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Nonunital non-Markovianity of quantum dynamics
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Trace distance is available to capture the dynamical information of the unital aspect of a quantum process.
However, it cannot reflect the nonunital part. So the nondivisibility originating from the nonunital aspect cannot
be revealed by the corresponding measure based on the trace distance. We provide a measure of nonunital
non-Markovianity of quantum processes, which is a supplement to Breuer-Laine-Piilo (BLP) non-Markovianity
measure. A measure of the degree of the nonunitality is also provided.
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I. INTRODUCTION

Understanding and characterizing general features of the
dynamics of open quantum systems is of great importance
to physics, chemistry, and biology [1]. The non-Markovian
character is one of the most central aspects of an open
quantum process and has attracted increasing attention [2–16].
Markovian dynamics of quantum systems is described by
a quantum dynamical semigroup [1,17] and is often taken
as an approximation of realistic circumstances with some
very strict assumptions. Meanwhile, exact master equations,
which describe the non-Markovian dynamics, are complicated
[9]. Based on the infinitesimal divisibility in terms of a
quantum dynamical semigroup, Wolf et al. provided a model-
independent way to study the non-Markovian features [2,3].
Later, in the intuitive picture of the backward information flow
leading to the increasing of distinguishability in intermediate
dynamical maps, Breuer, Laine, and Piilo (BLP) proposed a
measure of the degree of non-Markovian behavior based on the
monotonicity of the trace distance under quantum channels [4],
as shown in Fig. 1. The BLP non-Markovianity has been
widely studied and applied in various models [18–23].

Unlike for classical stochastic processes, the non-
Markovian criteria for quantum processes are nonunique and
even controversial. First, the non-Markovian criteria from
the infinitesimal divisibility and the backward information
flow are not equivalent [19,20]. Second, several other non-
Markovianity measures, based on different mechanisms such
as the monotonicity of correlations under local quantum chan-
nels, have been introduced [6,13]. Third, even in the framework
of backward information flow, trace distance is not the unique
monotone distance for the distinguishability between quantum
states. Other monotone distances in the space of density
operators can be found in Ref. [24], and the statistical distance
[25,26] is another widely used one. Different distances should
not be expected to give the same non-Markovian criteria.
The inconsistency among various non-Markovianity measures
reflects different dynamical properties.

In this paper, we show that the BLP non-Markovianity
cannot reveal the infinitesimal nondivisibility of quantum
processes caused by the nonunital part of the dynamics.
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Besides non-Markovianity, “nonunitality” is another important
dynamical property, which is the necessity for the increase
of the purity Trρ2 under quantum channels [27] and for
the creation of quantum discord in two-qubit systems under
local quantum channels [28]. In the same spirit as BLP
non-Markovianity, we define a measure on the nonunitality.
As BLP non-Markovianity is the most widely used measure
on non-Markovianity, we also provide a measure of the
nonunital non-Markovianity, which can be conveniently used
as a supplement to the BLP measure when the quantum
process is nonunital. We also give an example to demon-
strate an extreme case, where the BLP non-Markovianity
vanishes while the quantum process is not infinitesimally
divisible.

This paper is organized as follows. In Sec. II, we give a brief
review of the representation of density operators and quantum
channels with a Hermitian orthonormal operator basis and
various measures on non-Markovianity. In Sec. III, we in-
vestigate the nonunitality and the nonunital non-Markovianity
and give the corresponding quantitative measures. In Sec. IV,
we apply the nonunital non-Markovianity measure to a
family of quantum processes, which are constructed from the
generalized amplitude damping channels. Section V is the
conclusion.

II. REVIEW OF QUANTUM CHANNELS
AND NON-MARKOVIANITY

A. Density operators and quantum channels represented by the
Hermitian operator basis

The states of a quantum system can be described by
the density operator ρ, which is positive semidefinite and
of trace 1. Quantum channels, or quantum operations, are
completely positive and trace-preserving (CPT) maps from
density operators to density operators and can be represented
by Kraus operators, Choi-Jamiołkowski matrices, or transfer
matrices [29–32].

