G+(r,r ′; k) may be expanded as
the purely discrete resonant expansion given by Eq. (16).
For values of (r,r ′) � a, G+(r,r ′; k′) diverges in the limit
L → ∞ and therefore there is no purely discrete expansion
of the outgoing Green’s function in that case. The results,
except that of Ref. [53], which refers only to values (r,r ′) < a,
follow from the work of a number of authors [44,46,53,54]. It
requires that the potential is of finite range, as considered
in this work, or vanishes at infinite distance faster than
exponential [40].

1. Example

Here we consider the exact analytical expression of the
s wave outgoing Green’s function G+(r,r ′; k) for the δ

potential model V (r) = λδ(r − a), where the intensity λ is a
complex number. This makes it possible to verify that Eq. (B3)
is fulfilled.

Our starting point is the expression for the outgoing Green’s
function given by Eq. (4), which is given in terms of the
regular function, φ(k,r), the Jost function f+(k,r) and the
Jost solutions. Choosing, r < r ′ and r ′ � a, we find [23],

φ(k,r) = sin(kr)

k
, (B4)

f+(k,r ′) = eikr ′ − λ

k
sin[k(r ′ − a)]eika, (B5)

J+(k) = 1 + λ

k
sin(ka) eika, (B6)

and hence G+(r,r ′; k) may be written as

G+(r,r ′; k) = − sin(kr)

k

×
[

exp(ikr ′) − (λ/k) sin[ k(r ′ − a) ] exp(ika)

1 + (λ/k) sin(ka) exp(ika)

]
, (B7)

where for the sake of simplicity we consider the units h̄ =
2m = 1.
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Equation (B7) may be written, after a simple algebraic
manipulation as

G+(r,r ′; k) = −eik(r+r ′)

B(k)
+ e−ik(r−r ′)

B(k)
+ λeik(r+r ′)

2ikB(k)

− λe−ik(r−r ′)

2ikB(k)
− λeik(r−r ′)e2ika

2ikB(k)

+ λe−ik(r+r ′)e2ika

2ikB(k)
, (B8)

where

B(k) = 2ik + λ[e2ika − 1]. (B9)

Recalling that r < r ′, it is straightforward to see by
inspection of each term in Eqs. (B8) and (B9) that along both
the upper-half I+ and the lower-half I− of the k plane, where
respectively, k = ±α + iβ and k = ±α − iβ, G+(r,r ′; k)
vanishes exponentially as |k| → ∞ provided (r + r ′) < 2a.
Clearly, also (r − r ′) < 2a. Similarly, along the real axis
G+(r,r ′; k) vanishes at least as 1/k. The above analysis holds
also if r ′ = a.
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