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We revisit the process of optical wave thermalization through supercontinuum generation in photonic crystal
fibers. We report theoretically and numerically a phenomenon of ‘truncated thermalization’: The incoherent
optical wave exhibits an irreversible evolution toward a Rayleigh-Jeans thermodynamic equilibrium state
characterized by a compactly supported spectral shape. The theory then reveals the existence of a frequency
cut-off which regularizes the ultraviolet catastrophe inherent to ensembles of classical nonlinear waves. This
phenomenon sheds new light on the mechanisms underlying the formation of bounded supercontinuum spectra
in photonic crystal fibers.
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Introduction. The propagation of partially coherent nonlin-
ear optical waves is a subject of growing interest in different
fields of investigations, such as, e.g., wave propagation in ho-
mogeneous [1–3] or periodic media [4], nonlinear imaging [5],
cavity systems [6–8], or nonlinear interferometry [9]. Owing
to their highly nonlinear properties, photonic crystal fibers
(PCF) offer unique opportunities for the experimental study
of incoherent optical waves over large nonlinear propagation
lengths. Indeed, light propagation in PCFs nearby a zero-
dispersion wavelength (ZDW) is characterized by a dramatic
spectral broadening, a phenomenon termed supercontinuum
(SC) generation [10]. Although the interpretation of the
mechanisms underlying SC generation in PCFs are rather
well understood, a satisfactory theoretical description of SC
generation is still lacking, due to the multitude of nonlinear
effects underlying this process. However, there is a growing
interest in developing new theoretical approaches aimed at
describing SC generation in more detail, such as soliton
induced dispersive wave generation [11–14], the effective
three-wave mixing theory [15], or the second-order coherence
theory for nonstationary light [16].

From a different perspective, we recently provided a
nonequilibrium thermodynamic formulation of SC generation
on the basis of the wave turbulence (WT) theory [17–20].
In this framework, the spectral broadening process inherent
to SC generation can be interpreted as a consequence of
the natural thermalization of the optical field to the state
of thermodynamic equilibrium. Indeed, in analogy with the
kinetic gas theory, a reversible (Hamiltonian) system of
incoherent nonlinear waves exhibits, as a rule, a process
of thermalization, which is characterized by an irreversible
evolution of the wave toward the thermodynamic equilibrium
state, i.e., the Rayleigh-Jeans (RJ) distribution that realizes the
maximum of nonequilibrium entropy [21,22]. This irreversible
behavior is expressed by the H theorem of entropy growth [22],
in analogy with the Boltzmann H theorem relevant to gas
kinetics. The kinetic wave equations then provide a detailed
description of the nonequilibrium properties of this process of
thermalization.

Our aim in this Brief Report is to show that this irreversible
process of thermalization to the RJ spectrum can be truncated
within some specific frequency interval. We consider a PCF
whose dispersion curve is characterized by two ZDWs, so
that the essential properties of light propagation in the fiber
can be modeled by the nonlinear Schrödinger (NLS) equation
accounting for fourth-order dispersion effects [23]. In these
conditions, the kinetic wave theory reveals the existence
of an irreversible evolution toward a RJ equilibrium state
characterized by a compactly supported spectral shape. This
phenomenon of truncated thermalization can shed new light on
the mechanisms underlying the formation of bounded spectra
in SC generation [12,13,18].

Besides its relevance in the context of SC generation,
this phenomenon is also important from a fundamental point
of view. It is indeed well known that the thermodynamic
equilibrium state of a system of classical waves (i.e., RJ
spectrum) is not properly defined, in the sense that it leads
to diverging expressions for the energy at equilibrium. This
problem refers to the well-known ultraviolet catastrophe,
which was originally solved by Planck’s law and subsequently
by a self-consistent thermodynamic formulation of quantum
electromagnetic radiation. On the other hand, when one deals
with an ensemble of classical optical waves, such a divergence
is regularized by a frequency cutoff, which is often introduced
in a rather artificial way [17,18,24], although it can be justified
in some particular cases [25]. In this work we show how
a genuine frequency cutoff arises naturally in a system of
classical waves described by the generalized NLS equation
accounting for higher-order dispersion effects.