In this work, we use the Hermitian operator basis to
express operators and represent quantum channels. Let {λμ |
μ = 0,1, . . . ,d2 − 1} be a complete set of Hermitian and
orthonormal operators on complex space Cd , i.e., λμ satisfies
λ†

μ = λμ and 〈λμ,λν〉 := Tr(λ†
μλν) = δμν . Any operator O on

Cd can be express by a column vector r := (r0,r1, . . . ,rd2−1)T
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FIG. 1. (Color online) Sketch of the information flow picture
for non-Markovianity [4]. According to this scenario, the loss of
distinguishability of the system’s states indicates the information
flow from the system to the reservoir. If the dynamics is Markovian,
the information flow is always outward, represented by the thick
green arrow. Non-Markovian behaviors occurs when there is inward
information flow, represented by the thin orange arrow, bringing some
distinguishability back to the system.

through

O =
d2−1∑
μ=0

rμ(O)λμ, (1)

with rμ(O) := 〈λμ,O〉. Every rμ(O) is real if O is Hermitian.
In the meantime, any quantum channel E : ρ �→ E(ρ) can

be represented by T (E) : r(ρ) �→ r[E(ρ)] via

r[E(ρ)] = T (E)r(ρ), (2)

where T (E) is a d2 × d2 real matrix with the elements

Tμν(E) := 〈λμ,E(λν)〉. (3)

Furthermore, one can easily check that

T (E1 ◦ E2) = T (E1)T (E2) (4)

for the composition of quantum channels. Here E1 ◦ E2 denotes
the composite maps E1(E2(ρ)).

Taking into account the normalization of the quantum
states, i.e., Tr(ρ) = 1, r0 can be fixed as r0(ρ) = 1/

√
d

for any density operator ρ by choosing λ0 = 1/
√

d , with
1 being the identity operator. In such a case, λμ for μ =
1,2, . . . ,d2 − 1 are traceless and generate the algebra su(d).
This real parametrization rμ(ρ) for density operators is also
called a coherent vector or generalized Bloch vector [33–35].
In order to eliminate the degree of freedom for the fixed r0,
we use the decomposition r = (r0,r)T. Therefore, any density
operator ρ can be expressed as

ρ = 1

d
+ r · λ, (5)

where r is the generalized Bloch vector and λ represents
(λ1,λ2, . . . ,λd2−1)T. Under this frame, quantum channels can
be represented by the affine map [17,36]

r(E(ρ)) = M(E)r(ρ) + c(E), (6)

where M(E) is a real matrix with the dimension d2 − 1 and
the elements of the vector c(E) read

[c(E)]μ = 〈λμ,E(1)〉/d (7)

for μ = 1,2, . . . ,d2 − 1. Comparing Eq. (2) with Eq. (6), one
can find that

Tμν(E) = [M(E)]μν (8)

for μ,ν = 1,2, . . . ,d2 − 1. Thus, T (E) can be decomposed
into the following subblocks:

T (E) =
[

1 01×(d2−1)√
dc M

]
. (9)

Recalling that a quantum channel E is said to be unital if and
only if E(1/d) = 1/d [36], one can find that the necessary and
sufficient condition for a unital map is that c(E) = 0, namely,

c(E) = 0 ⇐⇒ E is unital. (10)

Thus, c(E) describes the nonunital property of the quantum
channel E . The necessary and sufficient condition above could
be easily proved by realizing that the Bloch vector of 1/d is a
zero vector, i.e., r = 0. Based on the subblock form of T (E),
c(E) = 0 is equivalent to T (E) being a block diagonal, i.e.,
T (E) = diag[1,M(E)].

