
RAPID COMMUNICATIONS

PHYSICAL REVIEW A 87, 040101(R) (2013)

Calculation of parity-nonconserving optical rotation in iodine at 1315 nm
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We examine the feasibility of a parity nonconserving (PNC) optical rotation experiment for the 2P3/2 → 2P1/2

transition of atomic iodine at 1315 nm. The calculated E1PNC to M1 amplitude ratio is R = 0.80(16) × 10−8.
We show that very large PNC rotations (greater than 10 μrad) are obtained for iodine-atom column densities
of ∼1022 cm−2, which can be produced by increasing the effective interaction path length by a factor of ∼104

with a high-finesse optical cavity. The simulated signals indicate that measurement of the nuclear anapole
moment is feasible and that a 1% PNC precision measurement should resolve the inconsistency between previous
measurements in Cs and Tl.
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Introduction. The precise measurement of atomic parity
nonconservation (PNC) provides a low-energy test of the
standard model and of internucleon weak interactions [1–3].
In recent decades, successful atomic PNC measurements
have been performed using two techniques: (a) the Stark
interference technique, on Cs [4], and (b) the optical rotation
technique, on Tl, Bi, and Pb [5–8]. The highlight of these
efforts was the 0.35% precision measurement of nuclear-spin-
independent PNC in Cs, and the 14% precision measurement
of the nuclear spin-dependent PNC for the odd-proton nucleus
of 133Cs [4]. However, measurement of the anapole moment
in Cs disagrees with Tl [4,5], and also with some theoretical
nuclear calculations ([9–11] and references therein). To help
resolve these inconsistencies, and to improve the atomic PNC
tests of the standard model, further experiments are needed. For
example, there is a proposal to measure the nuclear anapole
moment using the PNC-generated hyperfine frequency shift
of dressed states in atoms [12], with particular proposals for
Cs [13] and Fr [14]. However, for other PNC candidates, as the
precision in the atomic theory is not expected to significantly
surpass the current experimental or theoretical PNC precision
of Cs, future PNC experiments have focused on other fruitful
directions, such as the measurement of atomic PNC on a chain
of isotopes [9,15], or the measurement of nuclear anapole
moments. Therefore, along these lines, PNC experiments are
in progress on Yb and Dy at Berkeley [16,17], on Rb and Fr
at the Tri-University Meson Facility (TRIUMF, University of
British Columbia) [18,19], on Ra+ at KVI Groningen [20],
and on Ba+ at the University of Washington, Seattle [21].
Recently, Bougas et al. proposed the measurement of optical
rotation in excited (metastable) states of Hg and Xe [22], using
a novel optical bow-tie cavity to enhance available single-pass
metastable column densities from 1014 to 1018 cm−3 (by
achieving ∼104 cavity passes) and to effect two new signal
reversals. Hg and Xe both have several stable isotopes, and
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each have two isotopes with odd-neutron nuclei (for which
anapole moments have not yet been measured). It will be
useful to find compatible atomic PNC candidates that allow
measurement of the anapole moment of odd-proton nuclei as
well, needed to resolve the inconsistencies in the Cs and Tl
measurements. Here we investigate the suitability of ground-
state 127I (which has an odd-proton nucleus) as a candidate for
measuring nuclear spin-dependent PNC. Note that although
127I is the only stable isotope of iodine, several radioactive
isotopes are also commercially available. Therefore the aim of
this paper is to present spin-independent and spin-dependent
PNC calculations for the 2P3/2 → 2P1/2 spin-orbit transition
of 127I and to examine the experimental feasibility of PNC
measurements for this transition using the cavity-enhanced
optical rotation technique.

Calculations. The Hamiltonian describing parity-
nonconserving electron-nuclear interaction can be written
as a sum of the nuclear spin-independent (SI) and the
nuclear spin-dependent (SD) parts (we use atomic units:
h̄ = |e| = me = 1):

HPNC = HSI + HSD = GF√
2

(
−QW

2
γ5 + κ

I
α I

)
ρ(r), (1)

where GF ≈ 2.222 5 × 10−14 a.u. is the Fermi constant of the
weak interaction, QW is the nuclear weak charge, α = ( 0 σ

σ 0 )
and γ5 are the Dirac matrices, I is the nuclear spin, and ρ(r) is
the nuclear density normalized to 1. Within the standard model
the weak nuclear charge QW is given by [23]

QW ≈ −0.987 7N + 0.071 6Z. (2)

Here N is the number of neutrons, and Z is the number of
protons. The strength of the spin-dependent PNC interaction
is proportional to the dimensionless constant κ, which is to
be found from the measurements. It is believed that κ is
dominated by the nuclear anapole moment [24,25]. The PNC
amplitude of an electric dipole transition between states of the

