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Wigner rotations and an apparent paradox in relativistic quantum information
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It is shown that a general model for particle detection in combination with a linear application of the Wigner
rotations, which correspond to momentum-dependent changes of the particle spin under Lorentz transformations,
to the state of a massive relativistic particle in a superposition of two counterpropagating momentum states leads
to a paradox. The paradox entails the instantaneous transmission of information between two spatially separated
parties. A solution to the paradox is given when the physical construction of the corresponding state is taken
into account, suggesting that we cannot in general linearly apply the Wigner rotations to a quantum state without
considering the appropriate physical interpretation.
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I. INTRODUCTION

A Wigner rotation corresponds to a momentum-dependent
change of the spin state of a relativistic particle with a change
of reference frame [1,2]. It is a direct consequence of the
imposition of the special relativistic space-time structure to
quantum mechanics. It is thus deeply connected with the basic
structure of the universe that, as far as we know, is both
quantum and relativistic. The influence of the Wigner rotations
on the field of quantum information has been intensively
investigated in the past 10 years [3–28]. Since the seminal
paper of Peres, Scudo, and Terno [3], who concluded that
because of the momentum-dependent Wigner rotations the
spin entropy of a relativistic particle is not a relativistic
scalar, many works have appeared in the literature discussing
how the entropy [3,9,11–13,16–18,22,26] and entanglement
[5,8,19,20,23–25] of the reduced spin state of a relativistic
system change under Lorentz transformations, as well as
the influence of the Wigner rotations on the violation of
Bell’s inequalities with relativistic particles [6,7,10,14,21,28].
However, in our previous works [27,28], we showed that it
is not possible to consistently define a reduced spin density
matrix for a system with one or more relativistic particles, as
is done in most of the cited papers [3,5,8,9,11–13,16–26].

Here we go further. We show that if, under a change of the
reference frame, we simply linearly apply Wigner rotations to
the quantum state of a massive particle that is in a superposition
of two counterpropagating momentum states and consider a
general model for particle detection, we obtain a paradox that
could, among other things, permit an instantaneous transmis-
sion of information between two arbitrarily separated regions
of space. This is, of course, highly undesirable given that the
whole point of imposing special relativity is to avoid action at
a distance. A solution of the paradox is given here based on the
physical interpretation of the Wigner rotations recently given
by us [27] and on a discussion about the preparation method
of the quantum state of the particle. In particular, we show that
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the Wigner rotation depends on how the particle’s quantum
state is prepared, such that it is not possible to compute the
rotation for each momentum component separately—a subtle
consideration that removes the paradox. In other words, the
solution we present for the paradox is based on the fact that the
Wigner rotation operation cannot in general be linearly applied
to an arbitrary superposition of different momentum states.
Our conclusions affect much of the literature on relativistic
quantum information which has to be reevaluated in order to
avoid inconsistencies like the one to be presented here.

II. PHYSICAL SYSTEM OF THE PARADOX

Consider that Alice prepares a pair of relativistic massive
spin-1/2 particles in the quantum state

|�(2)〉 = 1
2 {|pŷ, + Z〉1[|pŷ, − Z〉2 − | − pŷ, − Z〉2] +
− |pŷ, − Z〉1[|pŷ, + Z〉2 − | − pŷ, + Z〉2]} (1)

in reference frame S(0), where |p, ± Z〉j represents a
state for particle j with 4-momentum (p0,p), with p0 =√

m2c4 + c2|p|2, and spin state pointing in the ±ẑ direction,
being the eigenvector of the Pauli matrix σ̂z with eigenvalue
±1. We are using Wigner’s definition for spin [1], which refers
to the particle angular momentum in the rest frame for each
momentum component. From now on we will use a system
of units in which the speed of light in vacuum is c = 1. In
the above state particle 1 has momentum pŷ, particle 2 is in
a superposition of two counterpropagating momenta pŷ and
−pŷ, and the particles are in an singlet state of spin, which
is a maximally entangled state. This state can be constructed,
for instance, if there is a decay of a particle without spin
into two spin-1/2 particles inside a potential well that retains
only particle 2 and particle 1 propagates in the ŷ direction.
This decay naturally produces a singlet state of spin, and
the potential well can be constructed such that particle 2 is
stored with the above superposition of two counterpropagating
momenta.