Whether a quantum channel E is completely positive (CP)
can be reflected by the Choi-Jamiołkowski matrix [30,31],

C(E) := (E ⊗ 1)(|�〉〈�|), (11)

where |�〉 = 1√
d

∑d−1
j=0 |j 〉 ⊗ |j 〉 is the maximally entangled

state. Here {|j 〉} is a basis in Hilbert space. E is CP if and only if
the Choi-Jamiołkowski matrix is positive. With the Hermitian
operator basis, |�〉〈�| is a d2 × d2 matrix and can be written
in the form [37]

|�〉〈�| = 1

d

d2−1∑
ν=0

λν ⊗ λT
ν . (12)

Substituting this formula into Eq. (11) and utilizing Eq. (3),
one can express the Choi-Jamiołkowski matrix as

C(E) =
d2−1∑
μ,ν=0

1

d
Tμν(E)λμ ⊗ λT

ν . (13)

If E is unital, it can be reduced to

C(E) = 1

d2

⎛
⎝1d2×d2 + d

d2−1∑
μ,ν=1

Mμνλμ ⊗ λT
ν

⎞
⎠ . (14)

B. Nondivisibility and non-Markovianity

Without the presence of correlation between the open
system and its environment in the initial states, the reduced
dynamics for the open system from t = 0 to any t � 0 can be
expressed as

Et,0 : ρ �→ TrE[U (t)(ρ ⊗ ρE)U (t)†], (15)

which is a quantum channel. This indicates thatEt,0 is CPT. The
unitary operator U (t) describes the time evolution of the closed
total system, and ρE is the initial state of the environment.
A quantum process Et := Et,0 is said to be infinitesimally
divisible, also called a time-inhomogeneous or time-dependent
Markovian, if it satisfies the following composition law [2]:

Et2,0 = Et2,t1 ◦ Et1,0 (16)

for any t2 � t1 � 0, where Et2,t1 is also completely positive and
trace preserving.
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Various measures of the degree of the non-Markovian
behavior of quantum processes have been proposed and
investigated [4,6,11–13]. Almost all of the measures of the
non-Markovianity can be classified into three types based on
the degree of the violation of the following properties owned
by the infinitesimally divisible quantum process.

(i) The first type is monotonicity of distance D under CPT
maps. That is, D(E(ρ1),E(ρ2)) � D(ρ1,ρ2) for any quantum
channel E , where D(ρ1,ρ2) is an appropriate monotone dis-
tance under CPT maps of the space of density operators [24],
including trace distance, Bures distance, statistical distance,
relative entropy, fidelity (although fidelity itself is not a
distance, it can be used to construct monotone distances), and
so on. Some measures of non-Markovianity by increasing the
monotone distance during the mediate dynamical maps Et2,t1

have been given and discussed in Refs. [4,12].
The typical measure of this type, which will be used later

in this paper, was first proposed by Breuer, Laine, and Piilo in
Ref. [4] based on the monotonicity of trace distance [35,36]:

Dtr(ρ1,ρ2) := 1
2 Tr|ρ1 − ρ2|, (17)

where |O| :=
√

O†O. Interpreting the increase of the trace
distance during the time evolution as the information flows
from the environment back to the system, the definition of the
BLP non-Markovianity is defined by

NBLP(Et ) := max
ρ1, ρ2

∫
σ>0

dt σ (t,ρ1,ρ2), (18)

where

σ (t,ρ1,ρ2) := d

dt
Dtr(ρ1(t),ρ2(t)) (19)

and ρi(t) = Et (ρi) for i = 1,2 are two evolving states.
(ii) The second is positivity of the Choi-Jamiołkowski

matrix for CPT maps. The Choi-Jamiołkowski matrix C(E) �
0 if and only if E is a quantum channel, namely, E is a CPT
map. Some measures of non-Markovianity by the negativity
of the Choi-Jamiołkowski matrix for mediate dynamical maps
Et2,t1 have been given and discussed in Refs. [6,11].

In this work we will use one of these measures, which was
proposed by Rivas, Huelga, and Plenio (RHP) in Ref. [6]. They
utilize the negativity of the Choi-Jamiołkowski matrix C for
the mediate dynamical maps with the definition

NRHP(Et ) :=
∫ ∞

0
g(t)dt, (20)

where

g(t) := lim
ε→0+

Tr|C(Et+ε,t )| − 1

ε
. (21)

(iii) The last type is monotonicity of correlations E under
local quantum channels. That is, E[(E ⊗ 1)(ρAB)] � E(ρAB)
for any local quantum channel E , where E is an appropriate
measure for the correlations in the bipartite states ρAB ,
including entanglement entropy and mutual information. The
corresponding measures of non-Markovianity are given and
discussed in Refs. [6,13].

