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Analytic asymptotic performance of topological codes
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Topological quantum error-correction codes are extremely practical, typically requiring only a two-dimensional
lattice of qubits with tunable nearest-neighbor interactions yet tolerating high physical error rates p. It is
computationally expensive to simulate the performance of such codes at low p, yet this is a regime we wish to
study as low physical error rates lead to low qubit overhead. We present a very general method of analytically
estimating the low-p performance of the most promising class of topological codes. Our method can handle
arbitrary periodic quantum circuits implementing the error detection associated with this class of codes, and
arbitrary Pauli error models for each type of quantum gate. Our analytic expressions take only seconds to obtain,
versus hundreds of hours to perform equivalent low-p simulations.
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Constructing a quantum computer is one of the grand
challenges of modern physics. A quantum computer con-
sists of many quantum bits (qubits) that can be initialized,
interacted, and measured. A number of proposals exist for a
two-dimensional (2D) array of qubits with tunable nearest-
neighbor interactions [1–4]. Any 2D topological quantum
error-correction code [5–9] and some 3D codes [10,11] can
be mapped with little or no overhead to such hardware.
Despite the undemanding physical requirements, most forms
of topological quantum error correction (TQEC) possess very
high threshold error rates. The threshold error rate of a quantum
error-correction code is the physical error rate pth below which
it is possible to perform arbitrarily reliable universal quantum
computation. The best TQEC schemes possess threshold
error rates of order 1% [12,13]. No known class of codes
possesses the potential to enable lower overhead universal
quantum computation than TQEC [14]. As such, we believe
the analytical method we present should be utilized by all
qubit-based experimental approaches to rapidly and accurately
provide feedback on proposed designs.

Before proceeding further, some general background is in
order. There are at least three distinct classes of topological
quantum computing currently under investigation. The first
class, and the one in which we are interested, requires a 2D
array of qubits and switches off qubits in specific patterns
in order to achieve computation [15]. The second class also
requires a 2D array of qubits, but deforms the pattern and
timing of interactions to achieve computation [16]. The third
class does not use an underlying layer of qubits, rather making
use of exotic physical systems such as the fractional quantum
Hall effect [17]. Our work deals exclusively with the first
class of TQEC schemes, which we believe have the greatest
potential to lead to a commercial quantum computer.

A quantum gate U is a specific manipulation of one or
more qubits. For example, Pauli X is a single-qubit quantum
gate. A quantum circuit specifies when and to which qubits
a number of quantum gates should be applied. Viewing the
2D array of qubits together with the duration of a quantum
computation as a 3D volume, we define a TQEC circuit to
be any 3D periodic quantum circuit that detects errors (using
combinations of single-qubit measurement results) in such a
way that detection events can be unambiguously divided into

two classes, primal and dual (Fig. 1), and a single physical
error away from boundaries of the 3D volume always leads to
0 or 2 local primal and dual detection events.

Since distinct detection events are associated with distinct
sets of qubit measurements, and measurements begin at
specific space-time locations, every detection event can be
systematically associated with a unique point in space-time.
We can use our tool AUTOTUNE [18], which takes as input
the generic TQEC circuit structure, Pauli error models for
each gate, the code distance d, and the global physical error
rate p, to efficiently determine the total probability of single
errors leading to a pair of (primal or dual) detection events
at any chosen pair of space-time locations. We visualize each
such probability as a cylinder between the relevant space-time
locations with diameter proportional to the probability. We
call each cylinder a stick, and call any large collection of
sticks a nest. Figure 2 contains an example of a (primal)
nest generated by AUTOTUNE. This nest is associated with
the surface code [19–21]. Only a basic understanding of the
definitions of detection events and nests contained in this
paragraph is required to read this work.

The distance d of a TQEC instance can be determined
from its nests by counting the minimum number of sticks
required to connect distinct boundaries, and measures the
error-correction strength. Boundaries in Fig. 2 are indicated
by sticks apparently leading to nowhere, so it can be seen that
this example has distance d = 4. By analyzing a particular
nest in the limit of large d, we have been able to prove [22]
that the surface code possesses a nonzero threshold error rate
when minimum weight perfect matching [23–25] is used to
correct errors. In this work, we extend the techniques of [22]
much further, and describe how to automatically calculate two
analytic expressions, the primal logical error rate p

pr
L (d,p) and

the dual logical error rate pdu
L (d,p) per round of error detection,

valid for even d, giving the asymptotic low-p performance
of any TQEC circuit as defined above with any Pauli error
model for each type of gate. Our method requires seconds
of computation versus typically hundreds of hours to do an
equivalent simulation-based low-p analysis of a TQEC circuit.
Our expressions can be used to estimate the total probability of
error and overhead of complete quantum algorithms mapped to
realistic hardware (see Appendix M of [15]). In essence, since
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FIG. 1. Small patch of a topological code. Circles represent
qubits; operators Mi are measured repeatedly to detect errors. An
X error on the central qubit will change the measured eigenvalues of
M2 and M3. This generates two detection events, which we arbitrarily
call dual detection events. A Y error generates a pair of primal and
dual protection events.

