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Dynamic localization of a weakly interacting Bose-Einstein condensate in an anharmonic potential
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We investigate the effect of anharmonicity and interactions on the dynamics of an initially Gaussian wave
packet in a weakly anharmonic potential. We note that, depending on the strength and sign of interactions and
anharmonicity, the quantum state can be either localized or delocalized in the potential. We formulate a classical
model of this phenomenon and compare it to quantum simulations done for a self-consistent potential given by
the Gross-Pitaevskii equation.
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Atoms inside anharmonic traps display a variety of phe-
nomena including wave-packet spreading due to dephasing,
and quantum revivals [1,2]. Additionally, system behavior
is also strongly influenced by particle-particle interactions:
For example, theoretical [3] and experimental [4] studies
have demonstrated that interactions alter the frequency of
collective modes of a Bose-Einstein condensate (BEC). Re-
cently, systems with both anharmonicity and interactions have
been studied. The effects of interactions and anharmonicity
on the stability of stationary states [5,6], collective motion
[7–10], and dynamics of coherent states [11] of BECs have
been investigated analytically and numerically. Additionally,
experimental work has also studied the dynamics of BECs in
the presence of anharmonicity [12–14].

Here we consider the quantum evolution of an initially
Gaussian wave packet in a one-dimensional trap with both
interactions and anharmonicity, using the description
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where Va = βx4/4 and Vint = u|ψ |2. This can be considered
as the mean-field approximation for the condensate wave
function ψ(x,t) of a BEC with interactions, and is known as
the Gross-Pitaevskii (GP) equation [15–17]. Here β quantifies
the anharmonicity of the trap, and u is a nonlinear interaction
strength, which quantifies repulsive (u > 0) or attractive
(u < 0) interactions. We consider the regime where Va,Vint are
smaller than the harmonic oscillator Hamiltonian, and adopt
harmonic units x = x̄/(

√
h̄/mω0), t = ω0 t̄ , where x̄ and t̄ are

the unnormalized units, ω0 is the frequency of the harmonic
oscillator, m is the mass, and the position and momentum
operators x and p satisfy [x,p] = i, with the normalization∫

dx|ψ |2 = 1. We numerically solve Eq. (1) using a split-step
Fourier method [18]. One possible experimental realization is
the use of a Feshbach resonance [19–22] in order to sample
small repulsive and attractive interaction strengths. Consider
an initial, approximately Gaussian wave packet centered at
x = xc, with symmetric widths in x and p, �x = �p = √

1/2.
This state may be formed by taking the confined ground state
at the center of the potential and discontinuously shifting the
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potential to the left by an amount xc. In the case where the
potential is formed by the interference of two laser beams, this
shift might be accomplished by changing the relative phase of
the two beams, for example, as in Ref. [23].

In the absence of interactions, a wave packet that overlaps
many energy eigenstates of an anharmonic trap will dephase
due to the nonuniform spacing of the relevant energy eigen-
states. A classical interpretation is that in the phase space,
an initial Gaussian distribution subtends various action tori,
each with a different frequency. Thus, different parts of the
distribution function rotate in the phase space at different rates,
leading to spreading of the initial distribution function.

In the presence of interactions, however, we have
numerically observed what we term a “dynamical localization”
phenomenon in the time evolution of the position density of
the wave packet. For some choices of interaction strength u

and anharmonicity β, the wave packet does not spread over
the trap, while for others it does. This is illustrated in Fig. 1,
where Figs. 1(a)–1(c) illustrate the position density |ψ |2,
obtained from solution of Eq. (1), at late times (t = 1999) for
β = 1.89 × 10−4 and three values of interaction strength, one
attractive [Fig. 1(a)] and two repulsive [Figs. 1(b) and 1(c)].
Only in the weakly repulsive case [Fig. 1(b)] does the wave
function spread throughout the trap as it would in the absence
of interactions. Figure 1(d) displays the value of σxσp, where
σx (σp) is the standard deviation of position (momentum),
averaged from t = 1899 to t = 1999, for various choices in
u and β, and xc = −8. A localized state will have smaller
values σxσp, shown as dark regions, while a delocalized
state will have larger values, shown as bright regions. The
two quadrants having uβ < 0 exhibit a localized behavior,
while the two quadrants having uβ > 0 exhibit a mixture of
localized and delocalized behavior. The solid (blue) straight
lines in Fig. 1(d) are results of an approximate theory (given
below) for the parameter boundaries separating localized and
delocalized behavior. It is important to note that, though
one might intuitively expect attractive interactions (u < 0) to
always lead to localization, Fig. 1 demonstrates that this is not
so. In fact, for a given value of u, both localized and delocalized
behavior is possible, and reversing the sign of both u and β