III. NONUNITAL NON-MARKOVIANITY

The non-Markovianity measure NBLP is able to capture the
non-Markovian behavior of the unital aspect of the dynamics.
But for the nonunital aspect, it is not capable of capturing the
non-Markovian behavior. To show this, we use the Hermitian
orthonormal operator basis to express states and quantum
channels. Utilizing Eq. (5), the trace distance between two
states ρ1 and ρ2 is given by

Dtr(ρ1,ρ2) = 1
2 Tr|[r(ρ1) − r(ρ2)] · λ|. (22)

Therefore, for the two evolving states, we get

Dtr(ρ1(t),ρ2(t)) = 1
2 Tr|M(Et )[r(ρ1) − r(ρ2)] · λ|, (23)

where ρ1, ρ2 are initial states of the system.
From this equation one can see that the trace distance

between any two evolved states is irrelevant to the nonunital
part c(Et ) of the time evolution. Then, if there are two
quantum channels, whose affine maps are r �→ Mr + c1 and
r �→ Mr + c2, the characteristic of trace distance between the
evolving states from any two initial states cannot distinguish
these two channels. More importantly, c(Et ) may cause the
nondivisibility of the quantum process Et , and this cannot be
revealed by NBLP.

On the other hand, the nonunital part c(Et ) has its own
physical meaning: c(Et ) �= 0 is necessary for the increasing of
the purity P(ρ) = Tr(ρ2) [27]. In other words,

c(Et ) = 0 =⇒ P(Et (ρ)) � P(ρ), ∀ ρ. (24)

In addition to the non-Markovian feature, the nonunitality
is another kind of general feature of quantum processes. In
analogy to the definition of BLP non-Markovianity, we defined
the following measure of the degree of the nonunitality of a
quantum process:

Nnu(Et ) = max
ρ0

∫
d
dt
P(Et (ρ0))>0

∣∣∣∣dP(Et (ρ0))
dt

∣∣∣∣ dt, (25)

where ρ0 is the initial state. Obviously, Nnu(Et ) vanishes if
c(Et ) = 0.

Since the nonunital aspect of the dynamics, which is not
revealed by the trace distance, has its own speciality, we
aim to measure the effect of nonunitality on non-Markovian
behavior. However, a perfect separation of the nonunital aspect
from the total non-Markovianity may be infeasible. Therefore
we require a weak version Nnu for measuring nonunital
non-Markovianity to satisfy the following three conditions: (i)
Nnu vanishes if Et is infinitesimally divisible, (ii) Nnu vanishes
if Et is unital, and (iii) Nnu should be relevant to c(Et ). Based
on these conditions, we introduce the following measure:

Nnu := max
	τ ∈X

∫
σnu>0

σnu(t, 	τ )dt, (26)

where X := {	τ | 0 � τ � ∞}, with 	τ := Eτ (1/d), is the set
of the trajectory states which evolve from the maximally mixed
state and

σnu(t,	τ ) := d

dt
D(Et (	0),Et (	τ )), (27)

with D(ρ1,ρ2) being an appropriate distance, which will
be discussed below. The first condition is guaranteed if
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we require that D is monotone under any CPT maps, i.e.,
D(E(ρ1),E(ρ2)) � D(ρ1,ρ2) for any quantum channel E . For
the unital time evolution, the set X = {1/d} only contains the
maximally mixed state, so the above-definedNnu vanishes, and
the second condition is satisfied. The third condition excludes
the trace distance.

