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Spin dynamics in a finite cyclic XY model
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Evolution of the z component of a single spin in a finite cyclic XY spin-1/2 chain is studied. Initially one
selected spin is polarized while other spins are completely unpolarized and uncorrelated. Polarization of the
selected spin as a function of time is proportional to the autocorrelation function gzz

0 (t) at infinite temperature.
Initialization of the selected spin gives rise to two wave packets moving in opposite directions and winding over
the circle. We express gzz

0 (t) as a series in winding number and derive tractable approximations for each term.
This allows us to give qualitative explanations and quantitative descriptions of various finite-size effects such as
partial revivals and transition from regular to erratic behavior.
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I. INTRODUCTION

Exactly solvable spin chains are widely used as toy models
for exploring various aspects of quantum dynamics. Recent
progress in experimental techniques allows the construction
of quantum systems with effective spin chain Hamiltonians
(see, e.g., [1]), which opens new prospects for exploration of
fundamental concepts such as decoherence and thermalization,
as well as for applications such as quantum state transfer
through quantum wires [2]. This motivates further efforts to
understand dynamics of spin chains in detail.

We consider the reduced dynamics of a single spin in a
cyclic spin 1/2 XY chain with a finite number of spins, N.

Initially one selected spin has a given polarization while other
(N − 1) spins are completely uncorrelated and unpolarized.
We study the z component of polarization of the selected
spin as a function of time. It can be expressed through
the time-dependent autocorrelation functions gzz

0 (t). Although
many papers, starting from the pioneering paper on the
XY chain [3], have been devoted to calculation of various
correlation functions, most of the studies have concentrated
on the thermodynamic limit N → ∞. An exact expression for
gzz

0 (t) in the XY model with finite N was derived in [4] and [5].
It involves sums of ∼N oscillating terms and thus is hardly
tractable. However, these sums can be calculated numerically
for various values of model parameters. Resulting plots for
gzz

0 (t) readily reveal a rich variety of spin evolution patterns
which call for explanation (see the figures in the present
paper, especially Fig. 1). One striking feature of the evolution
is the regular-to-erratic transition: gzz

0 (t) is described fairly
well by N → ∞ approximation (which is given by a rather
regular function of time for a wide range of model parameters)
up to some threshold time tth, but at tth this concordance
is abruptly destroyed by a sharp revival; at later times the
evolution becomes less and less regular and ends up with
apparently chaotic fluctuations near the long-time average.
This feature is apparently common for all finite spin chains; in
particular, it was observed in numerical simulations done for
the XX (isotropic XY ) model [6,7], for the XXZ model with
long-range [8] and nearest-neighbor [9] couplings, and for the
XY model [10].

Results of the numerical studies and general considerations
suggest that it is the winding of two oppositely directed wave

packets created by the spin initialization which underlies the
long-time dynamics in the cyclic chain [7] (in the case of an
open-ended chain the same role is played by the reflection
of the packets from the ends of the chain [6]). The threshold
time corresponds to the time necessary for the forefront of
a wave packet to make one round-trip over the circle.1 The
interference between the forefronts of the wave packets and
their own tails produces partial revivals at t = tth,2tth, . . . and
leads to the regular-to-erratic transition.

In order to study spin dynamics in finite spin chains at
times greater than tth it is desirable to have tractable analytical
approximations for gzz

0 (t) valid for t > tth. The main goal
of the present paper is to obtain such approximations for
the cyclic XY model. The mathematical method which we
use and develop is closely related to the physical picture of
wave-packet winding over the circle and in fact allows us to
quantitatively describe such winding. Namely, we are able
to represent the correlation function as a series in winding
number s. This series has the appealing property that (s + 1)
first terms are enough to describe the correlation function
for t < (s + 1)tth. Such a truncated series fully takes into
account interference between the components of the wave
packets which have completed 0,1,2, . . . ,s round-trips over
the circle. These approximations are fairly accurate even when
the evolution is already completely irregular. Related results
in this direction were previously obtained in Refs. [12,13].
In Ref. [12] a quasiparticle Green’s function was represented
as a sum over winding numbers. Recently the method was
applied to the inhomogeneous open-ended XX chain [13,14].
Similar mathematical structures and physical patterns emerge
in systems of coupled oscillators (see, e.g., Ref. [15] and
references therein).

The approximation accounting for s windings involves ∼s
oscillating terms and therefore is much more tractable than
the exact formula as long as s � N. This allows us to look at
the regular-to-erratic transition (as well as some other peculiar
features of spin evolution in finite chains) from a different
perspective and obtain quantitative results hardly accessible in

1See also a recent paper [11] for the same physical reasoning applied
to dynamics after a quench in the XY model.
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FIG. 1. (Color online) Patterns of spin dynamics for various values of model parameters. The exact autocorrelation function gzz
0 (t) is plotted.

According to Eq. (9) it is equal to the polarization of the first spin pz
1(t) provided pz

1(0) = 1. The horizontal (blue) line marks the long-time
average of the autocorrelation function given by Eq. (B10). The number of spins here and in all other figures is N = 100.

numerical simulations. For example, we are able to derive an
asymptotic formula for the amplitude of the sth revival.

We also touch on the issue of incomplete thermalization
of spins in the XY spin chain. In particular, we show that the
autocorrelation function gzz

0 (t) at infinite temperature never
changes its sign, in contrast to what would be expected in the
case of complete thermalization. This intriguing property was
previously proven in the special case of the XX chain [6,7]
and observed in numerical calculations of spin evolution in the
XXZ model with long-range interactions [8].

The rest of the paper is organized as follows. In Sec. II we
briefly describe the XY model on a circle. In Sec. III we discuss
the exact formula for gzz

0 (t) and rewrite it through sums over
winding numbers. In two special cases (the Ising model with
a critical magnetic field and the XX model) this directly leads
to the desired result: gzz

0 (t) is represented in a transparent and
convenient way through the infinite sum of Bessel functions.
This representation allows us to obtain simple successive
approximations valid up to times tth,2tth, . . . . However, in
the general case each term of the sum is represented as an
integral which should be worked out. In Sec. IV we handle
these integrals approximately. Thus we obtain our main result:
the successive asymptotic approximations in a general case.
In Sec. V we discuss the transition from regular to erratic
behavior. The results are summarized in Sec. VI. The bulk
of the technical details is presented in the Appendixes. In
Appendix A we describe the diagonalization of the XY model.
In Appendix B we rederive the exact formula for the correlation
function gzz

n (t) at infinite temperature using a method which
is somewhat more direct than the one implemented in the
original work [4,5]. These two appendixes mostly contain
widely known calculations and results; however, we include

them in order to introduce our notations, to emphasize some
salient features usually omitted in the literature and for the
sake of completeness. In Appendix C the dependence of the
wave-packet forefront velocity on the model parameters is
investigated. Appendix D contains the technical details of
calculating asymptotic expressions presented in Sec. IV.

II. THE XY MODEL ON A CIRCLE

We consider a chain of N coupled spin-1/2’s with the
following Hamiltonian [3,16]:

H = 1

4

N∑
n=1

[
(1 + γ )σx

n σ x
n+1 + (1 − γ )σy

n σ
y

n+1

]+ h

2

N∑
n=1

σ z
n .

(1)

Here the index N + 1 is identified with 1, and N is supposed to
be even. Two parameters enter the Hamiltonian, the anisotropy
parameter γ and the magnetic field h. Without loss of
generality one may assume γ � 0, h � 0 (see Appendix A).
In Sec. IV we concentrate on the case h � 1, γ ∈ [0,1].

An important property of the XY Hamiltonian is that it
commutes with the parity operator � ≡ ∏N

n=1 σ z. It can be
represented in an “almost-free-fermion form” through the
sequential Jordan-Wigner, Fourier, and Bogolyubov transfor-
mations [3–5] (see Appendix A for details):

H = P odd
∑

q∈Xodd

Eq

(
c+
q cq − 1

2

)
+ P ev

∑
q∈Xev

Eq

(
c+
q cq − 1

2

)
,

(2)
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where

Xodd =
{
−N

2
+ 1,−N

2
+ 2, . . . ,

N

2

}
,

(3)

Xev =
{
−N

2
+ 1

2
,−N

2
+ 3

2
, . . . ,

N

2
− 1

2

}
,

{cq,q ∈ Xodd} and {cq,q ∈ Xev} are two sets of fermion
operators [note, however, that two operators from different
sets do not satisfy fermion anticommutation relations; see
Eq. (A21)], P odd and P ev are parity projectors,

P ev ≡ (1 + �)/2, P odd ≡ (1 − �)/2, (4)

and the fermion energy is defined as Eq ≡ E(ϕ(q)), ϕ(q) ≡
2πq

N
,

E(ϕ) =
√

ε(ϕ)2 + �(ϕ)2, ε(ϕ) ≡ h − cos ϕ,

�(ϕ) ≡ γ sin ϕ. (5)

One can see that the Hilbert space is divided into two sub-
spaces, with odd and even numbers of fermions, respectively.
The number of fermions is an integral of motion, and when it
is fixed, the model looks like a free-fermion model.

III. REDUCED DYNAMICS OF A SPIN AT T = ∞
A. Correlation function: Sum over modes

We focus our study on the z component of the nth spin
polarization vector as a function of time:

pz
n(t) ≡ tr

[
ρ(t)σ z

n

]
, (6)

where ρ(t) = e−iH tρ(0)eiHt is the density matrix of the whole
chain.

We choose the following initial condition:

ρ(0) = 2−N [11 + p1(0)σ 1] ⊗ 123...N . (7)

It describes a situation where at t = 0 the first spin has an
arbitrary polarization, p1(0), while other (N − 1) spins are
completely unpolarized and uncorrelated. If the first spin is
regarded as an open system, and other (N − 1) spins as an
environment, then this initial condition corresponds to an
infinite temperature of the environment. Given the above initial
condition, the polarization pz

n(t) can be expressed through
the two-spin correlation functions at infinite temperature,
pz

n(t) = pα
1 (0)gzα

n−1(t), where

gzα
n (t) ≡ 2−N tr

[
σα

n+1(t)σ z
1

]
. (8)

Due to conservation of parity gzx
n (t) = g

zy
n (t) = 0 and we are

left with

pz
n(t) = pz

1(0)gzz
n−1(t). (9)

Note that this relation between the polarization of a single spin
and the correlation function holds only in the case of infinite
temperature.

Thus our problem reduces to investigation of the zz

correlation function gzz
n . Due to integrability of the model

it can be calculated exactly [4,5]. For completeness of the
presentation we provide the details of the calculation in

Appendix B. The result reads

gzz
n (t) = 1

2

(
An

odd
2 + An

ev
2 + Bn

odd
2 + Bn

ev
2 − Cn

odd
2 − Cn

ev
2)

,

(10)

where

An
ev(odd)(t) = N−1

∑
q∈Xev(odd)

cos nϕ(q) cos Eqt,

Bn
ev(odd)(t) = N−1

∑
q∈Xev(odd)

εq

Eq

cos nϕ(q) sin Eqt, (11)

Cn
ev(odd)(t) = N−1

∑
q∈Xev(odd)

�q

Eq

sin nϕ(q) sin Eqt.

