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Anomalous switching of optical bistability in a Bose-Einstein condensate
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The nonlinear dynamics of the photon number in an optical cavity filled with a cigar-shaped Bose-Einstein
condensate is investigated. We find that the way of adding the field is crucial to the switching close to the critical
transition point. If the pump field is changed abruptly, the system may jump from one branch to the other even if
the pump field intensity has not reached the critical transition point yet. This behavior is similar to the anomalous
switching in the dispersive optical bistability.
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I. INTRODUCTION

A combined system with an ultracold atomic ensemble
located in a small volume ultrahigh finesse optical cavity is
an emerging field with considerable interest recently. In the
large detuning limit from the atomic resonance, atom-photon
interaction provides an optical lattice to the atoms and affects
the mechanical motion of the atoms. In turn, atoms induce a
position dependent phase shift on the cavity field. This highly
intrinsic nonlocal nonlinearity induces a lot of interesting
results such as self-organization of atoms [1–6], optical
bistability [7–12], cavity-enhanced super-radiant Rayleigh
scattering [13], mapping between the atoms ensemble-cavity
system and the canonical optomechanical system [14–16], and
analogy of the Dicke quantum phase transition [17,18].

In previous works, the bistable behavior of the intracavity
photon numbers is usually studied for the steady state [7–9]. In
Ref. [10], the authors proposed a discrete-mode approximation
(DMA) method to study the nonlinear dynamics of a cigar-
shaped Bose-Einstein condensate in an optical cavity. By
selecting the lowest excitation modes of the condensate, the
properties of the system can be analyzed in a simple way. The
validation of the method is justified by comparing the results
from the approximate DMA method and the full description
with the Gross-Pitaevski (GP) equation.

In this paper, we investigate the switching behavior of the
intracavity photon number from one branch to the other. We
find that the way of adding the field is crucial to the switching
close to the critical transition point. If the pump field is added
adiabatically, the jumping happens exactly at the critical point
[10]. If the pump field is added abruptly, the system may jump
to the upper branch even if the pump field intensity is less
than the critical transition point. This behavior is similar to
the anomalous switching of the dispersive optical bistability
[19,20]. We analyze the physics of this anomalous switching
and examine the effect of the initial condition and the possible
damping.

This paper is organized as follows. In Sec. II, we present the
system and study the steady-state bistability of the intracavity
number. In Sec. III, we focus on the anomalous switching of
the system and investigate the physics behind. Then in Sec. IV,
the effect of initial condition and damping on the anomalous

switching behavior is analyzed. A brief summary is given in
Sec. VI.

II. SYSTEM

The system we consider is a pure Bose-Einstein condensate
(BEC) of two-level atoms with mass m and transition fre-
quency ωa located inside a high-Q optical cavity with cavity
mode ωc (see Fig. 1). For the sake of simplicity, we consider the
dynamics in the dimension x along the cavity axis. The cavity
field mode function is then described simply by cos(kx), with
the wave vector k. The model applies to a cigar-shaped BEC,
which is tightly confined in the transverse directions by strong
dipole or magnetic trap, such that the transverse size of the
condensate is smaller than the waist of the cavity field. An
external pumping laser field at frequency ωp is added along
the cavity axis. The atom-pump detuning and the cavity-pump
detuning are denoted as �a = ωa − ωp and �c = ωc − ωp,
respectively.

In the large detuning limit and in the rotating frame at the
pump frequency, the Hamiltonian for the condensate system
can be written as [5]

Ĥ =
∫

dx�̂†(x)

[
− h̄2

2m

d2

d2x
+ h̄U0 cos2(kx)â†â

]
�̂(x)

+ h̄�câ
†â + ih̄η(â† − â). (1)

Here �̂† and â† are the creation operators for the atoms
and the cavity photons, respectively. The atom-cavity photon
interaction induces an additional potential U0 cos2(kx)â†â for
the atoms where U0 = −g2

0/�a is the maximal light shift
per photon that an atom may experience with g0 being the
atom-photon coupling constant. Here η is the field amplitude
of the parallel driving laser. We have omitted the atom-atom
interaction and the weak harmonic trapping potential.

