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Time-domain mapping of nonlinear pulse propagation in photonic-crystal slow-light waveguides
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We perform an experimental time-domain mapping of nonlinear pulse propagation through a two-dimensional
photonic-crystal waveguide. Our optical gating method allows for the complete reconstruction of the peculiar
propagation behavior in this highly dispersive structure. Temporal soliton formation is accompanied by fast
time-scale dynamics within the picosecond pulse regime. For high signal powers, the photonic waveguide band
is modified, leading to an acceleration of the propagated pulse.
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Two-dimensional photonic crystals (2D PhC) have been
the subject of extensive studies in recent years due to their
unique ability to control light propagation [1–3] thanks to the
engineering of their dispersive properties. PhCs, providing, as
well, strong field confinement in microscale semiconductor
waveguides, can be considered an ideal platform for exploring
nonlinear optical effects. They have already shown outstanding
performance in terms of power efficiency and footprint in
switches [4–6] and lasers [7].

Solitons have captured the attention of researchers in a wide
variety of domains ranging from hydrodynamics to biology as
well as plasma physics and nonlinear optics. In optics, the
solitary wave evolves from the interplay of the group-velocity
dispersion and the self-phase modulation due to the nonlinear
change in the refractive index. For usual values of optical
intensity and material nonlinearity, the space scale over which
soliton propagation can be observed, spans from centimeters
to meters [8].

In the particular case of 2D PhCs, GaInP line defect
waveguides [Fig. 1(a)], the low group-velocity (vg) regime
leads to the formation of temporal solitons in only a few
millimeters of propagation distance [9]. Close to the photonic
mode edge of this PhC waveguide, the nonlinearities are
readily accessed as they scale with the group index of
refraction, which varies from 4 to 20 in a 40-nm wavelength
span [see, for example, Fig. 1(b)]. Thus, it is easy to understand
why this kind of structure provides an interesting and unique
tool for the investigation of the behavior of temporal solitons
with spectral bandwidths on the order of nanometers.

In order to exploit the advantages provided by the low-
vg regime, precise characterization and management of the
group velocity is essential. Experimentally, the time-domain
mapping of pulses propagating through the waveguide is
conventionally characterized using pulse autocorrelation tech-
niques [10]. However, this method prevents the investigation
of the complex internal structure of the pulse, which can be
modified by subtle effects, such as the nonlinear dispersion
and transit delay with respect to the linear propagation.

This lack of knowledge in the precise temporal behavior
of the propagating pulses, on one side, can affect the practical
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engineering with errors in the control of the dispersion of
the device and, on the other side, will shade the emersion of
fundamental physics in the propagation characteristics.

For these reasons, in this Rapid Communication, we carried
out a direct reconstruction of the time-domain dynamics of
temporal solitons using a parametric amplification optical
gating method. We report the result of the cross correlation
with 90-fs reference pulses which allows us to retrieve the
precise dynamic behavior of the pulse after its nonlinear
propagation through the waveguide.

Our detailed experimental analysis is applicable and desir-
able for any situation of pulse propagation. However, it is in
the soliton formation environment where it becomes essential
as the huge group-velocity dispersion in PhC waveguides
combined with Kerr nonlinearity induces ultrafast dynamics
in the electromagnetic field even for picosecond pulses with
energies of only 10 pJ.

Our PhC sample is an L = 1.3-mm-long W1 waveguide
formed by one line of missing holes along the �K direction
in a hexagonal lattice of air holes drilled in a GaInP slab
membrane [9]. The schematic of the experimental setup is
shown in Fig. 2. An OPA provides 90-fs pulses at wavelengths
around 1.55 μm. Before being injected into the sample, the
pulses pass through a Dazzler [11] acousto-optical pulse shaper
(D), which is used to obtain the desired pulse shape, i.e., a
2.2-ps-long Gaussian pulse.

The sample is mounted on a nanopositioning stage, and
optical pulses are end-fire coupled via aspheric lenses. After
propagating through the PhC waveguide, the transmitted signal
is split between a SP and the nonlinear optical gating setup.
To gate the dispersed signal outputting the PhC waveguide, we
recombine it with powerful 800-nm 90-fs pulses in a β-barium
borate (BBO) crystal. The nonlinear interaction between the
two pulses amplifies the signal from the waveguide in the range
of 1490–1565 nm. The angle θ of the BBO crystal is varied in
order to phase match the interaction. The 800-nm pump pulses
are frequency doubled within the crystal to produce a blue
pump at 400 nm which enables the parametric amplification
of the infrared signal and the generation of a complementary
green signal at 540 nm. This is preferred to the up-conversion
gating technique [12,13] as it provides higher levels of signals.