In what follows we mainly concentrate on the evolution of
the first spin, which is distinguished by the initial condition. It
is described by the autocorrelation function gzz

0 (t).
As noted in [7], in the case of the XX model (γ = 0), gzz

n (t)
is always non-negative [because Cn

ev(odd)(t) = 0] or, in other
words, spin polarization never changes its sign. We see that
this is not the case for an arbitrary site n in a general XY chain.
However, the polarization of the first spin still never changes
its sign since C0

ev(odd)(t) = 0 for any γ. Intriguingly, the same
property [non-negativity of gzz

0 (t) at infinite temperature] was
observed in numerical simulations for the XXZ model with
long-range interactions [8]. This suggests that this effect could
be generic for a large class of spin systems.

Surprisingly enough, the evolution of spin polarization
described by the exact formula, (10), exhibits a rich variety of
patterns depending on h and γ. Examples are given in Fig. 1.
We aim at explaining the major features of evolution and at
providing a tractable approximation to Eq. (10).

B. Correlation function: Sum over winding numbers

Let us rewrite formulas (11) for n = 0 in a different form:

A0
odd(t) = A0(t) + 2

∞∑
j=1

Aj (t),

A0
ev(t) = A0(t) + 2

∞∑
j=1

(−1)jAj (t),

(12)

B0
odd(t) = B0(t) + 2

∞∑
j=1

Bj (t),

B0
ev(t) = B0(t) + 2

∞∑
j=1

(−1)jBj (t),

where

Aj (t) ≡ (2π )−1Re
∫ π

−π

ei(E(ϕ)t−jNϕ)dϕ,

(13)

Bj (t) ≡ (2π )−1Im
∫ π

−π

ε(ϕ)

E(ϕ)
ei(E(ϕ)t−jNϕ)dϕ.

As shown below, j corresponds to a number of windings of
the forefront of a wave packet produced by the initialization
of the first spin. To obtain the above expressions one should
take a discrete Fourier transform of the right-hand side (r.h.s.)
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FIG. 2. (Color online) gzz
0 (t) for the XX model. The threshold time is tth = N = 100. The solid line corresponds to the exact expression.

The dotted (magenta) line corresponds to approximation (17) with j = 0,1, . . . ,10. One can see that the approximation starts to deviate from
the exact expression only at t 	 11tth. The approximation obtained in the thermodynamic limit (j = 0) is also shown (in red). It accurately
describes gzz

0 (t) up to the threshold time. The horizontal (blue) line marks the long-time average of the autocorrelation function.

of Eq. (11) and use

∑
q∈Xodd

eilϕ(q) =
{

1 if l = jN, j ∈ Z,

0 otherwise;
(14)∑

q∈Xev

eilϕ(q) =
{

(−1)j if l = jN, j ∈ Z,

0 otherwise.

Formulas (12) have an important advantage compared to
formulas (11): infinite sums in (12) can be truncated at some
small j to obtain excellent approximations for times t < (j +
1)tth with threshold time tth ∼ N. Thus one may deal with
only a few terms in Eq. (12), in contrast to N terms in (11).
This statement is proved in full generality in the following (see
Sec. IV and, especially, Appendix D 2b). In two special cases
described below one can check it immediately.

C. Special case: The X X chain

When γ = 0 functions Aj and Bj can be expressed through
Bessel functions of the first kind,

Aj (t) = (−1)Nj/2 cos(ht)JjN (t),
(15)

Bj (t) = (−1)Nj/2 sin(ht)JjN (t).

JjN (t) is negligible for t < jN, which justifies the truncation
of the sums in (12). The threshold time in this case equals N.

In fact in the case of the XX chain Eq. (10) may be further
simplified to obtain

gzz
0 (t) = 1

2

⎡⎢⎣
⎛⎝J0(t) + 2

∞∑
j=1

JjN (t)

⎞⎠2

+
⎛⎝J0(t) + 2

∞∑
j=1

(−1)j JjN (t)

⎞⎠2
⎤⎥⎦

=
∑

j+j ′=0(mod 2)

JjN (t)Jj ′N (t). (16)

Note that h drops out of the final expression. This can be
easily seen from the definition, (8), of gzz

n (t) if one recalls that
h
2

∑
n σ z

n commutes with the total Hamiltonian.2

Equation (16) may be used to obtain successive approxi-
mations:

gzz
0 (t) 	 For t ∈

J 2
0 (t) [0,N )

J 2
0 (t) + 4J 2

N (t) [N,2N ) (17)

J 2
0 (t) + 4J 2

N (t) + 4J 2
2N (t) + 4J0(t)J2N (t) [2N,3N )

· · ·
The first line (j = 0) represents a well-known result obtained
in the thermodynamic (N → ∞) limit [16]. Approximations
in which (s + 1) Bessel functions are kept correspond to s

round-trips of a spin wave over the circle. We postpone further
discussion of the physical sense of the obtained results until
the next section. Exact and approximate expressions for gzz

0 (t)
in the XX chain are plotted in Fig. 2.

Closely related results for the XX model were ob-
tained in Ref. [12] and in Refs. [13,14]. In Ref. [12]
the one-particle Green function [which is in fact equal
to the zero-temperature correlation function g−+

n (t)|T =0 ≡
〈↓↓ . . . ↓|σ−

n+1(t)σ+
1 |↓↓ . . . ↓〉] was represented as an infinite

sum of Bessel functions. In Refs. [13,14] an open-ended XX

chain with an impurity in the center was considered, the
impurity coupling being, in general, different from the bulk
coupling; again, the zero-temperature autocorrelation function
was represented as a sum over cycle number.

D. Special case: The Ising chain with h = 1

In the case h = 1, γ = 1, one obtains

Aj (t) = J2jN (2t),
(18)

Bj (t) = 1
2 (J2jN+1(2t) − J2jN−1(2t)) = −J ′

2jN (2t),

where the prime stands for the derivative. Again, Aj (t) and
Bj (t) are negligible for t < jtth with tth = N. Successive

2As Professor Perk noted in a private communication, another way
to explain this fact is to use the transformation into the rotating frame,
a procedure familiar from the theory of magnetic resonance.
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TABLE I. Value of the maximal group velocity V in some special cases.

γ = 1 h = 1 h = 1,

γ = 0 h < 1 h � 1 h = 0 γ 2 ∈ [0,3/4) γ 2 ∈ [3/4,1] γ =
√

2 − √
2

cos ϕ0 0 h 1/h −
√

γ

1+γ

2γ 2+1−
√

4γ 2+1

2(1−γ 2)
1 ∼0.414

V 1 h 1 1 − γ —a γ 2(
√

2 − 1)

aA bulky (although explicit) expression, see Appendix C for details.

approximations can be written analogously to the XX case
discussed above.

IV. ASYMPTOTIC APPROXIMATIONS

In the present section we derive asymptotic approximations
for functions Aj and Bj which enter Eq. (12). As we will
see, these approximations physically correspond to taking
into account spin waves which wind over a circle j times.
The details of the calculations are presented in Appendix D.
Here we outline only major results, emphasizing their physical
meaning. In the present section we restrict our study to the case
h � 1, γ ∈ [0,1].

A. Winding of a wave packet over a circle

We approximately calculate Aj (t) and Bj (t) using the
method of the steepest descent in the plane of a complex
variable ϕ. The saddle points for Aj are obtained from the
equation

v(ϕ)t − jN = 0, (19)

where v(ϕ) ≡ ∂ϕE is the group velocity corresponding to
momentum ϕ [the equation corresponding to Bj is slightly
different; see Eq. (D3) in Appendix D]. Note that, in general,
the positions of saddle points depend on time (to be more
exact, on the ratio t/jN ). Two important cases should be
distinguished, t < jtth and t > jtth, where tth ≡ N/V and
V ≡ supϕ v(ϕ) = v(ϕ0). In the former case Eq. (19) has no
real roots, and as a consequence, Aj (t) and Bj (t) are severely
suppressed (in accordance with a general result [17]). This
explains why one can keep only j terms in Eq. (12) whenever
t < jtth. If h is not too close to 1, the suppression law
reads

Aj (t),Bj (t) ∼ exp

[
−const × jN

(
j tth − t

j tth

) 3
2

]
, t < jtth,

(20)

where the constant is of the order of 1 and depends on h and
γ (see Appendix D 2b).

In the opposite case, t > jtth, Eq. (19) has two real roots
and Aj (t) and Bj (t) are not suppressed.

The threshold time tth is the time which is necessary for the
fastest spin wave to make one round-trip over the circle [7].
Thus Aj (t) and Bj (t) describe the contributions of those
parts of the wave packet which have completed exactly j

round-trips over the circle. The propagation of the wave packet
is visualized in Fig. 3 (see also an analogous figure for the
XX model in [7]). As shown in [7], the initial excitation of

the first spin gives rise to two wave packets which travel in
opposite directions. Each wave packet is a superposition of
all spin waves of corresponding direction. The velocity of the
forefronts of these wave packets coincides with the maximal
group velocity of the spin waves V. Therefore as long as
t < tth ≡ N/V, the wave packets propagate as if the chain
were infinite, and the evolution of the first spin is described
merely by oscillations in the common tail of the wave packets.
This stage of evolution is the only one which may be catched
by the N → ∞ approximation. Mathematically it is described
by keeping only j = 0 terms in Eq. (12).

At t = tth the forefronts of two wave packets complete
the round-trip over the circle and meet at the first site. At
this moment the regular evolution of the polarization of the
first spin is abruptly interrupted by a partial revival. The
succeeding evolution between tth and 2tth is determined by
the interference between the fastest parts of wave packets
which have already made one round-trip and the common
tail of the wave packets with zero velocity, which still stays at
the first site. Mathematically this stage is described by keeping
j = 0,1 terms in Eq. (12).

Subsequent stages are described in a similar fashion.
The wave packets continue to wind over the circle. At
stth < t < (s + 1)tth, polarization at the first site is the result
of interference of waves which have completed 0,1, . . . ,s

round-trips over the circle. This corresponds to keeping j =
0,1, . . . ,s terms in Eq. (12). The revivals at t = stth become
less pronounced with increasing s due to the decrease in the
maximal amplitude and the smearing of the forefront of the
wave packet (see Fig. 3).

Clearly the maximal group velocity V is an important
quantity in the above picture, as it determines the threshold
time. We show in Appendix C that V ∈ [2(

√
2 − 1),1] as

long as we restrict ourselves to the case h � 1. Without this
restriction, V is confined to the interval [0,1]. V = 2(

√
2 − 1)

is achieved at h = 1, γ =
√√

2 − 1 (this case is presented in
the upper right plot in Fig. 1 and on Fig. 3). More detailed
considerations can be found in Appendix C. Values of V in
some important specific cases are listed in Table I.