The ground state of the condensate with no pumping field
is a homogeneous macroscopic state with zero momentum.
By absorption and stimulated emission of the cavity photons,
the condensate can be excited to the superposition of ±2h̄k

momentum states from the ground state. Taking into account
the lowest-order perturbation to the uniform condensate wave
function, we assume �̂(x) = ĉ0 + √

2 cos(2kx)ĉ2. Therefore
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FIG. 1. (Color online) A schematic of a BEC in a cavity.

the Hamiltonian becomes [10]

Ĥ = 4h̄ωr ĉ
†
2ĉ2 + h̄

(
�c + NU0

2

)
â†â

+ h̄U0

2
√

2
â†â(ĉ†0ĉ2 + ĉ

†
2ĉ0) + ih̄η(â† − â), (2)

where h̄ωr = h̄2k2/2m is the atomic recoil energy and N =
ĉ
†
0ĉ0 + ĉ

†
2ĉ2 is the total number of the atoms.

Applying the mean-field approximation ĉi ∼ √
NZi and

â ∼ α, the equation of motion for the condensate can be found
as

ih̄
d

dt
Z = H (α) = (H0 + |α|2H1)Z, (3)

with Z = (Z0,Z2)T and

H0 = h̄ωr

(
0 0
0 4

)
, (4a)

H1 = h̄U0

2
√

2

(
0 1
1 0

)
, (4b)

and the evolution equation of the photon amplitude is

dα

dt
= −i

(
�c + NU0

2
+ NZ†H1

h̄
Z

)
α + η − κα. (5)

When the cavity damping is much faster than the mechanical
motion of the condensate, we can assume that the photon
amplitude follows the condensate adiabatically. We then have
(with α̇ � 0)

α = η

i
(
�c + NU0

2 + NZ† H1
h̄

Z
) + κ

. (6)

The steady state can be solved as follows. First we take
an arbitrary trial photon amplitude αtr , and then solve the
ground state of the Hamiltonian H (αtr ). Next, we substitute the
solution Zs to Eq. (6) and get an output photon amplitude αout.
If αout = αtr , we get a self-consistent solution αs . It has been
shown that the steady-state intracavity photon number ns =
|αs |2 shows bistability, similar to the optical bistability [10,12].
The bistable behavior of the intracavity photon number with
respect to the pumping field intensity is shown in Fig. 2,
where points with negative slopes correspond to unstable
states.

III. ANOMALOUS SWITCHING

Next we would like to focus on the dynamical properties
of the system. There are two different ways to add the
pump field. In the first case, the pumping field is turned on
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FIG. 2. (Color online) Steady-state intracavity photon number as
a function of the input pump intensity. The parameters are N = 4.8 ×
104, U0 = 0.25ωr , δc = 1.2 × 103ωr , κ = 0.4 × 103ωr . The input
pump intensity is also in the unit of ωr . The critical switching points
are ηA = 1322ωr and ηB = 1013ωr for the steady state. The critical
anomalous switching points are ηC = 1222ωr and ηD = 1143ωr .

adiabatically. The increase of the field intensity is so slow that
the condensate and intracavity photon follow all the steady
states corresponding to the pump field in the lower branch
until the critical point A in Fig. 2. When the pump field exceeds
the critical point, the condensate cannot follow the input field
adiabatically and therefore jumps to the upper branch. This
is because the steady state corresponding to the critical point
A in the lower branch is much different from the steady state
corresponding to the current pump field in the upper branch.
Since there is no damping mechanism for the condensate, the
system oscillates around the upper branch [10]. In the second
case, instead of adding the pumping field adiabatically, the
field is added abruptly. Suppose the condensate is initially
in the homogenous state Z = (1,0)T . After solving Eqs. (3)
and (6) numerically, we draw the evolution of the intracavity
photon number |α|2 with respect to different pumping field
intensity, as shown in Fig. 3. If the added field stays in
the purely lower branch or lies in the bistable region but
not close to the critical point A, the intracavity photon
number oscillates around steady state in the lower branch;
see Figs. 3(a) and 3(b). If the input field exceeds the critical
value of A, it will introduce oscillations between two branches;
see Fig. 3(c). These oscillations have been investigated
and confirmed by solving the GP equation numerically in
Ref. [10].