The apparent paradox emerges if Alice measures the spin of
particle 1 in reference frame S(0) and Bob, in a reference frame
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S(1) that moves with velocity β ẑ in relation to S(0), measures
the position of particle 2. When Alice measures the spin of
particle 1, the spin of particle 2 “collapses” in the opposite
direction. Since Bob is in another reference frame, with
the change of reference frame Wigner rotations [1,2] act on
the spin state of particle 2. A Wigner rotation depends on the
momentum of the particle, so the two momentum components
of particle 2, pŷ and −pŷ, may generate different rotations
for the particle spin, causing a correlation between spin and
momentum in Bob’s reference frame. As we show in the
following, using the formalism which is generally used by the
relativistic quantum information community, this correlation
may affect the probability of finding particle 2 in different
regions of space in a way that depends on the basis that Alice
uses to measure the spin of particle 1. So, if Alice and Bob
share a set of particles prepared in state (1), this would permit
that Bob discovers the basis chosen by Alice to measure her
particles in an arbitrary distant place by measuring the position
of his particles, which would permit Alice to instantaneously
transmit one bit of information to Bob. Of course this is
impossible, so there must be a failure in the treatment. As we
discuss below, we believe that the culprit is a careless linear
application of the Wigner rotations.

III. THE PARADOX

Let us first consider that Alice, having a pair of particles in
the state (1), makes a measurement of the ẑ component of the
spin of particle 1 and obtains −1. Then the quantum state of
particle 2 in reference frame S(0) “collapses” to

|�〉 = 1√
2

[|pŷ, + Z〉 − | − pŷ, + Z〉]. (2)

Using the Foldy-Wouthuysen transformation on the Dirac
Hamiltonian for a spin-1/2 massive relativistic particle, the
z component of the mean spin operator is a constant of
motion of the free Hamiltonian and the mean position operator
is independent of spin [29]. It is in the Foldy-Wouthuysen
representation that the Pauli matrix σ̂z is the z component of
the mean spin operator of a relativistic particle as we consider
in this work [29]. The components of the particle 2 wave
function with mean spin state | ± Z〉 in the mean position
representation can be written as [30]

�±Z(r) =
∫

d3pK(p0)eip·r/h̄〈p, ± Z|�2〉, (3)

where K(p0) is a factor that depends on the specific position
operator that we use. Since the state of Eq. (2), as well as
the other quantum states that we will consider here, has a
superposition of two momenta with equal magnitudes, our
results do not depend on the specific form of K(p0). For the
state of Eq. (2) we have �+Z(r) ∝ sin(py/h̄) and �−Z(r) = 0.

If we make a change of reference frame to a frame
S(1) that moves with velocity β ẑ in relation to S(0), each
momentum component of the state (2) suffers a different spin
transformation due to the dependence of the Wigner rotation
with the particle momentum. The spin transformations are [31]

R̂(β ẑ, ± pŷ) = cos
(ϕ

2

)
σ̂0 ± i sin

(ϕ

2

)
σ̂x, (4)

where σ̂0 represents the identity and σ̂x the x Pauli matrix,
with

sin
(ϕ

2

)
=

√
(γp − 1)(γβ − 1)

2(1 + γpγβ)
, (5)

where γβ ≡ 1/
√

1 − β2 and γp ≡
√

m2 + p2/m =
1/

√
1 − v2 if v is the particle velocity corresponding to

the momentum p. The momentum state of the particle also
changes with the change of reference frame, but the y

component remains the same. Here we concentrate on the
y dependence of the particle wave function, so we will not
worry about the momentum in the x or z directions. Of course,
the state of Eq. (2) must be seen as an approximation, since the
wave function of Eq. (3) must decay to zero with large x and
z, but we will simply consider that the wave function can be
decomposed as �±Z(r) = ψ±Z(y)ξ±Z(x,z) and concentrate
our discussion on ψ±Z(y). According to Eqs. (2), (3), and (4),
in the new frame we have

ψ ′
+Z(y) ∝ cos

(ϕ

2

)
sin

(py

h̄

)
,

(6)
ψ ′

−Z(y) ∝ sin
(ϕ

2

)
cos

(py

h̄

)
.