we are using TQEC, the performance of an entire computer
can be determined by studying any local patch.

We begin with a few definitions. A logical operator is any
path of sticks connecting distinct boundaries. A fault is any se-
lection of d/2 sticks from a logical operator. The probability of
a logical operator pop or fault pf is the product of probabilities
of its constituent sticks. We define the compliment probability
pc to be pop/pf , namely the product of the probabilities of
the sticks in the logical operator that are not in the fault. Note
that more than one logical operator can contain the same fault.
Minimum weight perfect matching based TQEC [13,25] fails
when a fault occurs that is contained in a logical operator such
that pc > pf . The matching algorithm will insert corrections
corresponding to the most probable selection of sticks that

FIG. 2. (Color online) An example of a surface code nest. Each
cylinder’s diameter represents the total probability of a single error
leading to detection events at the end points of the cylinder. Time
runs vertically. See the main text for further discussion.

generates the observed detection events, which will result in a
logical operator that corrupts the stored quantum data. Failure
will also occur 50% of the time when pc = pf as this case
corresponds to two different equally probable complementary
faults that lead to the same detection events. Given the identical
detection events for both faults, matching will randomly
succeed 50% of the time.

Each layer of boundary sticks in Fig. 2 corresponds to
the execution of a single round of error-detection circuitry—a
complete period of the circuit. Our goal is to formally define
and determine the total probability of all faults causing failure
per round of error detection.

The first step toward our goal is to imagine we have a nest
of infinite temporal extent and to choose a particular round of
error detection to focus on. More specifically, we wish to focus
on the boundary sticks associated with a single boundary in that
round. In practice, we generate nests with 2d + 4 rounds, as
shown in Fig. 2, and choose round d + 2—this ensures that ev-
erything we consider is well away from temporal boundaries.

Armed with our chosen boundary sticks, we sequentially
generate every d-stick logical operator starting on each of
these boundary sticks and every fault contained in each logical
operator. Every time we generate a new fault, we add it to a set,
including its value of pc relative to the current logical operator.
If the fault is already present, pc is adjusted to the maximum of
the old and new values. This is done to make sure that only the
most likely fault compliments are considered. When complete,
we will have a base set of faults.

We need a set of faults uniquely associated with each round
of error detection. Our base set is too large, containing many
faults that should be associated with earlier or later rounds. We
therefore consider the boundary sticks one round higher, round
d + 3, and again sequentially generate every d-stick logical
operator and fault. If a fault is not found in our base set, we
add it to a new set, which we call the step set, adjusting pc if
required as described above if the fault is already in the step
set. If a fault is found in our base set and the new pc is higher,
the fault is moved to the step set with the new pc. The step set
constructed in this manner does not contain faults that should
be associated with rounds in the past. It will, however, contain
faults that should be associated with rounds in the future.

We continue considering successively higher rounds of
boundary sticks, sequentially generating all logical operators
and faults until we fail to generate a single fault matching a
fault in step but with higher pc. When this process is complete,
our step set will contain only faults best associated (highest pc)
with logical operators making use of one of the d + 3 round
boundary sticks. We can now sum the fault probabilities pf , us-
ing a scale factor of 0 if pf > pc, 0.5 if pf = pc, or 1 if pf < pc.

Having described our method, we turn our attention to its
performance. Figure 3 shows simulation data for a standard
surface code making use of initialization to |0〉 and |+〉 and
measurement in the Z and X bases each with probability p

of failure, CNOT and identity gates with depolarizing noise of
probability p, and all gates of equal duration. These seemingly
innocuous curves took over 1500 CPU hours to generate, with
the vast majority of the time spent generating the lowest p data
points. Despite the substantial computational effort, it can be
seen that the d = 8 curves in particular have not yet converged
well to their expected low-p quartic asymptotic form (quartic
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FIG. 3. (Color) Probability of (top) logical Z (primal) and
(bottom) logical X (dual) error per round of error correction for
surface code distances d and physical error rates p. The asymptotic
curves (dashed lines) are quadratic, cubic, and quartic.

due to any fault leading to failure involving a minimum of
four sticks). The coefficients A of each simulation determined
Apd/2 can be found in Table I, along with the time required
to obtain the lowest-p data point. Note that our simulations
include the full depolarizing channel and hence all of our
simulations return both the primal and dual performance.