A few additional steps are required to eliminate the
background noise. First, the green photons are efficiently
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FIG. 1. (Color online) (a) SEM image of the sample. (b) Group
index and group-velocity dispersion dependences on wavelength and
fit of experimental values.

detected using a GaP photomultiplier detector. The intense
red 800-nm pump pulses are suppressed with a long-pass
filter (F2 in Fig. 2). The green signal is detected in a
background-free configuration, avoiding the blue light arising
from the frequency doubling of the pump by using a 10◦ angle
between the signal to be measured and the pump. Residual
stray light is eliminated using a bandpass filter at 540 nm
(F1 in Fig. 2). Finally, the more insidious noise due to the
parametric fluorescence induced by the pump at 540 nm alone
of 550 nm is eliminated electronically through synchronous
detection.

The temporal mapping is carried out by optically delaying
the 800-nm pump pulse with respect to the signal and recording
the parametrically amplified signal as a function of the delay.
It is, thus, possible to map the temporal response of the pulses
transmitted by the waveguide with a resolution of 90 fs.

Prior to the investigation of the nonlinear optical response,
we performed a time-of-flight characterization of the lin-
ear pulse propagation through these waveguides using our
parametric amplifier gating method. This directly measures
the linear time delay �t of the pulses as a function of
wavelength. This characterizes the linear dispersion of the

FIG. 2. (Color online) Ultrafast measurement setup. Ti:sapphire
regenerative amplifier (RA) providing 90-fs 810-nm pulses to an
optical parametric amplifier (OPA), which, in turn, supplies a 1550-
nm idler to the D: Dazzler pulse shaper; other optics, P: polarizer; C:
chopper; DL: delay line; SP: spectrometer; F1: bandpass filter; F2:
long-pass filter B18; PM: photomultiplier; B: boxcar; and L: lock-in
amplifier.

FIG. 3. (Color online) Pulse reconstruction for different input
powers. Experimental results for (a) λ1 = 1525 nm and (b) λ2 =
1535 nm. Each measurement is normalized to the peak value.
(c) Delay with respect to the linear arrival time and (d) pulse widths as
a function of the input power: points: experimental results and solid
line: calculations.

waveguide, directly yielding the group index curve ng = c

�t/L [Fig. 1(b)]. The figure shows the dramatic increase in
ng as the wavelengths approach the band edge of the PhC.

For a wavelength of λ = 1525 nm, the linear dispersion
length and the effective length are defined, respectively, by
Ld = τ 2/β2 and Leff = 1/α1 where τ is the pulse duration,
β2 is the second-order term of the group-velocity disper-
sion [Fig. 1(b)], and α1 is the linear losses (absorption,
scattering,. . .). In our system, Ld and Leff are both on the
order of the length of the waveguide, i.e., a few millimeters.

We then measured the temporal evolution of the 2.2-ps
pulses transmitted through the waveguide as a function of
the incident pulse energy for different wavelengths. As an
example, in Figs. 3(a) and 3(b), the evolution of the pulse
as a function of the input pulse energy for λ1 = 1525 and
λ2 = 1535 nm is reported. Figure 3(c) shows the delay with
respect to the low energy and linear arrival time, and Fig. 3(d)
shows the pulse width (FWHM), both plotted as a function of
the input pulse energy.

In the low-intensity regime (<1 pJ), the 2.2-ps pulse
broadens during the propagation due to the linear dispersion
and chirp, reaching widths of 4.2 or 5.9 ps at the end of the
waveguide for λ1 and λ2, respectively.

The increase in the pulse energy coupled into the sample
accesses the nonlinearity of the GaInP material. In the range of
1–15 pJ, the pulse width narrows for both wavelengths clearly
showing the formation of temporal solitons. From Fig. 3(d),
we can see that, for an input energy of 20 pJ at λ1 = 1525 nm,
a 2.2-ps pulse is compressed to form a soliton that propagates
with a FWHM of ∼2 ps.