Repeating the calculations for the case in which Alice
measures the ẑ component of the spin of particle 1 and obtanis
+1, the components of the wave function of particle 2 in
reference frame S(1) are

ψ ′′
+Z(y) ∝ sin

(ϕ

2

)
cos

(py

h̄

)
,

(7)
ψ ′′

−Z(y) ∝ cos
(ϕ

2

)
sin

(py

h̄

)
.

If, on the other hand, Alice measures the x̂ component of
the spin of particle 1 and obtains −1, the quantum state of
particle 2 in reference frame S(0) “collapses” to

|	〉 = 1√
2

[|pŷ, + X〉 − | − pŷ, + X〉], (8)

with the particle spin state prepared in the eigenstate of σ̂x with
eigenvalue +1. Making the change of reference frame to S(1)

and using the same treatment and a similar notation as before,
we obtain the wave functions

φ′
+X(y) ∝ sin

(py

h̄

)
, φ′

−X(y) = 0 (9)

in the new frame, since the axis of the Wigner rotation is in
the direction of the particle spin in this case. For the case in
which Alice measures the x̂ component of the spin of particle
1 and obtains +1, we have

φ′′
+X(y) = 0, φ′′

−X(y) ∝ sin
(py

h̄

)
(10)

in reference frame S(1).
Let us consider now that Bob, in a reference frame S(1)

that moves with velocity β ẑ in relation to S(0), measures
the position of particle 2 using a detector that, by definition,
responds only to the charge or the mass of the particle but not
to its spin. The probability of the particle detection with the
central part of the detector placed at a position yc is assumed
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FIG. 1. (Color online) Modulus squared of particle 2 wave
functions in reference frame S(1): |φ′(y)|2 from Eq. (9) and |φ′′(y)|2
from Eq. (10) (continuous red curve) and |ψ ′(y)|2 from Eq. (6) and
|ψ ′′(y)|2 from Eq. (7) (dashed black curve) for γβ = 10 and γp = 1.2
in Eq. (5).

to be

P (yc) =
∫

dy�(y − yc)|ψ(y)|2, (11)

with |ψ(y)|2 = |ψ+Z(y)|2 + |ψ−Z(y)|2, and the same for wave
functions φ±X(y). However, despite the fact that |ψ(y)|2 and
|φ(y)|2 are the same in reference frame S(0), in reference frame
S(1) |ψ ′(y)|2 and |φ′(y)|2, according to Eqs. (6) and (9), are
not the same anymore. Note also that, according to Eqs. (6),
(7), (9), and (10), we have |ψ ′(y)|2 = |ψ ′′(y)|2 and |φ′(y)|2 =
|φ′′(y)|2 in reference frame S(1). This means that the modulus
squared of the particle 2 wave function in reference frame S(1)

depends on the basis that Alice uses to measure the spin of
particle 1, not on the results of the measurements. In Fig. 1
we illustrate |ψ ′(y)|2 = |ψ ′′(y)|2 and |φ′(y)|2 = |φ′′(y)|2 for
γβ = 10 and γp = 1.2.

The exact form of �(y) in (11) depends on details of
the detection scheme, but for the sake of simplicity we
will consider �(y) ∝ e−y2/w2

. Since it is not possible to
localize a particle in dimensions smaller than its Compton
wavelength λ = h̄/(mc), we must have w > λ. We can define
R = P (0)/P (ym) as the ratio between the probability of
finding the particle around the minimum of the modulus of
the wave function, at y = 0, and the probability of finding it
around the maximum, at y = ym in Fig. 1. Considering that the
superposition of momenta of the states (2) and (8) is not very
relativistic, such that we can write p � mv and γp � 1 + v2/2
up to the second order in v, it is straightforward to show, using
Eqs. (11), (5) and each of Eqs. (6), (7), (9), and (10), that

Rφ � m2w2v2

2h̄2 ,
Rψ

Rφ

� 1 + (γβ − 1)

2(γβ + 1)

λ2

w2
, (12)

where Rφ represents the ratio R = P (0)/P (ym) for the wave
functions of Eqs. (9) and (10) and Rψ the ratio for the wave
functions of Eqs. (6) and (7) in reference frame S(1). For γβ 	
1 and w � λ, we have Rψ/Rφ ≈ 1.5.