The above-described physical picture of propagation of
wave packets and emergence of revivals implies that the
forefront of the wave packet is rather sharp. This is indeed
true, for the following simple reason. As long as ϕ0 is a point
of maximum, a bunch of fermions exists, with ϕ(q) lying
in the vicinity of ϕ0. The group velocities of these modes
are equal to each other and to the maximal velocity V up to
quadratic terms. It it is exactly these modes which form the
sharp forefront of the wave packet, which smears very slowly
compared to the rest of the wave packet. Some proposals for
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FIG. 3. (Color online) Propagation of two oppositely directed wave packets along a spin chain. Snapshots of polarizations of all spins at
times t = 5,25, . . . ,185 are presented. The initial spin excitation is localized at the 51st site here (in contrast to the rest of the paper); the

0th site is identified with the 100th one. The model parameters are h = 1 and γ =
√√

2 − 1, and the threshold time is tth 	 117.7. Note the
emergence of a polarization plateau, which increases up to tth/2, then shrinks and completely disappears at the threshold time. This feature
is specific for the case h = 1. A three-dimensional plot representing a more generic case (without a plateau) of propagation of wave packets
along the cyclic XX chain can be found in [7].

high-quality quantum state transfer along spin chains exploit
this feature (see, e.g., [18]).

B. Asymptotic approximations for t < tth

First, we separately consider the case t < tth (see Ap-
pendix D 1). This case is special because the positions of saddle
points do not depend on time. Approximations in this time
interval coincide with formulas obtained in the thermodynamic
limit.

Let us introduce a dimensionless parameter ε ≡ h − 1.

Here and in what follows we mainly concentrate on the case
where h is not too close to 1. In this case the method of
the steepest descent can be applied straightforwardly, and we
obtain an asymptotic approximation for times max{1,ε−1} <

t < tth:

gzz
0 (t) 	 1

2πt

[
(a0+ − a0−)2 + 4a0+a0− cos2

(
t − π

4

)]
,

(21)

where

a0± ≡
√

h ± 1

h ± (1 − γ 2)
.

Note that ε should be greater than N−1; otherwise the time
interval at which the approximation is valid vanishes. This
restriction is relaxed if γ � ε. In the latter case even for ε � 1
formula (21) is valid for 1 � t < tth. In fact in this case one
can approximate gzz

0 (t) simply by the autocorrelation function
for γ = 0, which is given by J 2

0 (t) for t < tth according
to (17).

In the case of small ε the application of the method of the
steepest descent is more sophisticated. The complications are
not unexpected because h = 1 is the point of quantum phase
transition (QPT) for the XY model. However, given certain
relations among ε, γ , and N−1, one may still obtain accurate
approximations (see Appendix D 1). For example, in the case
ε2 � γ 2 � 1 we are able to obtain an asymptotic expression
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FIG. 4. (Color online) Autocorrelation function gzz
0 (t) at t < tth

or, equivalently, in the thermodynamic limit. Solid line, exact
expression; dashed (magenta) line, asymptotic approximation (21)
valid for lager times, ε−1 < t < tth; dotted (red) line, asymptotic
approximation (22) valid for smaller times, 1 < t � γ 2ε−2.

valid for 1 < t � γ 2ε−2:

gzz
0 (t) 	 1

π (2 − γ 2)t

(
1 + 2 − γ 2

2
√

1 − γ 2
exp

[
− 2γ 2√

1 − γ 2
t

]

+ 2

√
2 − γ 2

2
√

(1 − γ 2)
exp

[
− γ 2√

1 − γ 2
t

]
× cos

(
2t − π

4
− arctan

1√
1 − γ 2

))
. (22)

If γ is not too small, the exponents rapidly decrease with time
and one is left with nonoscillating decay:

gzz
0 (t) = 1

π (2 − γ 2)t
. (23)

For certain values of parameters both asymptotic approxima-
tions, (21) and (22), may be applicable, but at different time
intervals. An example is given in Fig. 4.

C. Asymptotic approximations for t > j tth

Now let us turn to asymptotics for functions Aj (t) and
Bj (t) and corresponding approximations for gzz

0 (t) in the case
of j � 1. It has been already noted that Aj (t) and Bj (t) are
suppressed for t < jtth.

For sufficiently long times and h not too close to 1 [more
explicitly, for (t − j tth) � 1 and ε−1 � j tth], we obtain (see
Appendix D 2a)

Aj (t) 	 1√
2πt

(√
1

|E′′(ϕ1)| cos

(
tE(ϕ1) − jNϕ1 + π

4

)

+
√

1

|E′′(ϕ2)| cos

(
tE(ϕ2) − jNϕ2 − π

4

)
+ O

(
1

t

))
,

(24)

Bj (t)	 1√
2πt

(√
1

|E′′(ϕ1)|
ε(ϕ1)

E(ϕ1)
sin

(
tE(ϕ1) − jNϕ1 + π

4

)

+
√

1

|E′′(ϕ2)|
ε(ϕ2)

E(ϕ2)
sin

(
tE(ϕ2) − jNϕ2 − π

4

)
+O

(
1

t

))
. (25)

Saddle points ϕ1,2(t) are obtained from Eq. (19). The latter
may be reduced to a polynomial equation, (D16), of fourth
degree with regard to cos ϕ.

These asymptotics, plugged into Eq. (12), excellently
approximate gzz

0 (t) everywhere but in the vicinity of points
j tth, where revivals occur. In order to describe revivals one
should use different approximate expressions presented in the
next subsection.

The case of small ε is, again, more cumbersome. However,
it can also be treated as demonstrated in Appendix D 2a.

D. Partial revivals

The above-derived approximations based on the method
of the steepest descent are not applicable in the vicinity of
multiples of tth when two saddle points are close to each
other and to the point ϕ0. However, as long as at t = j tth
is exactly the time at which a partial revival occurs, it is highly
desirable to have an approximation which works well for
t 	 j tth. We derive such an approximation in Appendix D 2c.
The derivation is based on the fact that in the case under
consideration the integrals in the definitions (13) of Aj and
Bj pick up the major contribution in the vicinity of ϕ0. This
justifies the expansion of E(ϕ) in the vicinity of ϕ0, which
leads to the desired approximate expressions. If h is not too
close to 1, namely, ε � γN−1, they read

Aj (t) 	
(

2

|E ′′′ (ϕ0)|t
) 1

3

Ai

[
−N

t − j tth

tth

(
2

|E ′′′ (ϕ0)|t
) 1

3

]
× cos(E(ϕ0)t − jNϕ0),

Bj (t) 	 ε(ϕ0)

E(ϕ0)

(
2

|E ′′′ (ϕ0)|t
) 1

3

Ai

[
−N

t − j tth

tth

(
2

|E ′′′ (ϕ0)|t
) 1

3

]
× sin(E(ϕ0)t − jNϕ0), (26)

where Ai(x) is the Airy function of the first kind and ϕ0

corresponds to the maximal group velocity. Curiously enough,
the above approximation works well even far from j tth. Note
that as long as E

′′′
(ϕ0) does not depend on time, in contrast

to E′′(ϕ1,2), it is much easier in practice to calculate the
r.h.s. of Eqs. (26) than the r.h.s. of Eqs. (24) and (25). The
only disadvantage of approximation (26) is that we do not
analytically control the errors of this approximation; however,
numerical calculations show that they are small.

To summarize, in order to approximate the autocorrelation
function up to (s + 1)tth, one should take A0, B0 according
to Eq. (D7), Aj , Bj with j = 1,2, . . . ,s − 1 according to
Eqs. (24) and (25), and As, Bs according to Eq. (26). The
resulting expression approximates the autocorrelation function
with excellent precision as shown in Fig. 5.

The case where h 	 1 is, as usual, more cumbersome.
We do not provide a complete analysis, which would be
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FIG. 5. (Color online) Exact autocorrelation function gzz
0 (t) (solid

line) and the approximation corresponding to five complete round-
trips over a circle [filled (red) circles]. One can see that the
approximation excellently describes both the revival and the irregular
evolution far from the revival.

rather bulky, however, we derive an approximation for h = 1,

γ 2 � 3/4 [see Appendix D 2c, Eqs. (D32)–(D36)].
Let us discuss the law which governs the decrease in revival

amplitudes. In general, the sth partial revival is described by the
the mutual interference between all Aj (t) with j = 0,1, . . . ,s

and mutual interference between all Bj (t) with j = 0,1, . . . ,s.

However, as a first approximation one may consider only As(t)
and Bs(t), which give the leading contribution. Equation (26)
tells us that the amplitude of the revivals decreases as t−1/3. The
average value of gzz

0 between revivals decreases more rapidly,
namely, as t−1/2, according to Eq. (24). This makes the revivals
very visible against the background. For h − 1 > γ/N one
gets the following law from Eq. (26):

gzz
0

∣∣
s ′th revival ∼ (sN )−2/3. (27)

This law works satisfactory for a sufficiently large number of
spins and for moderate s. In particular, since the long-time
average of gzz

0 is of the order of N−1, this law cannot be valid
for s �

√
N. In fact it breaks down somewhat earlier because,

at large s, contributions from Aj,Bj with j < s start to play
a role. Our numerical calculations show that for 10 000 spins
the above law is reliable for a few dozens of revivals. For a
more moderate number of spins, N ∼ 100, the law is quickly
distorted due to the above-mentioned contribution from Aj (t)
and Bj (t) with j < s. In particular, maxima of revivals do not
decrease monotonically in this case (see Fig. 6).

Noteworthily, when h = 1 and γ 2 = 3/4 the amplitudes
of the revivals decrease even more slowly than implied by
Eq. (27), namely,

gzz
0

∣∣
s ′th revival ∼ (sN )−2/5, h = 1, γ 2 = 3/4; (28)

FIG. 6. Extremely pronounced revivals occur in an otherwise
erratic regime in a small region of the parameter space in the vicinity
of the point h = 1, γ 2 = 3/4. The threshold time here is tth 	 117.

see Appendix D 2a and, especially, Eq. (D36) for the details.
Again, this law works for a sufficiently large number of
spins. However, the fact that the h = 1, γ 2 = 3/4 point of
a parameter space is a special one reveals itself already for
the modest N ∼ 100: the revivals appear to be especially
pronounced in the vicinity of this point (see Fig. 6), although
they do not decrease monotonically due to the above-discussed
interference of Aj,Bj with different j . A very similar effect
was observed in [19]. Namely, it was numerically discovered
that when one initially polarizes a spin at the edge of an
open-ended XY chain and allows the excitation to propagate
to another edge, the attenuation of the amplitude of a wave
packet is minimal for h = 1, γ 	 0.7.

V. TRANSITION FROM REGULAR
TO ERRATIC EVOLUTION

Plots of gzz
0 (t) presented in the present paper clearly

demonstrate that the transition from regular to erratic evolution
is a general feature of spin dynamics. In the present section
we provide a discussion of this fact on the qualitative level.
A more thorough study including quantitative considerations
will be presented elsewhere.