In the soliton theory, it is handy to introduce the soliton
number Ns = Ld/Lnl , given by the ratio between the dis-
persion length and the nonlinear lengths Lnl = 1/γP , where
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γ is the third-order nonlinearity and P is the pulse power.
Values on the order of Ns = 1 indicate that the dispersion
and self-modulation effects are nominally compensated. Ns

monotonically increases with the coupled energy, and values
greater than Ns = 1 indicate the potential formation of higher-
order solitons with multifold periodical temporal evolution of
the pulse envelope.

The calculated soliton number for an energy of 20 pJ is
Ns = 2.5. This means that, in an ideal situation, we should
already be in the presence of a second- or third-order soliton.
However, in our case, the strong influence of the three-photon
absorption (ThPA) of the material [9] sensibly reduces the
available power during the propagation and, thus, the nominal
Ns with the consequence that we can observe a simpler first-
order soliton.

More importantly, in Fig. 3(c), we can note that the arrival
time of the pulse is significantly advanced with respect to that
for lower input pulse energy. The pulses arrive up to 4 ps earlier
than at lower pulse energies. This pulse acceleration could not
be detected with conventional autocorrelation methods.

In the high-energy regime (>20 pJ), other nonlinear effects
start to take part in the propagation dynamics. We observe
a constant advance of the pulse, reaching 0.05–0.1 ps/pJ
with respect to the linear low-energy situation for λ1 and λ2,
respectively. This temporal advance is on the order of the
pulse width. Although we would expect the pulses to continue
to narrow for increasing energy (remembering that Ns � 1),
we, instead, record a counterintuitive broadening of the pulse
width that reaches values >5 ps for energies on the order of
45 pJ [Fig. 3(d)].

Notice that the actual energy inside the sample is lower
due to imperfect coupling. We estimate 4-dB energy insertion
losses at the input and output for a total linear transmittance
of 11%.

To explain both the unexpected acceleration and the broad-
ening at high pulse energies, we perform a numerical analysis
of the nonlinear interaction. The transversal confinement of
the field allows us to decouple the dynamics and to focus our
attention only in the longitudinal direction. The input field has
the shape,

E(z = 0,T ) = E0 exp[−(1 + iC)T 2/2τ 2], (1)

where E0 is the initial peak value and C is the initial linear
chirp, estimated as C = 0.8. We work in a retarded reference
frame with T = t − z/vg. We then assume that the propagation
is well described by a time-domain one-dimensional nonlinear
Schrödinger equation,
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FIG. 4. (Color online) Results of the calculation for λ1 =
1525 nm. (a) Pulse reconstruction for different input powers.
(b) Case with n4 = 0. (c) Case with γ1 = 0. (d) Results after the
autocorrelation.

are the scaled values of the nonlinear coefficients describing
the ThPA, third- [9], and quintic-order [14–16] nonlinearities,
respectively. nbulk = 3.12 is the index of refraction of InGaP,
ω0 = 2πc/λ, c is the speed of the light in the vacuum, Aeff and
A5eff are effective areas given by the transverse localization of
the field in waveguides [9].

The wavelength dependence of the third-order nonlinear
coefficient has been taken into account by introducing the
first-order Taylor expansion in the frequency domain around
ω0,

γ (ω) = γeff(ω0) + (ω − ω0)
∂γeff

∂ω

∣∣∣∣
ω0

= γeff(ω0) + γ1(ω − ω0). (3)

In Eq. (2), we omitted the terms for the effects of third-order
dispersion (β3 = 0.053 ps3 mm−1) and free carriers (Nc ∼
1015 cm−3 at maximum) having verified that they could be
neglected in our operating regime. The equation is solved
via a standard fast-Fourier-transform-based split-step beam
propagation method [8], and the results are depicted in
Figs. 3(c) and 3(d) (solid line) and Fig. 4. In particular, in
Fig. 4(a), the pulse reconstruction is plotted for different input
energies for λ1 = 1525 nm and can be compared to Fig. 3(a).
In Figs. 3(c) and 3(d), we plot the calculated pulse delay
and widths. The agreement with the experimental results is
evident.