According to the results of the previous paragraph, if Alice
and Bob share a set of pairs of particles in the quantum state (1),

Bob can measure the ratio R of the number of particles found
around y = 0 and the number of particles found around y = ym

in Fig. 1. In an ideal experiment, verifying if the ratio is closer
to Rψ or Rφ from Eq. (12), he could discover the basis chosen
by Alice to measure her particles in an arbitrarily distant place,
which would permit Alice to instantaneously transmit one bit
of information to Bob. Of course, this is impossible, so there
must be a failure in the treatment used so far. We believe that
the culprit is a careless linear application of Wigner rotations,
as we discuss in the next section.

It is worth discussing the relation of our calculations so
far to the work of Peres et al. [3]. In Ref. [3], the authors
consider a pure state for a relativistic particle separable in the
spin-momentum partition, thus having pure reduced states for
spin and momentum in the considered reference frame. But the
system may not be separable in another reference frame due
to the momentum dependence of the Wigner rotations. The
entanglement between spin and momentum in the new frame
results in a mixed reduced spin density matrix in the new
frame, such that the spin entropy is not a relativistic scalar [3].
Here we are facing the same phenomenon for the state of
Eq. (2) but considering the momentum reduced state. In the
frame S(1) the reduced momentum state is not pure anymore
due to the momentum-spin entanglement generated by the
Wigner rotations, which causes the visibility reduction of the
interference pattern of the position wave function represented
in Fig. 1. It is important to reinforce that, as we showed in our
previous work [27], it is not possible to consistently define a
reduced density matrix for the spin of a relativistic particle as
done in Ref. [3], since it is not possible to measure the particle
spin independently of its momentum in a relativistic setting.
However, in principle it is possible to measure the momentum
of a relativistic particle independently of its spin, such that the
definition of a reduced momentum state should be reasonable.

IV. SOLUTION OF THE PARADOX

The deduction of the Wigner rotations always assumes free-
particle states [1,2]. The states of Eqs. (2) and (8) correspond to
the superposition of free-particle solutions, consequently being
also free-particle solutions. However, how can one physically
construct states like the ones from Eq. (2) or Eq. (8), with
a standing wave pattern? To obtain states like these, one
must partially reflect the particle wave function, which is not
possible with a uniform potential occupying the whole space.
Although Eqs. (2) and (8) do represent free-particle solutions,
the construction of such states needs the presence of a potential
barrier, such that the simply application of the Wigner rotation
to each momentum component is not a valid procedure (i.e.,
we are no longer in the domain of special relativity since the
potential barrier accelerates the particle).

To understand why this is the case, we can make use of the
physical interpretation of the Wigner rotations recently given
by us [27] that says that these rotations are a consequence of
the fact that different observers compute different quantization
axes for a spin measurement. This interpretation is supported
by a recent work from Palmer et al. that presents a detailed
analysis of the Stern-Gerlach measurement process in a
relativistic setting [32]. To compute the Wigner rotation for the
state of Eq. (2), we must describe how the spin measurement
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is made and consider how the moving observer describes the
quantization axis of this measurement. Let us first consider
a situation in which the state of Eq. (2) is obtained trough
measurements on particle 2 directly, without considering
particle 1. To construct the state, one can make a spin
measurement on a particle that propagates in the + ŷ direction
with a Stern-Gerlach apparatus with magnetic field in the +ẑ
direction, obtaining eigenvalue +1. After that, the particle is
sent to a region that has a potential barrier that reflects its
wave function and produces the standing wave pattern. In this
case, the moving observer will describe the Wigner rotation
for both momentum components of the wave function, with
values +p ŷ and −p ŷ, as the one for a free particle with
momentum +p ŷ, since the spin measurement is made when
the particle has momentum +p ŷ and the particle spin should
not change with the reflection on the potential barrier. Anal-
ogously, if the spin measurement is made while the particle
propagates in the − ŷ direction, the Wigner rotation is the one
of a free particle with momentum −p ŷ for both momentum
components. If, on the other hand, the particle is confined in
a potential well with both momentum components +p ŷ and
−p ŷ while the spin measurement is made, the quantization
axis is given by the average field seen by the particle such that
no Wigner rotation occurs with the change of reference frame.