From Fig. 2 it is evident that the spin evolution is apparently
regular at small times but erratic (we are tempted to say
“apparently chaotic”) at long times, the threshold time tth
determining the relevant time scale. However, it is not so easy
to define the terms “regular” and “erratic” rigorously in the
present context. One should especially be cautious when using
the term “chaos” here. A widely used definition of quantum
chaos is based on energy level repulsion (see, e.g., [20]).
According to this definition the XY model is certainly not
chaotic because it is integrable and thus its level statistics
is Poissonian (i.e., nonrepulsive). In what follows we briefly
discuss two distinct approaches which may be used to describe
the level of irregularity of gzz

0 (t).
The first approach is based on the physical picture of wind-

ing of the wave packet over the circle and exploits asymptotic
approximations derived above. In this approach we pragmat-
ically consider the evolution to be regular at some interval
of time if the correlation function can be well approximated
by a linear combination of a few (�N ) oscillating functions
with different frequencies (probably multiplied by a power-
law prefactor) in this interval. Conversely, the evolution is
considered to be erratic when the approximation involves many
(∼N ) harmonics. The first stage of evolution (t < tth) is the
most regular one: according to Eqs. (21) and (22) it is described
by a single cosine. At times tth, 2tth, and 3tth new functions
Aj ,Bj come into play in Eq. (12) and the number of harmonics
increases stepwise. Thus the level of irregularity also increases.
This does not last forever: according to Eq. (10), N harmonics
is enough to describe gzz

0 (t) exactly. Evidently the largest
possible level of irregularity is achieved no later than at t =
Ntth. Note that here we use the term “harmonics” in a slightly
nonstandard way: we do not demand that the corresponding
frequencies should be multiples of a single, minimal frequency.
The described approach resembles the Feigenbaum rout to
chaos through period doubling (see, e.g., [21]). However, in
the case under consideration there is no doubling: the relation
between frequencies of new harmonics switching on at certain
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FIG. 7. (Color online) Sensitivity of the correlation function to
a small variation of γ. The function plotted is the absolute value of
difference of two correlation functions gzz

0 (t) corresponding to two
slightly different values of the anisotropy parameter: |gzz

0 (t)γ=0.5 −
gzz

0 (t)γ=0.505|. The magnetic field in both cases is h = 1; the number
of spins N = 100. The threshold time is approximately 112. The
horizontal (blue) line shows the value which the above difference
would admit if the two functions were absolutely uncorrelated.

times is not as evident. Moreover, these frequencies may even
be slowly varying in time. A Fourier analysis of the correlation
function at different time intervals is necessary to obtain a more
quantitative picture. This will be done elsewhere.

In the second approach one examines the level of sensitivity
of gzz

0 (t) to small variations in the Hamiltonian parameters
h and γ . This approach, introduced in [22], resembles the
definition of classical chaos through the extreme sensitivity to
initial conditions. We visualize the sensitivity of gzz

0 (t) to small
variations of γ in Fig. 7. One can see that during the regular
stage of evolution (t < tth) such sensitivity is small, while at
long times (t > a few tth) it is comparable to what one would
expect if two correlation functions with slightly different
parameters were absolutely mutually uncorrelated. As in the
previous approach, the extent of thus defined irregularity
increases stepwise at times which are multiples of tth, the first
step, occurring at t = tth, being especially pronounced (see
Fig. 7). Curiously, our numerical experiments indicate that the
sensitivity of gzz

0 (t) to variations of h and γ generically tends to
be larger in the vicinity of the QPT line h = 1. It would be quite
surprising if this relation between the QPT and the sensitivity
to small perturbations of the Hamiltonian is confirmed, since
the correlation function is calculated at infinite temperature
while QPT occurs at zero temperature.

VI. SUMMARY

Numerical studies of the evolution of spin polarization in
a finite cyclic XX chain [7] revealed the following physical
picture (see also [6,12–14]).

(1) A threshold time exists up to which the polarization of
a given spin evolves as if the chain were infinite. This is the
time necessary for the fastest spin wave to make a round-trip
over the cyclic chain. Up to the threshold time the evolution is
regular.

(2) At the threshold time the regular evolution is inter-
rupted by a partial revival. Subsequent partial revivals occur
at 2tth,3tth, . . . . Generically the evolution becomes more and
more irregular (erratic) after each partial revival.

In the present paper we analytically justify this picture
and generalize it to the anisotropic XY chain by developing
a method to calculate the infinite-temperature correlation

function for long times and beyond the thermodynamic limit.
Our core result is as follows.

We express the autocorrelation function gzz
0 (t) as a series in

winding number j. An appealing feature of this representation
is that the j th term does not contribute to the sum until t =
j tth and produces a partial revival at t = j tth. Each term in
the series is defined in integral form. In two special cases
(γ = 0 and γ = 1, h = 1) it can be expressed through Bessel
functions. In a general case we provide very accurate explicit
approximations valid at various times and in various regions
of parameter space. Thus tractable approximations for gzz

0 (t)
at long times are obtained.
Other related results are as follows.

(1) The parameter dependence of the threshold time tth is
analyzed.

(2) The asymptotic law of the revival amplitude decrease
is established. This is a direct application of the above core
result. For the bulk of the model parameter space the law has
the form ∼(jN )−2/3 (with j being the number of the revival),
however, for special values of parameters it can be altered. In
particular, in the vicinity of the point h = 1, γ 2 = 3/4 the law
has the form ∼(jN )−2/5, which leads to extremely pronounced
revivals.3

(3) We show that a spin distinguished by the initialization
retains the memory of this fact forever. In particular, its
polarization [proportional to gzz

0 (t)] never changes sign and
its time-averaged polarization differs from the time-averaged
polarization of any other spin.4 Thus we encounter the absence
of complete thermalization, which is, however, only a finite-
size effect (scaling as 1/N ).5

A striking feature of the dynamics in the finite spin chain
is the transition from regular to erratic behavior. In the present
paper we have restricted ourselves to a brief and qualitative
discussion of the nature and origin of this transition. Further
work is necessary to give a more exhaustive and quantitative
analysis.
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APPENDIX A: DIAGONALIZATION OF A FINITE
CYCLIC XY SPIN CHAIN

1. Ranges of parameters

Let us rewrite the Hamiltonian we are going to diagonalize:

H (h,γ,κ) = κ

4

N∑
n=1

(
(1 + γ )σx

n σ x
n+1 + (1 − γ )σy

n σ
y

n+1

)

+ h

2

N∑
n=1

σ z
n , (A1)

where indices 1 and N + 1 are identified, and N is even.
Here we have introduced coupling constant κ, which is taken
to be 1 everywhere in the article except this subsection.
Let us show that one may consider h,γ,κ � 0 without loss
of generality. This means that one can change the sign of
each constant by means of local unitary transformation U.

These transformations correspond merely to rotations of the
coordinate systems at each spin site.

To change the sign of h one can transform σ
y
n → −σ

y
n ,

σ z
n → −σ z

n at each spin site n:

U =
N∏

n=1

eiσ x
n π/2 =

N∏
n=1

iσ x
n ,

U †σx
n U = σx

n , U †σy
n U = −σy

n , (A2)

U †σ z
nU = −σ z

n , U †H (h,γ,κ)U = H (−h,γ,κ).

Analogously, to change the sign of γ one transforms σx
n → σ

y
n ,

σ
y
n → −σx

n at each site n by means of U = ∏N
n=1 eiσ z

nπ/4.

To change the sign of κ one transforms σx
2m → −σx

2m,
σ

y

2m → −σ
y

2m at each even site 2m by means of U =∏N/2
m=1 eiσ z

2mπ/2. As soon as the sign of κ is unimportant, one
may put κ = 1.

2. H in terms of σ±
n

We define the operators σ±
n in the usual way:

σ+
n = 1

2

(
σx

n + iσ y
n

)
, σ−

n = 1
2

(
σx

n − iσ y
n

)
. (A3)

These operators are neither Bose nor Fermi operators:

σ+
n σ−

n + σ−
n σ+

n = 1, (A4)

σ+
m σ−

n = σ−
n σ+

m for m �= n. (A5)

The following simple equalities prove to be useful:

σ z = 2σ+σ− − 1 = −2σ−σ+ + 1, (A6)

σ zσ+ = −σ+σ z = σ+, σ zσ− = −σ−σ z = −σ−. (A7)

The Hamiltonian may be rewritten in terms of σ±
n as follows:

H = H0 + Hγ + Hh, (A8)

with

H0 = 1

2

N∑
n=1

(σ+
n σ−

n+1 + σ−
n σ+

n+1), (A9)

Hγ = γ

2

N∑
n=1

(σ+
n σ+

n+1 + σ−
n σ−

n+1), (A10)

Hh = h

N∑
n=1

σ+
n σ−

n − Nh/2. (A11)

3. Jordan-Wigner transformation

Define the operators,

�n ≡
n∏

n=1

σ z
n . (A12)

Evidently, �N coincides with the parity operator � defined in
Sec. II.

Define Fermi operators a−
n and a+

n as follows:

a−
n ≡ σ−

n �n−1 = �n−1σ
−
n , a+

n ≡ σ+
n �n−1 = �n−1σ

+
n .

(A13)

This implies

σ−
n = a−

n �n−1 = �n−1a
−
n , σ+

n = a+
n �n−1 = �n−1a

+
n ,

(A14)

{a+
m,a−

n } = δmn, {a+
m,a+

n } = {a−
m,a−

n } = 0, (A15)

σ z
n = 2a+

n a−
n − 1 = −2a−

n a+
n + 1. (A16)

The Hamiltonian takes the form (note that now the ordering of
a±

n , a±
n+1 is important; also note the change of the total sign)

H0 = −1

2

[
N∑

n=1

(a+
n a−

n+1 + a+
n+1a

−
n )

− (1 + �)(a+
Na−

1 + a+
1 a−

N )

]
, (A17)

Hγ = −γ

2

[
N∑

n=1

(a+
n a+

n+1 + a−
n+1a

−
n )

− (1 + �)(a+
Na+

1 + a−
1 a−

N )

]
, (A18)

Hh = h

N∑
n=1

a+
n a−

n − Nh/2. (A19)

4. Fourier transformation

Define for arbitrary real q

b−
q ≡ eiπ/4

√
N

N∑
n=1

e−2πiq(n−1)/Na−
n ,

(A20)

b+
q ≡ e−iπ/4

√
N

N∑
n=1

e2πiq(n−1)/Na+
n .
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Then

{b+
k ,b+

q } = {b−
k ,b−

q } = 0, {b+
k ,b−

q } = 1

N

1 − e2πi(k−q)

1 − e2πi(k−q)/N
.

(A21)

In particular, if one takes

q = −N

2
+ 1, − N

2
+ 2, . . . ,

N

2
(Xodd) (A22)

or

q = −N

2
+ 1

2
, − N

2
+ 3

2
, . . . ,

N

2
− 1

2
(Xev), (A23)

then the set of b−
q is the set of Fermi annihilation operators.

The Hamiltonian may be written in terms of b±
q as follows:

H = H oddP odd + H evP ev, (A24)

with

P odd ≡ (1 − �)/2, P ev ≡ (1 + �)/2, (A25)

H ev =
N/2−1/2∑
q=1/2

Hq, H odd =
N/2−1∑
q=1

Hq + H0,N/2, (A26)

Hq = (h − cos ϕ(q))(b+
q b−

q + b+
−qb

−
−q)

+ γ sin ϕ(q)(b+
q b+

−q + b−
−qb

−
q ) − h, ϕ(q) ≡ 2πq/N,

(A27)

and

H0,N/2 = (h − 1)b+
0 b−

0 + (h + 1)b+
N/2b

−
N/2 − h. (A28)

5. Bogolyubov transformation

Define the following quantities:

�q ≡ γ sin ϕ(q), εq ≡ h − cos ϕ(q), Eq ≡
√

ε2
q + �2

q .