In this paper, we find that the photon number may approach
the upper branch with a pump field less than the critical point A
if the field is turned on abruptly. This is quite different from the
first case where the photon number jumps to the upper branch
only if the pump field is greater than the critical value A. The
evolution of the intracavity photon number when η = 1250ωr

is shown in Fig. 3(d). Note that the field at the critical point
A is 1322ωr . It follows, on comparing the intracavity photon
numbers in Fig. 2, that the intracavity photon number reaches
the upper branch. Further numerical calculation shows that the
switching happens when the added pumping field lies between
point C and A in Fig. 2. This phenomenon reminds us of
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FIG. 3. (Color online) Intracavity photon number as a function
of time. Initially there is no pump field and the condensate is the
homogeneous state. Then the pump field is turned on immediately
with values (a) 500ωr , (b) 1100ωr , (c) 1500ωr , and (d) 1250ωr .
The parameters are N = 4.8 × 104, U0 = 0.25ωr , δc = 1.2 × 103ωr ,
κ = 0.4 × 103ωr . The time is in the unit of 1/ωr .

the anomalous switching of the dispersive bistability for the
traditional two-level atomic media in the good cavity limit
[19,20].

In order to understand this anomalous switching behavior,
we proceed by introducing the quadratures of the mechanical
oscillators X = √

N/2(Z∗
0Z2 + Z0Z

∗
2 ), P = i

√
N/2(Z∗

2Z0 −
Z∗

0Z2). The corresponding equations of motion are

dX

dt
= 4ωrP, (7a)

dP

dt
= −4ωrX −

√
NU0

2
|α|2, (7b)

and the photon amplitude is (with X = 2
√

N
U0

Z† H1
h̄

Z)

α = η

i
(
�c + NU0

2 +
√

NU0
2 X

) + κ
. (8)

In deriving the above equations, we have used the fact that
|Z1|2 � |Z0|2 � 1. Then the evolution of the generalized
displacement would be

d2X

d2t
= −(4ωr )2X − 2

√
NU0ωrη

2

(
�c + NU0

2 +
√

NU0
2 X

)2 + κ2

= −dV (X)

dX
, (9)

where

V (X) ≡
∫ X

ds

[
(4ωr )2s + 2

√
NU0ωrη

2

(
�c + NU0

2 +
√

NU0
2 s

)2 + κ2

]
.

(10)

The condensate can then be viewed as a nonlinear spring.
The dynamic properties will be determined by the potential
V (X) and the initial condition. Figure 4 shows the potential
function for different pump field intensity. The solid black
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FIG. 4. (Color online) The potential V (x) (in the unit of ω2
r ). The

lines from top to bottom correspond to different pump fields, (1)
500ωr , (2) 1100ωr , (3) 1250ωr , and (4) 1500ωr . The parameters are
N = 4.8 × 104, U0 = 0.25ωr , δc = 1.2 × 103ωr , κ = 0.4 × 103ωr .

line corresponds to the case η = 500ωr . We find one and only
one minimum close to the origin. This minimum denotes the
steady state in the purely lower branch. The potential with
η = 1500ωr is shown as the magenta dotted line. The single
minimum is far away from the origin and corresponds to the
steady state in the purely upper branch. The red dash-dotted
line (η = 1100ωr ) and blue dashed line (η = 1250ωr ) lie in
the bistable region. The potential is double-well like and has
two minimum points. The one close to the origin means the
steady state in the lower branch while the other indicates the
upper branch. The peak in the middle represents the unstable
state.

The evolution of the condensate can then be understood as
a pointlike ball sliding in a one-dimension smooth bowl. The
shape of the bowl is determined by the potential function V (X).
At t = 0, the shape of the bowl is harmoniclike. The initial
homogenous condensate corresponds to a rest ball placed at
the X = 0. If the field is added adiabatically, the shape of the
bowl changes gradually and the ball will stay at the bottom
of the bowl. Then the double well appears and the ball stays
at the bottom of the right well. If the field is increased further,
the left well gets deeper and the right well is raised. At the
critical point, the minimum of the right well coincides with
the unstable peak of the barrier in the middle. Therefore the
right well disappears. The ball falls down to the left well and
oscillates in the left well.