leads to the same behavior.
To gain insight into the results represented in Fig. 1, we

introduce a classical model for the dynamical localization
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FIG. 1. (Color online) (a)–(c) The position density |ψ |2 at
t = 1999 for β = 1.89 × 10−4 with different values of u: (a) u =
−0.2586, (b) u = 0.1552, and (c) u = 0.50. Note that increasing
repulsive interaction strength can lead to localization. (d) Values
of σxσp for different values of u and β. Bright regions indicate
delocalized behavior (large σxσp), and dark regions indicate local-
ized behavior (small σxσp). The solid lines (blue) are theoretical
predictions separating regions of poor initial confinement and strong
initial confinement.

effect, which is motivated by our initial choice |xc| = 8, in
terms of a classical Hamiltonian. We note for the case of
Fig. 1, where the state before the shift of the potential is
approximated by the ground state of the harmonic oscillator,
that, after the shift of the potential, one can show that the
state overlaps on the order of |xc| energy levels. Hence, if |xc|
substantially exceeds one, we expect that a classical treatment
will be relevant. Thus we start by considering the classical
phase space evolution of the distribution function f (x,v,t) of
a one-dimensional harmonic oscillator with Hamiltonian H0 =
p2/2 + x2/2. Suppose the distribution function is initially
Gaussian (in analogy to the initial Gaussian wave packet in
the quantum case) and is displaced away from the bottom
of the potential so that it is centered about a point in phase
space (xc,0). In the absence of interactions and anharmonicity,
this distribution coherently orbits in the phase space, since
the frequency is independent of the action. We introduce
as small perturbations an anharmonic potential Va = βx4/4,
as well as a self-interaction potential Vint = un(x,t), where
n(x,t) = ∫

dvf (x,v,t) is the density. The Hamiltonian is
then H = H0 + εVa + εVint, where ε is an order counting
parameter. Since Va and Vint are small perturbations to the
harmonic oscillator Hamiltonian H0, the center of the phase
space distribution continues to oscillate in the potential at a
frequency 	 close to the unperturbed value of one. Changing to
the action-angle variables of the unperturbed oscillator, J and
θ , and moving to a rotating frame φ = θ − 	t , the equations

of motion become

dJ/dt = −∂H/∂φ, dφ/dt = ∂H/∂J,

H = J (1 − 	) + εβJ 2 sin4(φ + 	t)

+ εVint[
√

2J sin(φ + 	t),t], (2)

where p = √
2J cos(θ ) and x = √

2J sin(θ ). Recalling that
Va and Vint are small perturbations to the harmonic oscillator,
we note that there are two different time scales: a fast time
corresponding to the center-of-mass motion of the distribution
function, and a slow time over which the shape of the distri-
bution function evolves. We implement a separation of time
scales t → t0, t1 = εt0, J = J0 + εJ1, and φ = φ0 + εφ1. We
also expand the oscillation frequency of the center of the
distribution function as 	 = 1 + εδ	. Averaging the resultant
equations of motion over the period of the fast-time scale, and
requiring that 〈∂J1/∂t0〉 = 〈∂φ1/∂t0〉 = 0 (i.e., the correction
terms do not grow secularly as functions of t0) yields equations
for the slow-time evolution:

dJ0/dt1 = −∂ 〈H 〉/∂φ0, dφ0/dt1 = ∂ 〈H 〉/∂J0,

〈H 〉 = 3
4βJ0

(
1
2J0 − Jc

) + 〈Vint〉 , (3)

where Jc = x2
c /2. The evolution of the slow-time trajectories

(or the trajectories averaged over the short period) approxi-
mately follow contours of constant 〈H 〉. We have determined
the value of δ	 by requiring that φ̇|Jc

= 0 since we are in a
moving frame such that the center of the distribution function
is stationary, and assuming no contribution to the frequency
from 〈Vint〉. In order to average the interaction potential,
we are required to average the density over an oscillation
period. Recall that the initial phase space distribution is
Gaussian in x and p, centered about some x = xc, p = 0 with
width �x = �p = � = √

1/2. We now evaluate 〈Vint〉 for the
early-time evolution of the phase space distribution, i.e., when
that distribution is still approximately Gaussian. Noting that
the Gaussian distribution does not change appreciably over
one oscillation period allows us to average Vint, leading to

〈Vint〉 = u

2π
√

π

∫ 2π

0
dt0 exp{−[

√
2J sin(φ0 + t0)

−
√

2Jc sin(t0)]2}. (4)

Numerically calculating the average of the potential, we
can then estimate 〈H 〉. Figures 2(a)–2(d) plot contours of 〈H 〉
in black for different choices of interaction strength u and
anharmonicity β, with Jc = 32, |xc| = 8.