Model. We consider the dimensionless NLS equation
accounting for third- and fourth-order dispersion effects

i∂zψ = −σ∂2
t ψ + iα∂3

t ψ + β∂4
t ψ + |ψ |2ψ. (1)

We normalized the problem with respect to the nonlinear length
L0 = 1/(γP ) and the “healing time” τ0 = (|β2|L0/2)1/2,
where γ is the nonlinear coefficient, P the average power
of the wave, β2 the second-order dispersion coefficient
with σ = sgn(β2). In these units, the normalized dispersion

035803-11050-2947/2013/87(3)/035803(5) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.87.035803


BRIEF REPORTS PHYSICAL REVIEW A 87, 035803 (2013)

parameters read α = L0β3/(6τ 3
0 ), and β = L0β4/(24τ 4

0 ), β3

and β4 being the third- and fourth-order dispersion coefficients.
The NLS equation (1) conserves three important quantities:
the normalized power N = ∫ |ψ(t)|2dt , the momentum M =∫

ω|ψ̃(ω)|2dω, and the total “energy” (Hamiltonian) H =
E + U , which has a linear (dispersive) kinetic contribu-
tion E(z) = ∫

k(ω)|ψ̃(ω)|2dω and a nonlinear contribution
U (z) = 1

2

∫ |ψ(t)|4dt , where k(ω) = σω2 + αω3 + βω4 is the
dispersion relation [ψ̃(z,ω) = 1√

2π

∫
ψ(z,t) exp(−iωt) dt].

Simulations. We recall that for α = β = 0, Eq. (1) recovers
the integrable NLS equation, which does not exhibit wave
thermalization [3]. The introduction of third-order dispersion
(α �= 0) leads to a process of anomalous thermalization
toward an equilibrium state of a different nature than the
RJ distribution [2]. The influence of higher-order dispersion
on wave thermalization was considered in the context of
SC generation through the analysis of the generalized NLS
equation [17,18,20]. Here, we revisit these previous works
by truncating the dispersion relation of the generalized NLS
equation up to the fourth-order polynomial.

The initial condition considered in the simulations is a
coherent cw pump, whose wavelength lies between the ZDWs
in the anomalous dispersion regime (σ = −1). We report in
Fig. 1 a typical evolution of the spectrum with respect to the
propagation length obtained by solving the NLS equation (1).
In this example, we considered a relatively high pump power
(200 W), which is in the range of the powers considered
in the experiments reported in Refs. [18,20]. In this highly
nonlinear regime the optical field exhibits rapid and random
temporal fluctuations, which prevent the formation of robust
and persistent coherent soliton structures. The optical field
then exhibits an incoherent turbulent dynamics, in which
coherent soliton and dispersive waves do not play a significant
role, as previously discussed in high-power cw-SC generation
[17,18,20,26].

In this incoherent regime, the central part of the SC
spectrum relaxes toward the RJ distribution, as predicted by
the kinetic wave theory [see Fig. 1(b)]. The RJ spectrum is
characterized by a double-peaked structure, which results from
the presence of two ZDWs in the dispersion curve of the PCF
[see Fig. 1(c)] [17,18]. However, a careful analysis reveals
the remarkable aspect that this thermalization process is not
achieved in a complete fashion: The tails of the SC spectrum
are characterized by abrupt spectral edges, which are preserved
for long propagation lengths and thus do not relax toward the
expected RJ spectral tails. Our aim in this paper is to grasp the
physical origin of such abrupt spectral edges in the generated
SC spectrum.

Kinetic approach: RJ spectrum. The kinetic theory relies
on a natural asymptotic closure of the hierarchy of moments
equations which is induced by the dispersive properties of
the waves [22]. Then assuming that the random nonlinear
wave evolves in the weakly nonlinear regime, |U/E| � 1,
the wave statistics turns out to be Gaussian, which leads to
an irreversible kinetic equation describing the evolution of
the averaged spectrum of the wave, n(z,ω)δ(�) = 〈ψ̃(ω +
�/2) ψ̃∗(ω − �/2)〉 [17,21,22]

∂zn(z,ω) = Coll[n], (2)

FIG. 1. (Color online) (a) Numerical simulation of the NLS
equation (1) showing the evolution of the spectrum |ψ̃ |2(ω,z) during
the propagation (in dimensional units, ω = 2πν). (b) Comparison of
|ψ̃ |2(ω,z) at equilibrium with the corresponding RJ spectrum in green
(grey) [Eq. (3)]. (c) Dispersion curve of the PCF. (d) MI spectrum
after 1 m of propagation through the PCF. The vertical red (grey)
lines denote the frequency bounds, ω±, given by Eq. (7).