In this paper, we use the Bures distance, which is defined
as

DB(ρ1,ρ2) =
√

2[1 − F (ρ1,ρ2)], (28)

where

F (ρ1,ρ2) = Tr|√ρ1
√

ρ2| = Tr
√√

ρ1ρ2
√

ρ1 (29)

is the Uhlmann fidelity [38,39] between ρ1 and ρ2. Here |O| =√
O†O. The Bures distance is an appropriate distance for Nnu

because it obeys the monotonicity under CPT maps [24] and
is relevant to c(Et ). As only the monotonicity of distance is
relevant here, for simplicity, we can also take the square of the
Bures distance, or the opposite value of the Uhlmann fidelity,
as a simple version of monotone “distance” [12]. Quantum
relative entropy [40] S(ρ1‖ρ2) = Tr[ρ1(ln ρ1 − ln ρ2)], or its
symmetric version Ssym(ρ1‖ρ2) := S(ρ1‖ρ2) + S(ρ2‖ρ1), is
another qualified candidate for the distance. Noting that when
the support of ρ1 is not within the support of ρ2, namely,
supp(ρ1) � supp(ρ2), S(ρ1‖ρ2) will be infinite, so in such
cases, quantum relative entropy will bring singularity to the
measure of non-Markovianity. Also, the Hellinger distance
[41] is qualified. Although all of these distances are monotone
under CPT maps, they may have different characteristics in
the same dynamics (see Ref. [42]).

The difference between nonunital non-Markovian measures
defined by Eq. (26) and the BLP-type measures, including
those which use other alternative distances, is the restriction
on the pairs of initial states. Compared with the BLP-
type measures relying on any pair of initial states, the
nonunital non-Markovianity measure only relies on the pairs
consisting of the maximally mixed state and its trajectory
states. On the one hand, this restriction makes the nonuni-
tal non-Markovianity measure vanish when the quantum
processes are unital, whether they are Markovian or non-
Markovian; on the other hand, this restriction reflects the
fact that the nonunital non-Markovianity measure reveals
only part of the information concerning non-Markovian
behaviors.

IV. EXAMPLE

To illustrate the nonunital non-Markovian behavior, we
give an example in this section. We use the generalized
amplitude damping channel (GADC) as a prototype to
construct a quantum process. The GADC can be described
by E(ρ) = ∑

i EiρE
†
i , with the Kraus operators {Ei} given

by [36,43]

E1 = √
p

(
1 0

0
√

η

)
, (30)

E2 = √
p

(
0

√
1 − η

0 0

)
, (31)

E3 =
√

1 − p

(√
η 0

0 1

)
, (32)

E4 =
√

1 − p

(
0 0√

1 − η 0

)
, (33)

where p and η are real parameters. Note that for any p ∈ [0,1]
and any η ∈ [0,1], the corresponding E is a quantum channel.
For a two-level system, the Hermitian orthonormal operator
basis can be chosen as λ = σ/

√
2, where σ = {σx,σy,σz} is

the vector of Pauli matrices. With the decomposition in Eq. (5),
the affine map for the Bloch vector is given by r(E(ρ)) �→
M(E)r(ρ) + c(E) [36], where

M(E) =

⎛
⎜⎝

√
η 0 0

0
√

η 0

0 0 η

⎞
⎟⎠ , (34)

c(E) =
(

0,0,
(2p − 1)(1 − η)√

2

)T

. (35)

The GADC is unital if and only if p = 1/2 or η = 1. When
η = 1, M(E) = 1, the map is an identity map.

A quantum process can be constructed by making param-
eters p and η be dependent on time t . For simplicity, we
take pt = cos2 ωt and ηt = e−t , where ω is a constant real
number. This is a legitimate quantum process because Et is
a quantum channel for every t � 0 and Et=0 is the identity
map.

First, let us consider the NBLP for this quantum process.
For any two initial states ρ1 and ρ2, we have the trace
distance

Dtr(Et (ρ1),Et (ρ2)) = 1

2
Tr

∣∣∣∣M(Et )[r(ρ1) − r(ρ2)] · σ√
2

∣∣∣∣
= 1√

2
|M(Et )[r(ρ1) − r(ρ2)]|, (36)

where |r| = √
r · r is the Euclidean length of the vector r, and

we used the equality

(a · σ )(b · σ ) = (a · b)1 + iσ · (a × b) (37)

for Pauli matrices. Denoting r(ρ1) − r(ρ2) by (x,y,z)T, we get

Dtr(Et (ρ1),Et (ρ2)) = e−t/2

√
2

√
x2 + y2 + e−t z2, (38)

which implies d
dt

Dtr(Et (ρ1),Et (ρ2)) � 0 for every time point
t � 0 and for any real numbers x, y, and z. Thus, the BLP
non-Markovianity vanishes, i.e., NBLP(Et ) ≡ 0, although Et

may be not infinitesimally divisible, which will become clear
later.