We have introduced two terms into Eq. (1) to explicitly
model our experimental results. First, a δeff term, which
depends on n4 accounts, at the first order, for the saturation of
the Kerr effect of the material at high intensities [12]. Including
the quintic order, the nonlinear index can be written as

n = n0 + n2I − n4I
2. (4)

The saturation point is nominally reached at the intensity given
by Isat = n2/2n4 [14]. For λ1 = 1525 nm, considering 20 pJ as
the saturation point, (the point where we obtain the maximum
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nonlinear index), we can estimate n4 ∼ 1.0 × 10−31 m4/W2.
Our theory, including n4, accurately reproduces the narrowing
to a minimum of 2 or 2.9 ps for λ1 and λ2, respectively, and
the subsequent broadening for higher energies. In Fig. 4(b),
we show the results in the case where we set n4 = 0.
The pulse preserves the acceleration, but it continues to be
compressed as predicted by the pure-n2 soliton theory. The
maximum compression reaches values of ∼0.5-ps FWHM,
and we can observe the presence of high-order solitons at
high energies. Even if the dynamics involved are very rich, we
strongly believe that the observed behavior can be explained
excluding effects other than high-order Kerr effects. On the
other hand, we do not exclude that, for higher-energy regimes,
similar effects can also stem from higher than quintic-order
contributions to the nonlinear index.

Second, the |E|2 term that depends on γ1 in Eq. (1) is
responsible for the acceleration of the propagating pulse. Due
to the strong dispersion of γeff , it is important to include the
effect of the first order of the Taylor expansion around ω0. The
analytical expression of γ1 is given by

γ1

γeff
=

(
1

ω0
+ 2

ng

∂ng

∂ω
− 1

Aeff

∂Aeff

∂ω
+ 1

n2

∂n2

∂ω

)
. (5)

In the case of bulk material, with a negligible dispersion
of n2, Eq. (4) reduces to γ1/γ = 1/ω0 (on the order of
a few femtoseconds) [17], and it is easy to recognize the
correspondent term in Eq. (2) as the so-called shock term. This
term has been deeply studied for ultrashort pulses (∼10-fs
long) [8,17,18] where it produces a shift in the peak of
the propagating pulse. In the other regimes, it is generally
negligible. However, in our particular case, the full expression
must be considered due to the strong variation in the group
index and the effective area. To fit the experimental results
in this Rapid Communication, we have taken γ1/γeff = 0.20
and 0.24 ps for λ1 and λ2, respectively. This is in agreement
with the values given in Ref. [9] where, with a mixture of
three-dimensional FDTD calculations and material character-
izations, it has been estimated that, for these particular GaInP
line defect waveguides, the value of γ1 can vary in the range
of γ1/γeff = [0.1 − 0.4] ps.

In Fig. 4(c), we show the results of the calculation as in
Fig. 4(a) but setting γ1 = 0. The pulse preserves the narrowing
and broadening effects due to the interplay of n2 and n4, but its
arrival time at the end of the waveguide is constant. Therefore,
it is clear that the acceleration is due to the enhancement of
the shock term in the picosecond regime.

Finally, in Fig. 4(d), we plot the results after we performed
an intensity autocorrelation as we expect from classical auto-
correlation measurements. It is easy to see that the acceleration
of the pulse is not detectable. This is a clear example on how
our gating method is able to unveil fundamental dynamics,
otherwise, experimentally inaccessible.

In conclusion, we have experimentally explored the effects
of dispersion and nonlinearity on picosecond pulse prop-
agation in a 2DPhC line-defect waveguide. In this Rapid
Communication, an optical gating technique has been suc-
cessfully applied to carry out an in-depth analysis of the
temporal dynamics of soliton propagation. The signal mapped
by the parametric amplification demonstrates the formation
of solitons at specific wavelengths and input powers. This
corresponds to the delicate balance between the group-velocity
dispersion and the self-phase modulation for an input energy
on the order of 20 pJ. At higher signal powers, the group
velocity is strongly modified by higher-order nonlinear effects
leading to an acceleration of the pulse.

Our time-domain analysis is crucial for PhC waveguides as
the interplay between the large group-velocity dispersion and
the low group-velocity/high-field confinement of the optical
modes allows us to observe solitons for tens of picojoules of
input power.

The harnessing of these characteristics, through controlled
tailoring of the structure, will permit precise dispersion control,
applicable to group delay lines, pulse shaping, and dispersion
compensation devices at telecom wavelengths.
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