040101-11050-2947/2013/87(4)/040101(5) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.87.040101


RAPID COMMUNICATIONS

G. E. KATSOPRINAKIS et al. PHYSICAL REVIEW A 87, 040101(R) (2013)

same parity |i〉 and |f 〉 is equal to

E1PNC
f i =

∑
n

[ 〈f |d|n〉〈n|HPNC|i〉
Ei − En

+ 〈f |HPNC|n〉〈n|d|i〉
Ef − En

]
,

(3)

where d = −e
∑

i r i is the electric dipole operator. To extract
from the measurements the parameter of the nuclear spin-
dependent weak interaction κ, one needs to consider PNC
amplitudes between specific hyperfine structure components
of the initial and final states. The detailed expressions for
these amplitudes can be found in earlier works [26–28]. We
perform the calculations of the PNC amplitude using the
configuration interaction (CI) method. The PNC amplitude (3)
in iodine is dominated by the 5s − 5p transition. Therefore we
treat 5s, 5p1/2, and 5p3/2 states as valence states, performing
CI calculations for seven valence electrons. Calculations are
done in the V N approximation, which means that the initial
Hartree-Fock procedure is done for neutral iodine. The hole
in the 5p subshell is taken into account via the fractional
occupation number techniques [29–31]. The complete set
of single-electron orbitals is constructed using the B-spline
technique [32]. We calculate 40 B splines in the cavity of
R = 40aB in each partial wave up to lmax = 2. We use 14
lowest states above the core in each of the s, p1/2, p3/2, d3/2,
and d5/2 in the CI calculations. Core-valence correlations are
not included because in a many-valence-electron system such
as iodine, intervalence correlations strongly dominate over
the core-valence correlations. The effects of external fields,
such as the electric field of the laser light and electron-nucleus
parity-nonconserving weak interactions, are taken into account
within the framework of the random-phase approximation
(RPA) (see, e.g., [33]). The summation over intermediate
many-electron states in (3) is done with the use of the
Dalgarno-Lewis technique [34] (see also [28,35]). The main
factor contributing to the uncertainty of present calculations
is the incompleteness of the many-electron basis. This is
very typical for the CI calculations with a large number of
valence electrons. Full saturation of the basis would lead to
a matrix of unmanageable size. To reduce the size of the
matrix, we cut our basis in such a way that all important
configurations are included. First, we limit our single-electron
basis to lmax = 2. Second, we consider only single and double
excitations when we construct basis configurations from the
ground-state configuration. Then, we limit single excitations
to 14 lowest states above the core. Usually 14 out of 40
B splines is enough to saturate single-electron excitations.
Then we limit double excitations to the eight lowest states
above the core. Comparing different runs of the code with
different cuts to the basis we estimate that the uncertainty of
the present calculations of the PNC amplitude is about 20%.
This uncertainty can be further reduced in case of progress
with the measurements by using more computer power. The
resulting PNC amplitude (z component) is

E1PNC = 1.46(29) × 10−11(−QW/N )ieaB. (4)

Using (2) and (4) we obtain the value of the reduced matrix
element for the E1PNC transition amplitude between states

TABLE I. PNC amplitudes (z components) for the
|5p5 2P o

3/2,F1,Mmax〉 → |5p5 2P o
1/2,F2,Mmax〉 (Mmax = min{F1,F2})

transitions in 127I. F = J + I , where I is nuclear spin, I = 5/2.

F1 F2 PNC amplitude [10−11ieaB]

1 2 0.92(18)[1 − 0.043(9) κ]
2 2 1.21(24)[1 − 0.045(9) κ]
2 3 0.39(8) [1 + 0.037(7) κ]
3 2 − 0.64(13)[1 − 0.048(10) κ]
3 3 1.08(22)[1 + 0.035(7) κ]
4 3 − 0.84(17)[1 + 0.031(6) κ]

2P o
3/2 and 2P o

1/2 of 127I:

E1PNC = 3.35(67) × 10−11ieaB. (5)

The spin-dependent PNC amplitudes between different
hyperfine-structure (hfs) components of the ground and excited
states are presented in Table I. The M1 amplitude between the
2P o

3/2 and 2P o
1/2 states is 0.00420eaB. Here we took into account

that the overlap of the 5p1/2 and 5p3/2 functions is found from
the Hartree-Fock calculations to be 〈5p1/2|5p3/2〉 = 0.997.
The uncertainty for the M1 amplitude is order 0.1%. The
angle of the optical rotation is proportional to the ratio
R = Im(EPNC/M1). Using (5) and M1 = 0.0042eaB, we
get R = 0.80(16) × 10−8. Note that the dependence of the
EPNC and M1 amplitudes on the values of the total angular
momentum F (including nuclear spin) and its projection M

is the same if we neglect the κ contribution to EPNC and the
nuclear magnetic moment contribution to M1. Therefore, for
the nuclear-spin-independent contributions, the values of R

are the same for all transitions in Table I.
Experimental feasibility. PNC optical rotation is given by