In order to investigate whether Et is infinitesimally divisible
or not, we shall apply Nnu in the above model. The trajectory
of the maximally mixed state under Et reads

Et (	0) = 1

2
1 + ct · σ√

2
= 1

2

(
1 + Wt 0

0 1 − Wt

)
, (39)

where

Wt := (2pt − 1)(1 − ηt ) = cos(2ωt)(1 − e−t ). (40)
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Taking these trajectory states as the initial states, we get the
corresponding evolving states:

Et (	τ ) = 1

2
1 + (Mtcτ + ct ) · σ√

2
(41)

= 1

2

(
1 + Wt + ηtWτ 0

0 1 − Wt − ηtWτ

)
. (42)

Then the fidelity reads

F (Et (	0),Et (	τ )) = 1
2 (h+ + h−), (43)

where

h+ :=
√

(1 + Wt )(1 + Wt + ηtWτ ), (44)

h− :=
√

(1 − Wt )(1 − Wt − ηtWτ ). (45)
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FIG. 2. (Color online) (a) Evolution of trace distance and the
Bures distance between two evolving states of a two-level system
under the variant generalized amplitude damping channel, initially
from the maximal mixed state 	0 = 1/2 and its trajectory state 	τ =
Eτ (	0). (b) The evolution of g(t) defined by Eq. (21), whose integral
with respect to time t is the RHP measure for non-Markovianity. In
these plots, the parameters are taken as τ = 10 and ω = 5.

To compare with the behavior of the trace distance, we also get
Dtr(Et (	0),Et (	τ )) = |ηtWτ |/2. With the expressions ηt = e−t

and pt = cos2 ωt , it is

Dtr(Et (	0),Et (	τ )) = e−t

2
| cos 2ωτ |(1 − e−τ ). (46)

In Fig. 2(a), we can see that while the trace distance
between the evolving states Et (	0) and Et (	τ ) monotonously
decreases with time t , the Bures distance increases during some
intermediate time intervals. From Eq. (46), one can see that
although Dtr(Et (	0),Et (	τ )) depends on Wτ , it does not depend
on Wt . Actually, from Eq. (38) one could find that for any two
initial states, the trace distance between the evolving states is
independent of Wt . In this sense, the BLP non-Markovianity
treats a family of quantum processes, which only differ by pt ,
as the same one. Meanwhile, Nnu reveals the effects of pt on
the infinitesimal nondivisibility and is capable of measuring
it.

In order to compare with the BHP measure, we also
calculate g(t) defined by Eq. (21). We get

g(t) = 1
2 [|1 − f (t)| + |f (t)| − 1], (47)

with

f (t) := −ω sin(2ωt)(1 − e−t ) + cos2(ωt). (48)

The mediate dynamical maps Et+ε,t with infinitesimal ε are not
completely positive when g(t) > 0. From Fig. 2(b), we can see
that the increase in the Bures distance occurs in the regimes
where g(t) > 0, which coincides with the monotonicity of the
Bures distance under CPT maps.

V. CONCLUSION

In conclusion, we have shown that the measure for
non-Markovianity based on trace distance cannot reveal the
infinitesimal nondivisibility caused by the nonunital part of the
dynamics. In order to reflect the effects of the nonunitality, we
have constructed a measure of the nonunital non-Markovianity
and have also defined a measure of the nonunitality, in the same
spirit as the BLP non-Markovianity measure.

Like non-Markovianity, the nonunitality is another inter-
esting feature of quantum dynamics. With the development of
quantum technologies, we need novel theoretical approaches
for open quantum systems. It is expected that some quantum
information methods would help us understand some generic
features of quantum dynamics. We hope this work may draw
attention to studying more dynamical properties from the
informational perspective.
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