There is a difference in the nature of the phase space when
u and β have opposite signs [Figs. 2(a) and 2(b)] and when u

and β have the same sign [Figs. 2(c) and 2(d)]. From Eqs. (3)
and (4), we see that reversing the sign of both u and β leaves
phase space unchanged. For u and β of opposite signs, a fixed
point is present at (J,φ) = (Jc,0), and a separatrix (shown
in bold) separates free-streaming trajectories from trajectories
orbiting the fixed point. In contrast, for u and β of the same
sign, while an elliptic point is still present at (J,φ) = (Jc,0),
additional hyperbolic points typically appear on the φ = 0
axis. A separatrix (bold) again separates trajectories which
orbit about the fixed point from those that do not, and the
trajectories immediately outside the separatrix are swept away
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FIG. 2. (Color online) Contours of 〈H 〉 (black/dotted curves)
for various values of interaction strength u: (a) u = −0.20, (b)
u = −0.02, (c) u = 0.10, and (d) u = 0.5 with β = 2 × 10−4. Sep-
aratrices are shown in bold, separating free-streaming and confined
trajectories. In red/solid curves are numerically calculated trajectories
under the influence of an external potential of the form in Eq. (4).
The trajectories consist of short-time (fast oscillations) and long-time
behavior.

from the region of the fixed point to values of higher J . Note
that the size of the region of confined trajectories increases for
larger values of |u/β|. Plotted in color in Fig. 2 are numerically
calculated trajectories with Vint given by Eq. (2). As can
be seen, the trajectories have both a short-time motion (fast
oscillations) and long-time motion in the phase space, with the
long-time motion given approximately by the contours of 〈H 〉.

We interpret the formation of a classical elliptic region
around (J,φ) = (Jc,0) as arising from a nonlinear resonance
[24] between the integrable motion of the anharmonic well
and a periodic driving term. This has been studied quantum
mechanically, for example, in the rovibrational modes of
diatomic molecules [25] and in the dynamics of Rydberg atoms
[26,27]. One important difference is that, in this example, the
driving is not due to an external field. Rather, the condensate or
wavepacket drives itself on resonance because Vint = un(x,t).
As we discuss below, this feedback between the density and
Vint can lead to dynamics which can either be localizing or
delocalizing.

Figure 2 is constructed using a prescribed oscillating
Gaussian potential. We now replace it with the self-consistent
interaction potential Vint = un(x,t). The contours of 〈H 〉
found from Eqs. (3) and (4) will only describe classical
trajectories for early times unless the wave function retains
its localized character. To this end we consider the size of the
confining region compared to the extent of the Wigner function
(the quantum analog to the phase space distribution, which is
equal to the Gaussian distribution function at t = 0).

Building upon insight gained from the classical model,
it is reasonable to expect that if an initial Wigner function
is well confined, that is, enclosed in the classical separatrix
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FIG. 3. (Color online) The Husimi functions at (a), (b) t = 0 and
at (c), (d) t = 1999 under the influence of the GP equation. In (a) and
(b), the classical separatrix from the early-time model is plotted in
bold. In (a), u = 0.5, β = 2 × 10−4, and the initial condition is well
contained inside the classical separatrix found with the early-time
model. In (b), u = 0.1, β = 2 × 10−4, however, the initial condition
extends well beyond the classical separatrix. (c) demonstrates that the
initially well-contained wave packet continues to remain localized at
late times, while (d) demonstrates that the poorly contained wave
packet has spread in the potential (color scale narrowed to show
detail). [In (c) we have applied a small shift �φ = 0.31 to recenter
the Husimi function on φ = 0.]

denoting orbiting trajectories, the Wigner function will remain
localized in the phase space at later times. Similarly, if the
Wigner function is not well confined in the separatrix, then
at later times it will become delocalized in the phase space.
Qualitatively, as the wave packet leaves the confining region,
the strength of Vint decreases. This altering of the potential
leads to time-dependent behavior with more of the wave packet
leaving the confining region, and coexistence of a delocalized
component of the state, and a localized component (most easily
seen in the Husimi function representation) at lower values of
action.