where the collision term Coll[n] = 1
π

∫
dω1,2,3 WNω1ω2ω3 (n)

provides a kinetic description of the Kerr effect in
Eq. (1), with Nω1ω2ω3 (n) = n(ω) n(ω1) n(ω2) n(ω3) [n−1(ω) +
n−1(ω1) − n−1(ω2) − n−1(ω3)], and n(ω) stands here for
n(z,ω). The phase-matching conditions underlying the four-
wave mixing are expressed by the Dirac δ functions in W =
δ(ω + ω1 − ω2 − ω3) δ[k(ω) + k(ω1) − k(ω2) − k(ω3)]. The
kinetic equation (2) conserves the densities of power, N/T0 =∫

n(z,ω)dω, of “energy” E/T0 = ∫
k(ω)n(z,ω)dω, and of

“momentum” M/T0 = ∫
ωn(z,ω) dω of the wave, where T0

denotes the numerical time window [17]. The irreversible
character of Eq. (2) is expressed by an H theorem of
entropy growth, dS/dz � 0, where the nonequilibrium en-
tropy reads S(z) = ∫

log[n(z,ω)] dω. The RJ equilibrium
spectrum nRJ (ω) realizing the maximum of S[n], subject to
the constraints of conservation of E,M , and N , is obtained by
introducing the corresponding Lagrange multipliers 1/T ,λ/T ,
and −μ/T

nRJ (ω) = T

k(ω) + λω − μ
, (3)
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where T denotes the temperature and μ the chemical potential
by analogy with thermodynamics [22].

Kinetic approach: Refined analysis. As discussed above
through Fig. 1, this process of thermalization to the RJ
spectrum (3) is not achieved in a complete way. Here we
show that this effect can be described by a refined analysis
of the kinetic equation (2). As in the numerical simulations,
we assume that the pump wave frequency lies in the anomalous
dispersion regime (σ = −1). Using the property [27], we
integrate the collision term of the Eq. (2) over ω1,

∂zn(z,ω) = 1

2π

∫ Ñω2ω3 (n)

|ω2 − ω| |ω3 − ω| δ[φω(ω2,ω3)] dω2,3,

(4)

where Ñω2ω3 (n) is the functional Ñω1ω2ω3 (n) in which nω1 (z)
has been changed with nω2+ω3−ω(z), and φω(ω2,ω3) =
3
2α(ω2 + ω3) + β[2(ω2

2 + ω2
3) + 3ω2ω3 − ω(ω2 + ω3) + ω2] −

1. The function φω(ω2,ω3) is a quadric in the
two-dimensional space (ω2,ω3). It can be recast into its
canonical form with the following change of variables:
[�2 = 1√

2
(ω2 + ω3),�3 = 1√

2
(ω2 − ω3)], and then

[�̃2 = �2 + q/(7β), �̃3 = �3], with q = 3α/
√

2 − √
2βω.

The kinetic equation (4) then takes the form

∂zn(z,ω) =
∫ Ñ�̃2 �̃3

(n) δ[(�̃2/a2)2 + (�̃3/a3)2 − ρ]

π |�̃2 + �̃3 − rω| |�̃2 − �̃3 − rω| d�̃2,3,

(5)

where a2 = √
2/(7β), a3 = √

2/β, and rω = 6
√

2ω/7 +
3
√

2α/(14β). It becomes apparent that the condition

ρ = 1 − 3

28

(
8βω2 + 4αω − 3α2

β

)
� 0 (6)

must be satisfied in Eq. (5). This reveals that the resonant
four-wave interaction underlying the Kerr effect can only take
place within a specific frequency interval defined by the bounds
ω ∈ [ω−,ω+], with

ω± = − α

4β
±

√
21

12β

√
3α2 + 8β. (7)

Finally notice that by introducing the following parametriza-
tion of the ellipse [�̃2 = ã2 cos(θ ), �̃3 = ã3 sin(θ )], with
ã2,3 = a2,3

√
ρ, and making use again of the property [27],

Eq. (5) can be recast in the following compact form:

∂zn(z,ω) = ã2ã3

2π |ρ|
∫ 2π

0

Ñcos(θ) sin(θ)(n)

Fω(θ )
dθ, (8)

where Fω(θ ) = |ã2 cos(θ ) + ã3 sin(θ ) − rω| |ã2 cos(θ ) −
ã3 sin(θ ) − rω|.

Discussion. There is an appreciable discrepancy between
the simulation of the NLS equation (1) reported in Fig. 1 and
the frequency interval ω± predicted by the kinetic theory in
Eq. (7). Actually, the pump power considered in Fig. 1 is quite
elevated, so that the modulational instability (MI) sidebands
are located far away from the carrier pump frequency. As a
result, the cascade of MI sidebands generated in the early stage
of propagation spreads beyond the frequency interval predicted
by the theory, as clearly illustrated in Fig. 1(d). Since the MI
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FIG. 2. (Color online) Spectra |ψ̃ |2(ω,z) obtained by solving the
NLS equation (1) for σ = −1, α = 0.1, and β = 0.02: (a) z = 200,
(b) z = 104, (c) z = 5 × 105, (d) z = 106. After a long transient, the
wave relaxes toward a truncated RJ distribution [Eq. (3), green (grey)
curve] in (d). The dashed vertical lines denote the frequencies ω± in
Eq. (7).

process is inherently a coherent nonlinear phase-matching ef-
fect, it is not described by the kinetic equation (2), whose valid-
ity is restricted to the weakly nonlinear regime (|U/E| � 1).
This explains why the numerical simulations reported in
previous works [17,18] did not give evidence of a signature of
this phenomenon of truncated thermalization.