If the field is added abruptly, the shape of the bowl will
be changed immediately. The ball is then released to the bowl
from the initial position at X = 0. As the bowl is frictionless,
the total energy is conserved. If the added pump field is weak,
the bowl has only one minimum close to the origin, as shown
in the black solid line, the ball will oscillate around this
minimum; see Fig. 3(a). If the added pump field corresponds
to a value in the bistable region, the potential is a double-well.
There exists two cases. If the pump rate is on the left of
point C in Fig. 2, the peak in the middle of the double
well is higher than the initial position (the red dash-dotted
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line). Therefore, the ball will be confined in the right side
of the double well. Correspondingly, the photon number will
oscillate around the lower branch as shown in Fig. 3(b).
If the pump field is increased between C and A, the right
well gets deeper and the barrier in the center would be
lower than the initial position (the blue dashed line). In this
case, the ball will not be trapped in the right well and will
reach the left well too. This corresponds to the anomalous
switching as shown in Fig. 3(d). Note that the barrier is
not much lower than V (X) = 0. Therefore, the velocity of
the ball when passing the barrier is small and the period
of the whole oscillation is long. If the field is strong, the
double wells disappear and the single minimum corresponding
to the steady state in the upper branch emerges far away from
the origin (the magenta dotted line). The ball will oscillate
between the initial position to the other side of the bowl at the
same level as the initial position. It is shown in Fig. 3(c) that
the photon number oscillates between the upper branch and
lower branch.

IV. EFFECT OF INITIAL CONDITION AND
DAMPING RATE

With the above picture in mind, we can expect that the
initial condition also plays an important role in the anomalous
switching, as it determines the total energy of the system.
If the initial state corresponds to a steady state in the lower
branch, the initial position in the V (X) line might be lower
than the barrier of potential when the field is turned on, there
is no anomalous switching; see Fig. 5(a). On the other hand,
if the initial state corresponds to a steady state in the higher
branch, the anomalous switching to the lower branch may
happen close to critical point B; see Fig. 5(b). In Fig. 2, it
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FIG. 5. (Color online) Intracavity photon number as a function
of time for different initial conditions. (a) The initial state is the
steady state corresponding to η = 800ωr . Then the pump field is
tuned sharply to η = 1250ωr . (b) The initial state is the steady state
corresponding to η = 1600ωr . Then the pump field is tuned to η =
1100ωr abruptly. The other parameters are N = 4.8 × 104, U0 =
0.25ωr , δc = 1.2 × 103ωr , κ = 0.4 × 103ωr . The time is in the unit
of 1/ωr .
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FIG. 6. (Color online) Intracavity photon number as a function
of time with damping. Initially there is no pump field and the
condensate is the homogeneous state. Then the pump field is turned on
immediately with η = 1250ωr . The damping rates are (a) 0.05ωr and
(b) 0.02ωr . The other parameters are N = 4.8 × 104, U0 = 0.25ωr ,
δc = 1.2 × 103ωr , κ = 0.4 × 103ωr . The time is in the unit of
1/ωr .

shows that the photon number switches to the higher branch
if the pump field is on the right of C when the condensate
is initially in the homogenous state. On the other hand, if
the condensate is initially prepared in the steady state of η =
1600ωr , the anomalous switching from the higher branch to
the lower branch happens when the pump field is between B

and D.
In the above analysis, we have neglected the damping

effect. This needs further investigation. Notice that the omitted
harmonic tapping potential couples the ±2h̄k-momentum
modes to other modes and results in the damping of the
above model [15,21]. In this case we have to add a damping
term in Eq. (7a). The damping introduces a loss in the total
energy. Therefore, in the pointlike ball picture, the surface of
the bowl is frictional and the ball keeps losing energy after
it is released. If the ball reaches one of the wells and loses
all the kinetic energy before it overcomes the peak of the
barrier, the ball then stays in that well and finally is frozen at
the bottom corresponding to the steady state. Figure 6 shows
the evolution of the intracavity photon number for different
damping rates. We can find that the system finally approaches
different branches even if it starts from the same initial
states.

V. CONCLUSION

In conclusion, we have studied the nonlinear dynamics
of the photon number in an optical cavity filled with a
cigar-shaped Bose-Einstein condensate. We find that the way
of adding the field is crucial to the switching close to the
critical transition point. If the pump field is changed abruptly,
the system may jump from one branch to the other even if
the pump field intensity has not reached the critical transition
point. The physics of this anomalous switching is that the
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oscillation introduced by the abrupt change of the pumping
field may overcome the barrier between the two basins corre-
sponding to the two bistable states. Different initial conditions
and damping rates may affect this anomalous switching
behavior.
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