Table I also contains analytic coefficients B obtained using
our method. For distances 4 and 6, where decent asymptotics
could be obtained using stochastic simulations, the agreement
is good. Discrepancies may be due to the assumption in the
analytic calculation of independent stick probabilities, which
are not independent in simulations. In simulations, a single
physical error can typically lead to one of three sticks [12], and

TABLE I. Surface code distance d , stochastic simulation deter-
mined primal and dual asymptotic coefficients (Apd/2), time required
to obtain the lowest-p data points used to calculate the asymptotic
coefficients, analytic primal and dual asymptotic coefficients (Bpd/2),
and time required to perform the analytic computation. Given a dis-
tance d code, at least d/2 errors must occur for correction to fail, each
of which occurs with probability proportional to p, hence the Cpd/2

form of all low-p curves, where C is one of the values in this table.

d Apr Adu tA (h) Bpr Bdu tB (s)

4 2.79 × 102 2.08 × 102 270 2.90 × 102 2.33 × 102 0.5
6 1.12 × 104 7.32 × 103 480 1.08 × 104 7.38 × 103 2
8 6.44 × 105 4.98 × 105 480 3.99 × 105 2.39 × 105 7
10 1.47 × 107 7.73 × 106 70

there is no probability of it leading to more than one stick. It is
reasonable to ignore this effect as any given stick can typically
be generated by approximately half a dozen errors, implying
the conditional probability would be significantly different,
but not so different as to invalidate the approach. Given the
fact that a Pauli error model is a significant approximation of
the physics of real devices, the maximum 12% discrepancy
for distance 4 dual asymptotics is of no practical concern. Of
great practical benefit is the ability to analytically estimate
the asymptotics of distances out of reach of simulation. It can
be seen from Fig. 3 that the distance 8 asymptotic curve is
expected to be lower, an expectation that is confirmed by the
analytics in Table I. We can now claim a solid understanding
of the error processes leading to failure in TQEC schemes of
the type considered in this work.

From [22], we expect exponential suppression of logical
error with increasing d at fixed p below threshold. This
expectation is supported by the ratio of successive pairs of
primal B coefficients being approximately 37 and that of the
dual B coefficients being approximately 32. This allows us to
write p

pr
L (d,p) = 0.21(37p)d/2 and pdu

L (d,p) = 0.23(32p)d/2,
valid for p � 10−4. Note that only the distance 4 and 6 analytic
data are required to construct these expressions, requiring
2.5 s of computation versus 750 h to obtain the same data
by simulation, a factor of a million improvement.

It has long been believed that error rates of 10−4 are
a reasonable experimental target [26,27]. Experimentally,
single-qubit measurement with error rate 10−4 and initializa-
tion with error 10−5 have been demonstrated [28]. Single-qubit
unitary gates have been demonstrated with error 2 × 10−5

[29]. Two-qubit gates are the most technically challenging,
with Bell state preparation with error 7 × 10−3 the current
state-of-the-art [30]. There is no physical reason to believe
the technical challenges cannot be overcome and similarly
low-error two-qubit gates achieved. All of these experiments
were performed using ion traps [31], a technology well-suited
to implementing a 2D array of qubits with tunable nearest-
neighbor interactions [2]. We are investigating more complex
methods of analytically calculating accurate logical error rates
at higher physical error rates.

In summary, we have described a highly computationally
efficient method of obtaining accurate analytic expressions de-
scribing the low-p performance of topological quantum error
correction, the form of quantum error correction that leads to
the lowest space and time overhead for large quantum com-
putations, and the parameter region that was previously com-
putationally almost inaccessible. Our method can cope with
the details of real hardware, including geometric constraints,
gate duration asymmetries, gate error rate asymmetries, and
arbitrary Pauli error models for each type of gate as our
method builds on our tool AUTOTUNE. We expect our method
to facilitate the real-time interactive investigation of the de-
pendence of the error-correction performance on the details of
the hardware, something impossible via simulation, greatly as-
sisting the search for less experimentally challenging pathways
toward large-scale commercially viable quantum computation.
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