ϕPNC = −4π l

λ
[n(ω) − 1]R, (6)

where l is the length of vapor, λ is the optical wavelength, ω

is the optical frequency, and n(ω) is the refractive index due
to the absorption line. For optical depths L � 1, the optical
rotation angle ϕPNC ∝ ρl (where ρ is the density and ρl is
column density of the vapor). For optical depths L 
 1, the
vapor is optically thick near the line center where ϕPNC is
largest and can no longer be observed. The effective maximal
rotation angle is shifted further off resonance as

√
ρl, and

ϕmax
PNC ∝ √

ρl, as can be shown by maximizing the product of
dispersion and transmission. Therefore the rotation angle can
still be increased with increasing column density for L 

1. For this reason, in the PNC optical rotation experiments
using Tl, Bi, and Pb vapors, optical depths of about 50 were
used (corresponding to column densities of ∼1019 cm−2) to
obtain optical rotations of ∼1 μrad. The value of R = 0.8 ×
10−8 for 127I is about an order of magnitude smaller than that
for Tl, Bi, and Pb (whereas the M1 amplitude and transition
wavelength λ are about the same in all four cases, and the
line-shape parameters are approximately similar). Therefore
to compensate for the smaller value of R and to produce PNC
optical rotations of ∼1 μrad for 127I, larger optical depths
of ∼103 are necessary (corresponding to column densities
of order ∼3 × 1020 cm−2). Such a large column density can
realistically be achieved only with the use a high-finesse cavity.
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FIG. 1. (Color online) (A) Photodissociation of I2 (ideally with
light at ∼532 nm) and the corresponding absorption cross section
(taken from [39]). (B) Level scheme for the 2P o

3/2 → 2P o
1/2 M1

transition of atomic iodine at 1315 nm. Indicated in gray color are
the individual F → F ′ transitions constituting the two separated
hyperfine groups of Fig. 2. The main contribution to PNC mixing
comes from the 5S core states.

We first discuss the feasibility of producing column densities
up to ∼1022 cm−2, and then use such column densities in
simulations of optical rotation profiles for 127I.

High iodine atom densities of ∼1016 cm−3 have been
achieved in dc glow discharges [36–38]. However, in achieving
these densities through discharge, relatively high pressures
(∼few tens of Torr) of both the precursor (I2,CH3I) and
carrier gases (He,Ar) are required. Such pressures can sig-
nificantly suppress the measured PNC signal, through the
induced collisional broadening of the 2P3/2 → 2P1/2 transition.
Therefore we consider an alternative method for the creation
of ground-state 2P3/2 iodine atoms at lower pressures through
photodissociation of I2 molecules:

I2
hν−→ I(2P3/2) + I(2P3/2). (7)

The absorption cross section of I2 at 308 K peaks at σ =
2.8 × 10−18 cm2 for λ ∼ 530 nm (see Fig. 1 and [39]). The
production of spin-orbit-excited I(2P1/2) atoms,

I2
hν−→ I(2P3/2) + I(2P1/2), (8)

is energetically allowed only for photodissociation wave-
lengths smaller than ∼500 nm, so this undesirable channel
is avoided by photodissociating the I2 molecules at higher
wavelengths, e.g., at 532 nm, with the second harmonic of
a Nd:YAG laser or with a green light-emitting diode array.
At room temperature, the vapor pressure of solid I2 yields
a density of about 5 × 1015 cm−3 I2 vapor and a column
density (over a 100-cm path length) of 5 × 1017 cm−2. This
corresponds to an optical depth of ∼1. The I(2P3/2) atoms
recombine with the three-body reaction,

I(2P3/2) + I(2P3/2) + I2
kr−→ 2I2, (9)

where the recombination rate is given by kr = 3.1(3) ×
10−30 cm2 molecule−2 s−1 at 308 K [40]. Setting the photo-

dissociation rate and recombination rate of I2 to be equal, we
obtain

d[I2]

dt
= −J [I2] + kr [I2][I]2 = 0, (10)

where J is the I2 photodissociation rate constant, given by J =

σ , and 
 is the photon flux. Solving for the atomic iodine
concentration yields [I] = √


σ/kr . Choosing 
 ∼ 1020

photons cm−2 s−1 (corresponding to 50 W cm−2 at 532 nm,
which is probably close to a reasonable upper bound) gives a
steady-state iodine-atom concentration [I] ∼ 1016 cm−3. At I