In order to analyze our theoretical predictions in more
detail, we decrease the injected pump power so as to maintain
the (cascaded) MI sidebands within the frequency interval (7).
Intensive numerical simulations of the NLS equation (1) in
this regime of reduced pump power have been performed.
This study reveals that the nonlinear dynamics slows down
in a dramatic way, so that the expected process of ther-
malization requires huge nonlinear propagation lengths and
huge CPU time computations. This results from the fact
that the parameters α and β decrease as the pump power
decreases, so that Eq. (1) approaches the integrable limit of
the NLS equation, which does not exhibit any thermalization
effect [3]. We report in Fig. 2 the wave spectra at different
propagation lengths obtained by solving the Eq. (1) with
α = 0.1 and β = 0.02. In the early stage of propagation,
z ∼ 200, the spectrum remains confined within the frequency
interval [ω−,ω+] predicted by the theory [Eq. (7)], although the
spectrum exhibits a completely different spectral profile than
the expected RJ distribution. As a matter of fact, the process
of thermalization requires enormous propagation lengths, as
illustrated in Fig. 2(d), which shows that the wave spectrum
eventually relaxes toward a truncated RJ distribution. Here,
the Lagrangian multipliers (μ,λ,T ) have been calculated from
the conserved quantities (N,M,E), without using adjustable
parameters [28]. A unique triplet (μ,λ,T ) is obtained from
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FIG. 3. (Color online) PFD of the wave intensity, I = |ψ |2,
corresponding to the simulation of Fig. 1 at z = 200 green (grey),
z = 104 red (a); z = 5 × 105 green (grey), z = 106 red (b): The
random wave eventually enters the kinetic regime of Gaussian
statistics.

a set (N,M,E), a feature which is consistent with the fact
that a “closed” Hamiltonian system should exhibit a unique
thermodynamic equilibrium state.

Note, however, in Fig. 2(d) that, despite the good agreement,
the whole spectrum spans a frequency band which exceeds
the frequency interval [ω−,ω+] predicted by the kinetic
theory in Eq. (7). Indeed, in the first stage of evolution
[see Figs. 2(a)–2(c) for 200 < z < 5 × 105], the SC spectrum
exhibits a slow process of spectral broadening, so that the
corresponding SC edges spread beyond the frequency bound
[ω−,ω+]. Such a discrepancy decreases in a significant way as
the system becomes weakly nonlinear, i.e., |U/E| decreases.
Accordingly, this discrepancy can be ascribed to a deviation

from Gaussian statistics of the incoherent wave. Indeed, we
report in Fig. 3 the PDF of the wave intensity calculated
at different propagation lengths. A deviation from Gaussian
statistics is visible for z < 104, which can merely explain the
slow process of spectral broadening beyond the frequency
interval (7) predicted by the theory. This conclusion is
corroborated by the analysis of the kurtosis of the intensity
distribution, K(z) = 〈I 2〉(z)/(2〈I 〉2) − 1 (data not shown).
The value of K(z) and the variance of its fluctuations are
shown to slowly decay during the propagation to zero. Then
as the system evolves, it eventually reaches a kinetic regime
of Gaussian statistics, which is subsequently preserved in
the further evolution. It is interesting to underline that, once
the state of Gaussian statistics is reached, the incoherent
wave does not exhibit any spectral broadening (for z >

5 × 105), while its spectral profile slowly relaxes toward
the truncated RJ distribution, as described by the kinetic
theory.

Finally note that we have performed the same numerical
study for α = 0 (data not shown), for which the frequency
bounds (7) reduce to ω± = ±√

7/(6β). This study confirms
the process of relaxation toward a spectrally truncated RJ
distribution for the incoherent wave.

Conclusion. We have reported a phenomenon of truncated
thermalization which is characterized by the formation of a RJ
distribution with a compactly supported spectral shape. From
a broader perspective, this work is related to the wider question
underlying the physics of dynamical thermalization of nonlin-
ear systems, in line with the Fermi-Pasta-Ulam problem [29].
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