For example, in Figs. 3(a) and 3(b) we plot the initial Husimi
function Q(J,φ) (equivalent to the Wigner function smoothed
over a Gaussian function in order to assure non-negative values
for all times) in the (J , φ) coordinates at t = 0 for various val-
ues of u with β = 2 × 10−4. Plotted in bold is the classical sep-
aratrix from the Gaussian model described previously, for the
figures’ respective values of u and β; in Fig. 3(a), u = 0.5 and
β = 2 × 10−4, while in Fig. 3(b), u = 0.1 and β = 2 × 10−4.
We note that in Fig. 3(a), the Husimi function is still relatively
localized inside the classical separatrix at late times [Fig. 3(c)].
However, in Fig. 3(b), where the initial Husimi extends beyond
the classical separatrix, the Husimi function it not as well
localized inside the classical separatrix at late times [Fig. 3(d)].
The quantity F appearing in Figs. 3(a) and 3(b) is the fraction
of the initial Wigner function which lies inside the confining
separatrix, and reflects the difference in initial confinement
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between the two cases. Similar Husimi function plots can be
made for u/β < 0, with initial states well confined by the
classical separatrix remaining localized at later times.

We test the separatrix expectation numerically by choosing
different values of u and β, and calculating the quantum
evolution of an initially Gaussian wave packet centered at
(x,p) = (−8,0). Recall that the classical model demonstrates
that the size of the confining region is dependent on the sizes
and signs u and β. Using our classical model, we find for given
values of u and β the fraction of the initial Wigner function that
is contained in the confining separatrix F (u,β). Figure 1(d)
plots in color (bold lines) contours of F (u,β) corresponding
to F = 0.9. Note that regions yielding poor initial, classical
confinement, F < 0.9, correspond to delocalized wave packets
at late times, while regions yielding substantial initial confine-
ment, F > 0.9, correspond to localized wave packets at late
times. Additionally, we have seen good agreement between
localized (delocalized) numerical solutions and well (poorly)
confined regions for other values of initial displacement that
we have considered, |xc| = 6 and 9.5. It should be noted that
this model produces similar behavior to numerical [11] and
experimental [13] results reported previously for u > 0 in the
strongly interacting regime. While keeping u fixed, as the
effect of anharmonicity is increased (in this case by making β

more positive, or in the previously reported cases by increasing
the value of |xc|), the wave packet becomes delocalized in the
phase space, as seen in Fig. 1.

We note that one of the interesting features of our model
is the invariance of the appearance of localization under
simultaneous sign changes of u and β. This is reflected in
both the numerical results of the GP equation [Fig. 1(d)] and
the topology of classical phase space (Fig. 2). The tendency to
form a localized state is strongest when u and β have opposite
signs: that is, when the trap oscillation frequency increases

with action (β > 0) and interactions are attractive (u < 0),
or oscillation frequency decreases with action (β < 0) and
interactions are repulsive (u > 0), which is verified by the
numerical results of Fig. 1(d). The classical confining region
is larger when u/β < 0, causing states to be well confined
initially, and remain localized at later times. This latter case is
an analog of the “negative mass instability” [28,29] that leads
to bunching of a charged particle beam undergoing circular
motion when the angular frequency decreases with energy.
Particles leading the bunch are repelled by the bunch, gain
energy, lower their rotation rate, and fall back towards the
bunch. By this process, a beam with a uniform distribution of
rotation phases will spontaneously form a bunch. Likewise,
in a trap an initial wave function that is delocalized will
spontaneously tend to bunch.

Finally, we note that the interaction values considered
here are accessible in experiments. One possible experimental
realization is a lattice of one-dimensional “tubes” formed
by the interference of multiple lasers [30]. In our units, the
required s-wave scattering length as is related to the interaction
parameter u as as = uω0δ/(2Nω⊥) [18], where N is the
number of atoms per tube, ω⊥ is the frequency in the transverse
direction, and ground-state width δ = [h̄/(mω0)]1/2. Taking
ω⊥/(2π ) ∼ 49 kHz (which is reasonable with light of wave-
length λ = 1064 nm and the atomic species 39K), ω0/(2π ) = 2
kHz, N = 100, and u = 0.5 leads to as ∼ 0.036 nm. Recently,
a group [21,22] used the Feshbach resonance in 39K to achieve
as as small as 5.29 × 10−3 nm.
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