In the three examples of the particle state preparation
described in the preceding paragraph, the Wigner rotation is the
same for both momentum components of the state of Eq. (2),
such that after tracing out spin the spatial wave function is
pure, as in the case of the state of Eq. (8). So the probability of
finding the particle in different regions is the same in the new
reference frame, no matter its spin state.

Let us now come back to the physical situation described
by the quantum state of Eq. (1). To compute the Wigner
rotations acting on particle 2 with the change of reference
frame, we must consider how this quantum state is prepared. If
the physical state is the result of the decay of a particle without
spin into two spin-1/2 particles in the rest frame of the original
particle, then particle 2 is emitted with momentum −pŷ and
reflects back and forth on the potential well walls forming the
interference pattern. According to the interpretation described
in the previous paragraphs for the Wigner rotations, with
the change of reference frame both momentum components
of the particle wave function must suffer a Wigner rotation
corresponding to the −pŷ momentum, since the reflections
on the potential barriers do not affect the particle spin. So
the spatial wave function of particle 2 is pure no matter what
measurement is made by Alice, such that the probabilities for
Bob to find particle 2 in different regions of space are always
the same, a fact that solves the paradox.

V. WIGNER ROTATIONS AND THE DETECTION OF
GENUINE FREE PARTICLE STATES

Before concluding, we would like to briefly discuss the
influence of the Wigner rotations on the detection of genuine
free particle states in different reference frames. A particle
in a superposition of momenta ψ̃(p) ∝ e−p2W 2/2 in the y

direction in the reference frame S(0), for instance, is what
we call a genuine free particle state, since the state can be
constructed without reflections of the wave function, with a

FIG. 2. (Color online) Modulus squared of the position wave
function of a particle in a quantum state with a momentum wave
function ψ̃(p) ∝ e−p2/(2m2c2) in the y direction seen from a observer
moving with velocity 0.995c ẑ when the spin state points in the x

direction (continuous red curve) and the z direction (dashed black
curve).

uniform potential in the whole space. We will consider here
that the spatial wave function ψ(y) is given by Eq. (3) with
K(p0) ∝

√
m/p0 [30]. In Fig. 2 we plot |ψ ′(y)|2 for the state

in a reference frame S(1) that moves with velocity β ẑ in relation
to S(0) when the particle spin in S(0) is prepared in eigenstates
of σ̂z and σ̂x for W = λ/h̄ = 1/(mc) and β = 0.995c. The
difference between the two cases is very small, especially when
it is considered that the detection probability corresponds to the
integral of the square modulus of the wave function in regions
greater than λ. This difference does not increase much by
choosing other values for W and β. However, the probabilities
of finding the particle in each region must be exactly the
same in both situations, otherwise a paradox similar to the
one previously discussed would appear. So, if in some cases
the difference is found to be above the quantum fluctuations,
this indicates that the definitions of the wave function and/or
detection probability used are nonphysical.

VI. CONCLUSION

To summarize, we have shown that the linear application
of the momentum-dependent Wigner rotations to the quantum
state of a massive relativistic particle in a superposition of
counterpropagating momentum states in combination with
a general model for particle detection leads to a paradox.
The paradox can be stated as an apparent consequence of
the imposition of the special relativity structure to quantum
mechanics implying that the Wigner rotations could permit
an instantaneous transmission of information between two
spatially separated parties, thereby violating special relativity.
Considering the physical implementation of the quantum
state, we discussed that the Wigner rotation depends on the
preparation method, such that, with a change of the reference
frame, the spin transformation of a state in a superposition of
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different momenta is not necessarily equivalent to the linear
application of the momentum-dependent Wigner rotation to
each momentum component of the state, a conclusion that
solves the paradox. The present work, together with our
previous works on the subject [27,28], shows that relativistic
quantum transformations cannot in general be computed only
by following a mathematical procedure. The physical meaning
of the transformations must always take precedence.

It is worth mentioning that it may be possible that by
modeling the particle detection by some more complicated
scheme, the paradox could be solved keeping the linearity
of the Wigner rotations. But note that the position operator
would have a very complicated dependence on the particle

momenta and spin in this case. Although we do not rule out
such a possibility, we believe that the solution we present for
the paradox is more reasonable due to its simplicity and clear
physical interpretation in the relativistic quantum information
context.
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