FIG. 2. (Color online) Simulated signal vs frequency, (a) for the
same column density (1022 cm−2) and various Lorentz contributions
(from 1 to 50 MHz), and (b) for the same Lorentzian width (3 MHz)
and various column densities (from 1022 down to 3×1020 cm−2).
(c) Effect of the nuclear anapole moment. This is the simulated signal
for ρ = 3 × 1021 cm−2 and �L = 3 MHz, for κ = 0.13 and κ =
−0.38. For a discussion, see text.
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densities of 1016 cm−3, the mean time between wall collisions
(for a cell-tube diameter of about 1 cm) is ∼1 ms. The sticking
probability of I atoms with the cell walls is typically on the
order of 5% but can be reduced to 10−3 for acid-coated cells
[41,42], so that loss of I atoms from sticking and recombination
at the walls should occur on the ∼1-s time scale. The I atoms
should collide with the cell walls hundreds of times on average,
ensuring that they are thermalized. Notice that we calculate
a steady-state concentration [I2] = 0 (the initial [I2]o = 5 ×
1015 cm−3 has been photodissociated to give [I] = 1016 cm−3),
as we have ignored recombination processes with smaller rates
in Eq. (10), such as I-atom recombination at the walls and
three-I-atom recombination. However, as these reactions are
expected to be less significant than (9) at these pressures, the
final I2 concentration can be kept at ∼1015 cm−3. Finally, using
a cell with a length of 100 cm and a high-finesse optical cavity
with ∼104 passes gives an upper bound for the effective I-atom
vapor column density of 1022 cm−2. In a typical PNC optical
rotation experiment, the observable is the product of ϕPNC

times the transmitted optical power, and this is doubled by the
signal reversals proposed in [22]. Simulations of PNC optical
rotation in the 2P3/2 → 2P1/2 M1 transition in iodine are shown
in Fig. 2. In Fig. 2(a) we assume a column density of 1022 cm−2

and the dependence on the Lorentzian broadening of the line is
investigated. We see that an increasing Lorentz width reduces
the measured PNC signal. As the Lorentz width is mainly
determined by the pressure inside the cell, maximizing the
ratio of iodine-atom pressure to total pressure is desirable. The
collision-broadened Lorentz widths for the M1 transition for
I and I2 collision partners were estimated in [43] to be 4.3 and
10.3 MHz/Torr at room temperature, respectively. We see that,
for realistic Lorentz widths, signals in excess of 10 μrad can
be achieved, along with sufficient hyperfine resolution, which
is necessary in determining the κ value of Table I. In Fig. 2(b)
the reverse situation is examined: a constant Lorentz width is
maintained, determined by fixed densities of I and I2, and a
varying number of passes is assumed, ranging from 104 down
to 300. As we can see, even in the case of 300 passes, a signal
on the order of ∼1 μrad at the peak is predicted (similar to the
signal levels measured for Tl [5]), allowing for a significant
margin of error in the experimental constraints. Finally, in
Fig. 2(c), the nuclear spin-dependent PNC effects are exam-
ined. We use the previously measured values of κ from the

thallium [5] and cesium [4] experiments to predict values for
127I. Using the simple single-valence-proton model [25], we
obtain

κ(127I) � κ(205Tl) � 0.13(20) [from Tl], (11)

κ(127I) � −κ(133Cs) � −0.38(6) [from Cs]. (12)

These two values define the anticipated physical range
of the spin-dependent part of the measurement and are the
ones used for the simulations. We see that peak signal values
differ by about ±2–3% for the two cases, resulting in total
signal differences of up to ∼5%, as expected from the κ

coefficients in Table I. Therefore an experimental precision of
1% or better is needed to clearly distinguish between these two
extremes. Also evident from Table I and reflected in Fig. 2(c)
is the fact that transitions belonging to the two separated
hyperfine groups (F → F ′ = 2 and F → F ′ = 3) deviate in
opposite directions in the two cases, meaning that a nuclear
spin-dependent signal could be acquired even in the case where
broadening mechanisms would blur the ground-state hyperfine
structure.

We note that within the same single-valence-proton
model, κ(129I) � κ(131I) � κ(133Cs), so that measurements
on these iodine isotopes could provide additional experimental
tests. The nuclear magnetic moments of these three nuclei
(all with nuclear spin I = 7/2) agree within 2% [44–46],
which supports the validity of the single-valence-proton
model.

Conclusions. Calculations for atomic iodine presented here,
along with signal simulations, indicate that a PNC optical
rotation experiment is feasible, utilizing the cavity-enhanced,
optical rotation scheme of [22]. A nuclear anapole moment
measurement seems possible, as the simulated signal levels
and hyperfine resolution (shown in Fig. 2) and the calcu-
lated amplitudes of nuclear spin-dependent PNC (shown in
Table I) compare favorably to those of the successful PNC
optical-rotation experiment in thallium [5].
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