(A29)

Each Hq may be written as follows:

Hq = ( b+
q b−

−q )

(
εq �q

�q −εq

)(
b−

q

b+
−q

)
. (A30)

It is possible to diagonalize this matrix through Bogolyubov
transformation:

c−
q = cos

θq

2
b−

q + sin
θq

2
b+

−q . (A31)

The diagonalization condition reads tan θq = �q/εq, and we
choose

θq ≡ arctan
�q

εq

for all q �= 0. (A32)

This transformation preserves the anticommutation relations.
H0,N/2 requires special treatment, which leads to θN/2 = 0,

θ0 =
{

0, h � 1,

π, 0 � h < 1.
(A33)

The inverse transformation reads

b−
q = cos

θq

2
c−
q − sin

θq

2
c+
−q . (A34)

The odd and even parts of the Hamiltonian take the form

H odd(ev) =
∑

q∈Xodd(ev)

Eq

(
c+
q c−

q − 1

2

)
. (A35)

This completes the diagonalization.

6. Eigenstates

Let us first prove the existence of the Fock vacuum states
with respect to the annihilation operators c−

q , i.e., the states
|vac〉odd,|vac〉ev which satisfy

c−
q |vac〉odd(ev) = 0 ∀q ∈ Xodd(ev). (A36)

Evidently it is sufficient to prove that∏
q∈Xodd(ev)

c−
q �= 0. (A37)

If this condition is fulfilled, one can always choose some states
|�odd(ev)〉 and normalization constants ℵev such that

|vac〉odd = ℵoddc
−
−N/2+1c

−
−N/2+2 . . . c−

N/2|�odd〉, (A38)

|vac〉ev = ℵevc
−
−N/2+1/2c

−
−N/2+3/2 . . . c−

N/2−1/2|�ev〉. (A39)

The equality⎧⎨⎩c+
−N/2+1,

⎡⎣c+
−N/2+2,

⎧⎨⎩. . . ,
⎧⎨⎩c+

N/2−1,

⎡⎣c+
N/2

∏
q∈Xodd

c−
q

⎤⎦⎫⎬⎭. . .

⎫⎬⎭
⎤⎦⎫⎬⎭=1

(A40)

and the analogous equality for q ∈ Xodd(ev) prove Eq. (A37).
Note that |vac〉ev is indeed an eigenstate of the Hamiltonian,
while |vac〉odd is not.

All the eigenstates of the Hamiltonian are obtained from
the vacuum states by applying the creation operators c+

q . To
create an odd number of fermions one should use q ∈ Xodd

and |vac〉odd, while to create an even number of fermions one
should use q ∈ Xev and |vac〉ev.

Evidently one can enumerate all the eigenstates of the
Hamiltonian by the multiindexes

QM ≡ {q1,q2, . . . ,qM}, 0 � M � N, (A41)

with the ordering q1 < q2 < · · · < qM. Then an eigenstate
with M fermions reads

|QM〉 ≡ c+
qM

. . . c+
q2

c+
q1

|vac〉odd(ev), (A42)

with q1,q2, . . . ,qM ∈ Xodd(ev) when M is odd (even). The
corresponding eigenenergy reads

EQM
≡
∑

q∈QM

Eq − 1

2

∑
q∈Xodd(ev)

Eq. (A43)

For our purposes we need only the matrix elements between
states with the same parity, therefore we use the notation |vac〉
without subscripts in what follows.
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APPENDIX B: CALCULATION OF gzz
n (t)

To calculate the correlation function at infinite temperature,

gzz
n (t) = 2−N

∑
Q,Q̃

〈Q|σ z
1 |Q̃〉〈Q̃|σ z

n+1|Q〉e−i(EQ−EQ̃)t , (B1)

one needs to calculate the corresponding matrix elements. To
do this one uses

a+
n+1a

−
n+1 = 1

N

∑
p,p̃

cos
θp̃

2
sin

θp

2
c+
p̃ c+

p e−2πi(p+p̃)n/N

+ sin
θp̃

2
cos

θp

2
c−
p̃ c−

p e2πi(p+p̃)n/N

+ cos
θp̃

2
cos

θp

2
c+
p̃ c−

p e2πi(p−p̃)n/N

+ sin
θp̃

2
sin

θp

2
c−
p̃ c+

p e−2πi(p−p̃)n/N . (B2)

Here p,p̃ can run either through Xodd or through Xev; the
expression is valid in both cases. Now it can easily be seen
that only three types of matrix elements do not vanish.

(1) Diagonal matrix elements:

〈Q|σ z
n+1|Q〉 = 1

N

∑
p∈XM

η(QM,p) cos θp. (B3)

Here η(QM,p) = 1 if p ∈ QM and −1 otherwise; XM =
Xodd(even) if M is odd(even).

(2) Matrix elements between two states with an equal
number of fermions, differing by one fermion momentum:

QM = KM−1 ∪ {p}, Q̃M = KM−1 ∪ {p̃},
p, p̃ /∈ KM−1, p �= p̃ :

〈Q̃|σ z
n+1|Q〉 = e2πi(p−p̃)n/N 2

N
cos

θp + θp̃

2
〈Q̃|c+

p̃ c−
p |Q〉,

(B4)

where 〈Q̃|c+
p̃ c−

p |Q〉 = ±1, depending on the signature of the
corresponding permutation. Note that this sign is not important
for calculation of gzz

n (t).
(3) Matrix elements between two states one of which can

be obtained from another by the addition of two fermions:

QM = Q̃M−2 ∪ {p} ∪ {p̃}, p,p̃ /∈ Q̃M−2, p �= p̃ :

〈Q̃|σ z
n+1|Q〉 = 〈Q|σ z

n+1|Q̃〉∗

= − 2

N
e2πi(p+p̃)n/N sin

θp − θp̃

2
〈Q̃|c−

p̃ c−
p |Q〉.

(B5)

Now let us sum in Eq. (B1) separately over each type of
matrix element.

(1) Summation over Q = Q̃ gives

2−N

⎛⎝ 1

N2

∑
p,p̃∈Xodd

cos θp cos θp̃

∑
oddM

∑
QM

η(Q,p)η(Q,p̃)

+ {odd → even}
⎞⎠ = 1

2N2

⎛⎝ ∑
p∈Xodd

+
∑

p∈Xev

⎞⎠ cos2 θp.

(B6)

(2) Summation over pairs (Q,Q̃) of the form Q = K ∪
{p},Q̃ = K ∪ {p̃} gives

1

2N2

⎛⎜⎜⎜⎝ ∑
p,q ∈ Xodd

p �= p̃

+
∑

p,q ∈ Xev
p �= p̃

⎞⎟⎟⎟⎠ e2πi(p−p̃)n/N−i(Ep−Ep̃)t

× cos2 θp + θp̃

2
. (B7)

(3) Summation over pairs (Q,Q̃) of the form Q = K ∪
{p} ∪ {p̃},Q̃ = K gives

1

4N2

⎛⎝ ∑
p,q ∈ Xodd

+
∑

p,q ∈ Xev

⎞⎠ e2πi(p+p̃)n/N−i(Ep+Ep̃)t

× sin2 θp − θp̃

2
, (B8)

while summation over Q = K,Q̃ = K ∪ {p} ∪ {p̃} gives a
complex conjugated contribution.

If one takes p = q in expression (B7), it becomes equal to
the (B6) contribution. Exploiting this, one readily obtains

gzz
n (t) = 1

2N2

⎛⎝ ∑
p,q ∈ Xodd

+
∑

p,q ∈ Xev

⎞⎠
×

(
cos

(
2π (p − p̃)n

N
− (Ep − Ep̃)t

)
cos2 θp + θp̃

2

+ cos

(
2π (p + p̃)n

N
− (Ep + Ep̃)t

)
sin2 θp − θp̃

2

)
.

(B9)

It can be straightforwardly verified that this expression leads
to Eqs. (10) and (11).

Equation (B9) can be used to find a long-time average of the
autocorrelation function gzz

0 ≡ limT →∞ T −1
∫ T

0 gzz
0 (t)dt. Let

us assume that there are no degeneracies in Eq other than the
mirror degeneracy Eq = E−q (in other words, that Eq = Ep

implies |q| = |p|). This is a generic case. Then

gzz
0 = 1

N

⎛⎝1 − 1

N
+ 1

2N

⎛⎝ ∑
p ∈ Xodd

+
∑

p ∈ Xev

⎞⎠ cos2 θp

⎞⎠ .

(B10)

The term −1/N , in parentheses, emerges due to q = 0,N/2.

The long-time average of the correlation function for n �= 0
can be calculated analogously. In the specific case γ = 0 the
result, (B10), coincides with the expression obtained in [7].

APPENDIX C: GROUP VELOCITY OF SPIN WAVES

In the present section we consider h � 0, γ ∈ [0,1]. The
group velocity of spin waves reads

v(ϕ; h,γ ) = (h − (1 − γ 2) cos ϕ) sin ϕ/E(ϕ; h,γ ). (C1)

We are interested mainly in the maximal velocity for given
values of the parameters h and γ :

V (h,γ ) ≡ sup
ϕ

v(ϕ; h,γ ) = v(ϕ0; h,γ ), (C2)
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where ϕ0 is the supremum point. Due to the symmetry of
E(ϕ) we can consider ϕ � 0 without loss of generality. The
extremum condition ∂ϕv|ϕ0 = 0 leads to the fourth-degree
polynomial equation

P (z) ≡ (1 − b)2z4 − 3h(1 − b)z3 + (2b(1 − b)

+h2(3 − 2b))z2 − h(h2 + b)z − b(1 − b) + h2b = 0,

(C3)

with z = cos ϕ0 and b ≡ γ 2. We are interested in the real roots
of this equation, which lie in the interval [−1,1]. Let us show
that there is only one such root whenever h � 1 (this fact is
important for the application of the method of the steepest
descent; see Appendix D). In this case the above equation
implies that z � 0, therefore in fact we have to consider the
interval [0,1]. Since P (0) > 0, P (1) < 0, and P (+∞) = +∞,
we could have one, two, or three roots in [0,1]. If there were
two or three roots of P = 0 in the considered interval, then
the equation P ′ = 0 would have two roots in [0,1]. However,
the latter equation has no more than one root in the considered
interval (z = h

4(1−b) ). Thus Eq. (C3) has exactly one root in the
interval [0; 1] for h � 1.

Let us now consider several important special cases.
Case I. γ = 0. In this case ϕ0 = π/2, V = 1.
Case II. γ = 1. In this case

cos ϕ0 =
{

h, h � 1,

h−1, h > 1
(C4)

and

V =
{

h, h � 1,

1, h > 1,
(C5)

Case III. h = 0 In this case cos ϕ0 = −
√

γ

1+γ
, V = 1 − γ.

Case IV. h = 1. This is an especially interesting case, as it
corresponds to the QPT. Velocity v(ϕ) has a step at ϕ = 0, the
step height being equal to 2γ. Equation (C3) is simplified to

(z − 1)2((b − 1)2z2 + (2b2 − b − 1)z + b2) = 0. (C6)

One should distinguish two cases within this category.
Case IV a: b ∈ [3/4,1]. In this case the only root that

satisfies |z| � 1 is z = 1. Thus ϕ0 = 0, V = γ.

Case IV b: b ∈ [0,3/4). In this case cos ϕ0 = 2b+1−√
4b+1

2(1−b) .
One can substitute this value in Eq. (C1) to obtain an explicit,
although bulky, expression for V . One can also find a minimal
value of V with respect to γ :

inf
γ∈[0,1]

V (1,γ ) = V (1,

√
2 −

√
2)

= 2(
√

2 − 1) = 0.828427 . . . . (C7)

In what follows we show that this is the minimal value of V in
the whole region h � 1, γ ∈ [0,1].

Case V. h → ∞. In this case ϕ0 → 0, V → 1.

Let us investigate how V (h,γ ) varies with h. The derivative
over h has a rather simple form:

∂hV (h,γ ) = b(1 − h cos ϕ0) sin ϕ0/E
3(ϕ0; h,γ ). (C8)

To calculate it we used that ∂hV (h,γ ) = ∂hv(ϕ0; h,γ ) due
to the equation ∂ϕv(ϕ0; h,γ ) = 0. The stationary points of
V (h,γ ) with respect to h are given by ∂hV = 0, which leads

to cos ϕ0 = 1/h. We plug the latter equality into Eq. (C3) and
obtain

(1 − γ 2)(1 − z2)2(1 − (1 − γ 2)z2) = 0. (C9)

The only roots that satisfy |z| � 1 are z = ±1, which corre-
spond to h = 1. This point is not extremal because V (0,γ ) �
V (1,γ ) � V (+∞,γ ). Thus for any fixed γ maximal group
velocity V (h,γ ) grows monotonically with h, from 1 − γ at
h = 0 to 1 as h → ∞. As a consequence, if one considers only
h � 1, then the minimal value of V is given by Eq. (C7).

APPENDIX D: ASYMPTOTIC EXPRESSIONS

Here we consider in detail asymptotic expressions for
spectral functions Aj (t) and Bj (t). Let us explore domains
in which E(ϕ) is a univalent analytical function. The branch
points of this function are found from the equation (h −
cos ϕ)2 + (γ sin ϕ)2 = 0. For h2 > 1 − γ 2 its solutions are
ϕbr± and ϕ∗

br±, where

ϕbr± = 2πk + iarccosh

(
h ± γ

√
h2 − (1 − γ 2)

1 − γ 2

)
, k ∈ Z.

(D1)

The domain where E(ϕ) remains a univalent analytical
function is the hole complex plane without a row of branch
cuts from ϕbr− to ϕbr+ in the Im(ϕ) > 0 half-plane and a row
of branch cuts from ϕ∗

br− to ϕ∗
br+ in the Im(ϕ) < 0 half-plane.

It is important that Im(E(ϕ)) is positive in quadrants I and
III and negative in quadrants II and IV. Functions E(ϕ), ε(ϕ),
and exp[−ijNϕ], as well as the integrands in Eq. (13), are
2π periodic functions of Re(ϕ). Thus we consider the strip
Re(ϕ) ∈ (−π ; π ].

In order to use the method of the steepest descent for the
integrals in Eq. (13) we have to find saddle points for the
functions

fAj (ϕ) ≡ iE(ϕ)t − ijNϕ,
(D2)

fBj (ϕ) ≡ iE(ϕ)t − ijNϕ + ln
ε(ϕ)

E(ϕ)
.

The saddle points are defined by the equations

E′t − jN = 0 and iE′t − ijN +
(

ln
ε

E

)′
= 0, (D3)

respectively.

1. Asymptotics for spectral functions of zero order

Let us first consider spectral functions of zero order, A0(t)
and B0(t). There are four saddle points in the strip Re(ϕ) ∈
(−π ; π ], which, for A0, read

ϕ1 = 0, ϕ2 = π, ϕ3 = −iarccosh
h

1 − γ 2
,

(D4)
ϕ4 = +iarccosh

h

1 − γ 2
.

For B0 we have exactly the same points ϕB
1 = ϕ1 and ϕB

2 = ϕ2

and slightly (for t � 1) shifted points ϕB
3 and ϕB

4 :

ϕB
3,4 = ∓iarccosh

(
h

1 − γ 2
+ c3,4

1

t
+ O

(
1

t2

))
. (D5)
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FIG. 8. Integration paths for A0, B0 in the case t � 1, t � ε−1 (left) and in the case ε−1 � t � 1, γ � ε (right). Open triangles correspond
to saddle points; filled circles, to branch points of E(ϕ).

One can find c3,4 by substituting ϕB
3,4 = ϕ3,4 + �ϕ in the

second Eq. (D3). Note that if, in the (c3,4t
−1) vicinity of ϕ3,4,

the series for E(ϕ) is convergent, then the difference between
ϕ3 and ϕB

3,4 is of the order t−1.

Let us define the following parameter:

ε ≡ h − 1. (D6)

For large enough ε we can find asymptotics in the case
t � max{ε−1,1} in a straightforward way. Indeed, we can
transform the integration path from our initial C0 (integration
along Re(ϕ) = 0 from ϕ = −π to ϕ = π ) to the path C̃1,
which goes through quadrants I and III, where Im(E) > 0,

and through saddle points ϕ1 = 0 and ϕ2 = π (see Fig. 8,
left). Then we immediately have

A0(t) 	
√

1

2πt

(
a0− cos

(
(h − 1)t + π

4

)
+ a0+ cos

(
(h + 1)t − π

4

)
+ O

(
1

t

))
,

B0(t) 	
√

1

2πt

(
a0− sin

(
(h − 1)t + π

4

)
+ a0+ sin

(
(h + 1)t − π

4

)
+ O

(
1

t

))
, (D7)

where

a0± =
√

h ± 1

h ± (1 − γ 2)

and we take into account that ε(0)E−1(0) = ε(π )E−1(π ) = 1.
The region of applicability for large enough ε is given by
t � 1, and for ε → 0 we have t > 2ε−1 ln 1

�
, where � stays

for the value of an error. Under these conditions we have the
following approximation for t < tth:

gzz
0 (t) 	 1

2πt

(
(a0+ − a0−)2 + 4a0+a0− cos2

(
t − π

4

))
.

(D8)

Numerical evolution shows an excellent coincidence with
the exact solution in the region 1 � t < tth. Note that this
expression becomes asymptotic for J 2

0 (t) in the case γ = 0
(XX chain), which is in accordance with Eq. (17).

Let us consider the case of such small ε that ε � γ and
ε � (t)−1. Since we are interested in the dynamics on a time

scale of the order of tth or larger, the latter condition in fact
implies that ε � N−1 � 1. Now we cannot integrate over the
contour C̃1 due to the small convergence radius of the series
in the vicinity of ϕ1 = 0 (note, however, that the contribution
from the saddle point ϕ2 = π remains intact). Therefore we use
another integration path, C̃2 (see Fig. 8), which goes through
saddle points −π, ϕ3, ϕ1, and ϕ4 and ends up in ϕ2 = π .
Consider the integration path from ϕ3 to ϕ4. Integration over
branch cuts does not contribute to Aj , Bj (this statement is true
for spectral functions of all orders). This is because Re(E(ϕ) =
0 on the branch cuts, and therefore

Re
∫

cut
eitE(ϕ)−inϕdϕ = Im

∫
cut

ε(ϕ)

E(ϕ)
eitE(ϕ)−inϕdϕ = 0. (D9)

For small ε, branch points can be expanded as ϕbr−,ϕ∗
br− =

±i · εγ −1 + O(ε2γ −2). At the segment [ϕ∗
br−,ϕsbr−] the

functions E(ϕ) and ε(ϕ) are real valued, and E(ϕ) <√
2ε, ε(ϕ)E−1(ϕ) = 1 + O(ε), therefore

Re
∫ ϕbr−

ϕ∗
br−

eitE(ϕ)dϕ < (
√

2γ −1ε + O(ε2γ −2)) · min{εt,1},

Im
∫ ϕbr−

ϕ∗
br−

ε(ϕ)

E(ϕ)
eitE(ϕ)dϕ = γ −1ε + O(ε2γ −2). (D10)

Combining these results with contributions from saddle points
ϕ2, ϕ3, and ϕ4, one obtains

A0(t) 	
√

1

2π (2 − γ 2)t

(√
2 cos

(
2t − π

4

)
+ (1 − γ 2)

1
4 exp

[
− γ 2√

1 − γ 2
t

]
+O

(
1

t

)
+ O(εγ −1)

)
. (D11)

For B0, keeping in mind (D5), one obtains

B0(t) 	
√

1

2π (2 − γ 2)t

(√
2 sin

(
2t − π

4

)
+ (1 − γ 2)−

1
4 exp

[
− γ 2√

1 − γ 2
t

]
+O

(
1

t

)
+ O(εγ −1)

)
. (D12)
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FIG. 9. Integration paths for Aj and Bj in the case t > jtth (left) and in the case t < jtth (right). Open triangles correspond to saddle points;
filled circles,s to branch points and to the point ϕ0 which satisfies E(ϕ0)′′ = 0.

The region of applicability for these asymptotics is limited by
the condition that exp[− 1

2 |E′′(ϕ3)|R2] must be small enough
[here R is the radius of convergence for E(ϕ) near ϕ3,4].
We have R = |ϕ3 − ϕbr+| 	 (2 − √

2)γ for small γ . Thus
we get the following condition of applicability for the above
asymptotic:

t > (2 −
√

2)−2γ −2 ln

(
1

�

)
, (D13)

where � is the order of the relative error. Under this condition
we can neglect the term exp[−γ 2(1 − γ 2)−

1
2 t] in (D11) and

(D12). Numerical evaluation shows excellent coincidence of
these asymptotics with the exact values of A0 and B0 in the case
γ � 1, t � 1. Moreover, these expressions exactly coincide
with asymptotic forms for Bessel functions in (15) in the
case γ = 0, h = 1 which is not obvious from our derivation
method. With these remarks, we find

gzz
0 (t) = 1

π (2 − γ 2)t

(
1 + 2 − γ 2

2
√

1 − γ 2
exp

[
− 2γ 2√

1 − γ 2
t

]

+ 2

√
2 − γ 2

2
√

(1 − γ 2)
exp

[
− γ 2√

1 − γ 2
t

]
× cos

(
2t − π

4
− arctan

1√
1 − γ 2

))
, (D14)

which gives us an excellent approximation for gzz
0 (t) in the

case ε � γ, ε � N−1, t < tth. For not very small γ 2 we can
neglect the exponential suppressed terms and obtain

gzz
0 (t) = 1

π (2 − γ 2)t
. (D15)

2. Asymptotics for spectral functions of nonzero order

For spectral functions of nonzero orders the situation is
slightly more complicated. Again, there are four saddle points
in the strip Re(ϕ) ∈ (−π,π ], but now their positions vary
with time (see Fig. 9). Consider the function Aj , j � 1.
The corresponding saddle points satisfy the four-degree
polynomial equation on z = cos ϕ:

(1 − γ 2)2z4 − 2h(1 − γ 2)z3 + (h2 − (1 − γ 2)2

+ ζ (1 − γ 2))z2 + 2h(1 − γ 2 − ζ )z − h2

+ ζ (h2 + γ 2) = 0, (D16)

where ζ ≡ (Nj )2(t)−2. This equation viewed as the equation
for ϕ gives eight solutions in the strip Re(ϕ) ∈ (−π,π ]. Four of
them are relevant [i.e., are solutions of Eq. (D3)] and thes other
four are irrelevant (are solutions of the equation −E′t − jN =
0). Since E′(ϕ) takes all possible real values on each branch
cut, one pair of saddle points, ϕ3 and ϕ4, lies on two branch
cuts symmetrically with respect to the real axis, analogous to
the j = 0 case.

Let us consider the positions of two other saddle points,
ϕ1 and ϕ2, especially their evolution with time. The definition
of the threshold time implies that, for t < jtth, Eq. (D3) has
no real roots. Thus ϕ1 and ϕ2 are complex. In fact they are
complex conjugate to each other. When time goes on they
both approach ϕ0, which lies on the real axis, and eventually
merge at t = j tth : ϕ1(j tth) = ϕ2(j tth) = ϕ0. For t > jtth, ϕ1

and ϕ2 lie on the real axis and move apart from ϕ0 and from
each other, approaching 0 and π , respectively,as t → ∞.

a. Asymptotics for t > j tth

To start with, we warn the reader that we do not provide
a strict mathematical proof that a suitable integration path
exists which goes through the chosen saddle points in all the
presented cases. However, the existence of these paths looks
quite natural in all cases, and moreover, the corresponding
asymptotic expressions show excellent coincidence with nu-
merical evolutions. Strict mathematical proof is postponed for
further work.

With this warning made, let us turn to the case t > jtth.
We start from the case of nonsmall ε and we assume that
ϕ1 and ϕ2 are situated far enough from each other so that
we can neglect their mutual influence in the asymptotics.
The conditions under which this assumption is fulfilled are
considered in what follows.

Note that we can integrate along the path C1 ∪ C0 ∪ C2,
where C0 is the original path, C1 starts from ϕ = −π − i∞
and goes to ϕ = −π along Re ϕ = const = −π , and C2 starts
from ϕ = π and goes to ϕ = π − i∞ along Re ϕ = const = π

(see Fig. 9). Since fA,Bj (x + iy) are 2π periodic functions of
x, the value of the integral along the new path is exactly the
same as along C0. Now we transform the path C1 ∪ C0 ∪ C2

to the path Ĉ, which starts from ϕ = −π − i∞, goes through
saddle points ϕ1 and ϕ2, and ends at ϕ = π − i∞ (see Fig. 9,
left). There are two topologically different possible integration
paths Ĉ: the first one goes above the branch cut; the second
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one, under the cut. In the latter case according to the Cauchy
theorem we have to subtract the integral over the branch cut.
However, as discussed above this integral does not contribute
to Aj and Bj [see Eq. (D9)].

Now we can proceed to find asymptotic expressions as
contributions from points ϕ1 and ϕ2. Under all specified
conditions, we immediately obtain Eq. (24) for Aj . For Bj ,
using reasoning similar to those following Eq. (D5), we get
Eq. (25).

Let us now investigate the range of applicability of Eqs. (24)
and (25). First, we consider in what cases we can use the
standard approximation for the contribution of the saddle
points under the assumption that the radius of convergence for
corresponding series is large enough. In this case the derived
approximation may deviate from the exact expression for
two reasons: a small value of |E(ϕ1,2)′′| and interception
of contributions for ϕ1 and ϕ2 due to their close relative
positions. These two features can appear only for small times
after j tth. Let us give a more precise estimation without
detailed explanations. If δt ≡ t − j tth > 0, then it has to be
δt
tth

> 3

√
j

2·r·N2 , where r ≡ E(ϕ0)
|E′′′ (ϕ0)| is a quantity of the order of

1 for the vast majority of the Hamiltonian parameter space.
One can see that these asymptotic approximations for spectral
functions of order j become accurate starting at times close to
j tth.

Now let us investigate in what cases series does not converge
in a large enough circle for some saddle points. We have to
explore small enough ε, at least ε−1 � t. Since for a spectral
function of order j we are interested in t > jtth, it is useful to
consider ε−1 � jN . First, we define the position of ϕ0:

ϕ0 = arccos

(
2γ 2 + 1 −

√
4γ 2 + 1

2(1 − γ 2)

)
+ O(ε), γ 2 � 3

4
,

ϕ0 = 2
1
2 ε

1
2

(4γ 2 − 3)
1
4

+ O(ε), γ 2 >
3

4
. (D17)

Let us consider the case γ 2 < 3
4 . For times which satisfy j tth <

t < j t̃th = jNγ −1 + O(ε) there is no point ϕ1 near ϕ = 0, and
the derived asymptotic expressions, (24) and (25), are valid. If
t > t̃th one obtains

ϕ1 = ε

γ

√
γ 2t2

j 2N2 − 1
+ O(ε2), t > j t̃th = j

N

γ
+ O(ε).

(D18)

Thus for t � ε−1 we cannot use the above-derived approxima-
tions because ϕ1 is situated close to ϕbr− and the radius of con-
vergence R =

√
ε2γ 2 + ϕ2

1 is very small, |E′′(ϕ1)|tR2 < 1,
thus we cannot use the method of the steepest descent for
ϕ1 (we assume here that γ � ε). Instead we can proceed
analogously to the case of spectral functions of zero order.
Namely, we move the integration path in order to go through
saddle points ϕ3 and ϕ4 and neglect the value of the integral
between ϕ∗

br− and ϕbr− as we have done in (D7). The difference
from the case of A0 and B0 is that now we can neglect
the exponentially suppressed contribution from ϕ3, but the
contribution from ϕ4 may be not small for some portion of time.
Numerical evaluation shows that for N � 1 the contribution
from ϕ4 is exponentially suppressed at a time scale ∼̃tth.

Summarizing, for time t > t̃th we obtain

Aj (t) 	 1√
2πt

(
1

2

√
1

|E′′(ϕ4)| exp[−t( − iE(ϕ4 + 0))

+ jN (−iϕ4)] +
√

1

|E′′(ϕ2)|

× cos

(
tE(ϕ2) − jNϕ2 − π

4

)
+ O

(
1

t

))
,

(D19)

where one should remember that −iE(ϕ4 + 0) > 0,

(−iϕ4) > 0. The factor 1
2 is due to the fact that we have to

take only one-half of the contribution from ϕ4. Analogously,
one obtains

Bj (t) 	 1√
2πt

(
1

2

ε(ϕ4)

( − iE(ϕ4 + 0))

√
1

|E′′(ϕ4)|

× exp[−t( − iE(ϕ4 + 0)) + jN (−iϕ4)] + ε(ϕ2)

E(ϕ2)

×
√

1

|E′′(ϕ2)| sin

(
tE(ϕ2) − jNϕ2 − π

4

)
+ O

(
1

t

))
.

(D20)

The only case we do not investigate here is γ � ε � 1. We
leave it for future work.

If γ 2 � 3
4 , then ϕ0 is situated in the vicinity of ϕ = 0, which

leads to tth = t̃th = Nγ −1 + O(ε). Therefore the asymptotic
expressions (D19) and (D20) are valid starting from time
t , for which ϕ2 is situated far enough from ϕ = 0 [the
corresponding condition reads 1

2 |E′′(ϕ2)|tϕ2
2 � 1]. For times

in the vicinity of j tth another approximation should be used
(see Appendix D2c).

b. Asymptotics for t < j tth

When t < jtth the path of integration should not go through
quadrant I, since for all values of x ∈ (−π ; π ) ∂yRe(iEt −
inϕ) > 0 (remember that ϕ = x + iy). We shift our integration
path to C̃ or C̃ ′ (see Fig. 9) and obtain asymptotics from the
contribution from only one saddle point, ϕ1. For large enough
|δt |, where δt ≡ t − j tth < 0, we have

Aj (t) 	
√

1

2π |E′′(ϕ1)|t cos (E(ϕ1)t − jNϕ1 + σ (ϕ1)),

(D21)

where σ (ϕ1) is the angle between the path and the line ImfAj
=

const. Let us evaluate ϕ1 approximately for t � j tth such that
t−1δt � 1. If E

′′′
0 ≡ E

′′′
(ϕ0) �= 0, then

ϕ1 = ϕ0 − iη + 1

6

E
(IV )
0

E
′′′
0

η2 + i

(
5

72

(
E

(IV )
0

E
′′′
0

)2

− 1

24
E

(V )
0

)
η3

+O(η4) + iO(η5), (D22)

where

η ≡
√

− 2Nδt

|E ′′′
0 |t tth

=
√

−2r
δt

t
, r ≡ E′

0

|E ′′′
0 | .M
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Up to the first order in δt · t−1 	 δt · j−1t−1
th , one obtains

Aj (t) 	 r
1
4 (jN )

1
2

2
3
4 π

1
2

(−δt

j tth

)− 1
4

exp

[
−2

√
2r

3
jN

(−δt

j tth

) 3
2

+ O

((−δt

j tth

) 5
2
)]

cos (E(ϕ0)t − jNϕ0)

+O

((−δt

j tth

) 3
4

)
. (D23)

This expression gives only the order of suppression; if one
is interested in a more precise expression, he has to directly
solve Eq. (D3) to find the exact value of ϕ1 and substitute it in
the general formula, (D21). This formula [and approximation
(D23)] is valid until we can neglect the term 1

6E
′′′

(ϕ1)(�ϕ)3 in
comparison with 1

2E′′(ϕ1)(�ϕ)2 in the series expansion near

ϕ1. This leads to the condition jN ( δt
j tth

)
3
2 � 1. In the opposite

case, jN ( δt
j tth

)
3
2 � 1, Eqs. (D3) and (D23) are not valid and the

leading order contribution is given by the term 1
6E′′′(ϕ1)(ϕ)3,

which leads to

Aj (t) 	 �
(

1
3

)
r

1
3

2
2
3 3

1
6 πj

1
3 N

1
3

·
( |E(ϕ0)′′′|tth

|E(ϕ′′′
1 )|t

) 1
3

· cos(E(ϕ1)t − jNϕ1), (D24)

where the values of E(ϕ1) and E(ϕ′′′
1 ) can be found according

to Eq. (D22). Equations (D24) and (D23) become asymptotics
for Jj (t) in the case of the XX chain. If one wants to derive
asymptotics valid in the region jN ( δt

j tth
)

3
2 ∼ 1, one has to

calculate the integral through the saddle point with the proper
path direction [here we use approximation (D22) for saddle
points],

Isaddle(t) 	
∫

exp

[
−1

2
η|E ′′′

0 |tz2 − i

6
|E ′′′

0 |tz3

]
dz, (D25)

and use the formula

Aj (t) 	 1

2π
Isaddle(t) exp

[
−2

√
2r

3
jN

(−δt

j tth

) 3
2

]
× cos(E(ϕ0)t − jNϕ0). (D26)

Equations (D23) and (D24) can be obtained from the above
formula by neglecting the second summand in the exponent in
(D25) and by expanding the integrand in Eq. (D25) in powers
of η.

Let us turn to Bj . In order to describe its behavior in an
analogous way, one should start from

Bj (t) 	 Im

(√
1

2π |E′′(ϕ1)|t
ε(ϕ1)

E(ϕ1)
exp[iE(ϕ1)t

− ijNϕ1 + iσ (ϕ1)]

)
(D27)

instead of (D21). We do not describe Bj (t) in detail because
there is no simple approximation formula for (D27) for all pos-
sible values of cos(ϕ0). However, the exponential suppression
for Bj (t) has the same form as that for Aj (t); only the pre-
exponential factor differs. This is because the suppression is

determined by the exponent of the quantity −Re(−iE(ϕ1)t +
ijNϕ1), which is the same for Bj and Aj up to t−1.

To conclude this subsection, the suppression of spectral
functions Aj (t) and Bj (t) with δt = t − j tth < 0, with expo-
nential precision, reads

Aj (t) ∼ Bj (t) ∼ exp

[
−2

3

√
2E′(ϕ0)

|E ′′′(ϕ0)|jN

(−δt

j tth

) 3
2

+ O

((
δt

j tth

) 5
2

)]
. (D28)

This is in accordance with a general result [17]. Here we
assume that E

′′′
(ϕ0) �= 0; for very small E

′′′
(ϕ0) one has to take

into account E(IV )(ϕ0), which leads to a slightly different law.

c. Asymptotics for t � j tth

The considerations in the present subsection are less
rigorous than in the previous ones. The only consequence,
however, is that we do not completely control errors for derived
approximations. Numerical calculations demonstrate that the
latter are, nevertheless, rather accurate over a wide range of
model parameters. For certain regions of the parameter space
in which the derived approximations fail we are able to identify
the reason and point out the way to overcome the difficulties.

Let us describe the method. When t 	 tth the saddle points
are situated near ϕ0. The integrand is a very rapidly oscillating
function for all ϕ except ϕ 	 ϕ0. Thus the value of the integral
is picked up on a small segment [ϕ0 − �ϕ; ϕ0 + �ϕ], �ϕ >
1
2 (ϕ2 − ϕ1). In order to estimate errors for this approximation,
one has to make bulky calculations in the spirit of the above
subsections. We avoid this in the present work.

In order to calculate the integral along the small segment, we
expand E(ϕ) in the vicinity of ϕ0. And the last approximation
is to replace the interval of integration from [−�ϕ,�ϕ] to
[−∞; ∞], where the integration variable is μ ≡ ϕ − ϕ0. The
latter trick is justified because our new integrand oscillates
as ∼exp(i · const · μ3) when μ → ±∞. All these approxima-
tions are legitimate when the model parameters are such that ϕ0

is far enough from points of branching. Thus the approximation
is valid for large enough ε and all values of γ and for ε � 1
it is valid for γ 2 < 3

4 . Let us assume that E′′′
0 ≡ E

′′′
(ϕ0) is not

very small. In this case one can consider the power expansion
of E(ϕ) up to (ϕ − ϕ0)3 and neglect terms ∼O((ϕ − ϕ0)4).
Thus for t 	 j tth one gets

Aj (t) = 1

2π

∫ π

−π

cos(Et − jNϕ)dϕ

	 1

2π

∫ �ϕ

−�ϕ

cos

(
E0t − jNϕ0 + (E′

0t − jN )μ

− 1

6
|E′′′

0 |tμ3

)
dμ

	
(

2

|E′′′
0 |t
) 1

3 1

2π

∫ ∞

−∞
cos

[
(E0t − jNϕ0) − t − j tth

tth
N

×
(

2

|E′′′
0 |t

) 1
3

ξ + 1

3
ξ 3

]
dξ. (D29)
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Here all functions f with subindex 0 should be understood as
f0 ≡ f (ϕ0). The above integral is a well-known Airy function
of the first kind:

Ai(x) ≡ 1

π

∫ ∞

0
cos

(
ξ 3

3
+ xξ

)
dξ. (D30)

Thus we get Eq. (26) (with analogous reasoning for Bj ).
Let us investigate now the case h = 1, γ 2 > 3

4 (we do not
investigate here the case of small, but nonzero ε = h − 1 � 1).
For h = 1, γ 2 > 3

4 we cannot use formula (D29), since ϕ0 =
ϕbr− = ϕ∗

br− = 0. But we can argue that the main contribution
for Aj is picked up on the segment [0,ϕ], since only on
this segment the oscillation frequency is not very high (note
that for [−�ϕ,0] the frequency is high; this is due to the
discontinuity of the group velocity at ϕ = 0). If we somehow
expand E(ϕ) on [0,ϕ], we can obtain a good approximation.
Consider −E(ϕ) on a complex plain. If we have values for
E(ϕ) on the segment ϕ ∈ [0,π ] fixed, we can make analytical
continuation to Re(ϕ) ∈ [−π,0] in two ways: with the branch
cut Re(ϕbranch cut) = 0, Im(ϕbranch cut) ∈ [−ϕ∗

br+,ϕbr+] and with
the branch cut Re(ϕbranch cut) = 0, Im(ϕbranch cut) ∈ [−∞,

− ϕ∗
br+] ∪ [ϕbr+,∞]. In the first case we have our original

function E(ϕ) in the segment ϕ ∈ [−π,0]. In the second case
we have some new function Ẽ(ϕ) which does not coincide
with E(ϕ) in this segment. But in the latter case we can use
power expansion for Ẽ(ϕ) in the circle with radius R = |ϕbr+|:

Ẽ(ϕ) = γ ϕ + 3 − 4γ 2

24γ
ϕ3 + 16γ 4 − 15

1920γ 3
ϕ5 + O(ϕ7). (D31)

Analogously to (D29), one obtains

Aj (t) 	 1

2π

∫ ∞

0
cos

[
(γ t − jN )ϕ

+ 3 − 4γ 2

24γ
tϕ3 + 16γ 4 − 15

1920γ 3
tϕ5

]
dϕ. (D32)

If one can neglect the term ∼ϕ5 (i.e., if γ 2 − 3
4 is large enough),

one gets

Aj (t) 	 1

2

(
2γ(

γ 2 − 3
4

)
t

) 1
3

· Ai

⎡⎣−(γ t − jN )

(
2γ(

γ 2 − 3
4

)
t

) 1
3

⎤⎦ ,

h = 1, γ 2 >
3

4
. (D33)

For Bj one uses power expansion ε(ϕ)E−1(ϕ) in the vicinity
of ϕ = 0 to obtain

Bj (t)	 1

4γ

(
2γ(

γ 2 − 3
4

)
t

) 2
3

· Ai′

⎡⎣−(γ t − jN )

(
2γ(

γ 2 − 3
4

)
t

) 1
3

⎤⎦ ,

h = 1, γ 2 >
3

4
, (D34)

where the prime indicates the derivative.
Let us consider the special case h = 1, γ 2 = 3

4 . We have
tth = 2√

3
N . The term ∼ϕ3 in power expansion Ẽ(ϕ) is 0:

Ẽ(ϕ) =
√

3
2 ϕ − 1

120
√

3
ϕ5. Let us introduce the function

gAin(x) ≡ 1

π

∫ ∞

0
cos

(
ξn

n
+ xξ

)
dξ. (D35)

The Airy function of the first kind is a particular case of
this function: Ai(x) = gAi3(x). gAin(x) for n > 3 exhibits
the same behavior as Ai(x): for positive x it is exponentially
decreasing, and for negative x it oscillates and goes to 0 when
x → −∞. Aj and Bj are expressed through this function and
its derivative:

Aj (t) 	 1

2

(
24

√
3

t

) 1
5

· gAi5

[
−
(√

3t

2
− jN

)(
24

√
3

t

) 1
5
]
,

h = 1, γ 2 = 3

4
;

Bj (t) 	 1

4γ

(
24

√
3

t

) 2
5

· gAi′5

[
−
(√

3t

2
− jN

)(
24

√
3

t

) 1
5

]
,

h = 1, γ 2 = 3

4
. (D36)

Note that the rather small value of the coefficient of term ϕ5

in the power expansion of Ẽ(ϕ) implies that these approx-
imations work well for sufficiently long times (t � 24

√
3).

Analogously, we require t � 2γ (γ 2 − 3
4 )−1 in Eqs. (D33) and

(D34). Note that if one wishes to investigate approximations
which successfully describe Aj , Bj near the threshold time
in the region of parameter space h = 1, γ 2 	 3

4 , then one has
to calculate integral (D32) saving both terms, ∼ϕ3 and ∼ϕ5.
Therefore, in this case there is no such clear power law for
the time dependence of the maximum value of the spectral
function as in (D37).

Now let us discuss possible values of maxima for Aj and
Bj . If jN is sufficiently large the positions of global maxima
of Aj and Bj coincide with those for Ai(x) and gAi5(x):

sup
t

Aj (t) 	
(

2

|E ′′′
0 |t
) 1

3

· a3, for h > 1, or h = 1, γ 2 <
3

4
;

sup
t

Aj (t) 	 1

2

(
2γ(

γ 2 − 3
4

)
t

) 1
3

· a3, for h = 1, γ 2 >
3

4
;

sup
t

Aj (t) 	 1

2

(
24

√
3

t

) 1
5

· a5, for h = 1, γ 2 = 3

4
.

(D37)

Here a3 and a5 are global maxima of Ai(x) and gAi5(x)
(a3 = 0,54, . . . , a5 = 0.44, . . . ), respectively. Without loss of
precision one can replace t with j tth in the above expressions.
We do not present the analogous expressions for Bj (t) because
the positions of the maxima of these functions obviously do
not coincide with those for Aj [when Aj (t) achieves the global
maximum Bj (t) becomes 0]. In the last two cases in Eq. (D37)
it is A2

j which gives the main contribution to gzz
0 (t) near

t = j tth. When h > 1 or h = 1, γ 2 < 3
4 one has to investigate

the maximum of Aj (t)2 + Bj (t)2 in order to find the leading
contribution to gzz

0 (t). This leads to

Max(revivalj)
[
gzz

0 (t)
] 	 4

(
2

|E′′′
0 |j tth

) 2
3

·
(

1 +
∣∣∣∣ ε0

E0
− 1

∣∣∣∣)a2
3,

for h > 1, or h = 1,

γ 2 <
3

4
;
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Max(revivalj)
[
gzz

0 (t)
] 	

(
2γ 2(

γ 2 − 3
4

)
jN

) 2
3

· a2
3, for h = 1,

γ 2 >
3

4
;

Max(revivalj)
[
gzz

0 (t)
] 	

(
36

jN

) 2
5

· a2
5, for h = 1,

sγ 2 = 3

4
. (D38)

Note that this is a rather rude approximation, since interference
terms may be large. Therefore these expressions work well
only for a large number of spins. Numerical evolution shows
that the revivals are maximally pronounced for h = 1 and γ 2

slightly less than 3
4 . This may be expected on the basis of

Eq. (D32).

Let us emphasize once more that all the derived expressions
can be derived with more rigor using integrals in the complex
plain, analogous to what was done in the previous subsections.

We have not explored the whole parameter space. In
particular, we have not considered the cases h = 1, γ 2 	 3

4 ,
ε = h − 1 � 1, ε �= 0, or h > 1, E′′′

0 = 0. Some of the de-
rived approximations work well only for long times and,
correspondingly, large numbers of spins [for example, t �
24

√
3 or t � 2γ (γ 2 − 3

4 )−1]. However, for a large region
of parameter space these approximations work fairly well,
and they provide an opportunity to investigate amplitudes
of maxima in partial revivals or, at least, the law of their
decrease. For these reasons we decided to include in the paper
these not completely rigorous calculations. The validity of
formulas derived in the present subsection is justified by the
fact that approximations (26) give the same result as the more
rigorously derived Eqs. (D23) and (D24) when the ranges of
applicability overlap.
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