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We show that nonradiative interactions between atomic dipoles placed in a waveguide can give rise to
deterministic entanglement at ranges much larger than their resonant wavelength. The range increases as the
dipole resonance approaches the waveguide’s cutoff frequency, caused by the giant density of photon modes near
cutoff, a regime where the standard (perturbative) Markov approximation fails. We provide analytical theories
for both the Markovian and non-Markovian regimes, supported by numerical simulations, and discuss possible
experimental realizations.
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I. INTRODUCTION

Dipoles can interact via photon exchange, resulting in
excitation transfer and mutual entanglement [1]. When the
interaction is mediated by radiation, i.e., real photons, it
constitutes a dissipative and hence quantum-mechanically
incoherent process, whereby the generation of entanglement
is generally probabilistic [2,3], although certain entangled
states are deterministically obtainable by engineering or
control of the bath [4]. In this study, we are concerned with
the nonradiative interaction that stems from the collective
coupling of atomic dipoles to a common “bath” of photonic
modes [5]. Such nonradiative (dispersive) interactions are
possible via their near or evanescent fields [6]. Quantum
mechanically they are described as exchange of virtual, i.e.,
nonresonant, photons between the atoms, known as resonant
dipole-dipole interaction (RDDI) [7–9]. In free space RDDI
is dominant over radiation only at distances shorter than
the resonant wavelength. Here we predict modified RDDI
along with suppressed radiation in confined geometries,
giving rise to coherent interaction at distances much longer
than the resonant wavelength. This constitutes a novel route
towards high-fidelity long-range deterministic entanglement.
The principle that allows us to appropriately modify the
radiative and dispersive interactions is that they are mediated
by the geometry-dependent field modes, populated by either
real or virtual photons, respectively. Hence, the distance
dependence of the interactions is determined by the geometry.
For example, when mediated by surface-plasmon-polariton
modes in one dimension, both interactions appear to have
long-range character, yet they are hindered by dissipation
mechanisms [10–12]. For example, in Ref. [10], the radiative
interaction sets the bound of the concurrence (entanglement) at
C = 0.5. This bound is circumvented by a promising approach
to a coherent phase gate based on the difference between
super- and subradiant decay rates [11]. Still, ohmic losses
and radiation to free-space modes may practically limit the
phase-gate operation to distances smaller than a wavelength.
Radiation, however, can be suppressed in geometries that
create cutoffs or band gaps in the photonic mode spectrum.
In such geometries RDDI can be drastically modified [13–15].

In our approach, photonic cutoffs or band gaps are used
not only to suppress radiation but also to enhance RDDI so
as to make it the dominant effect. Our main result, obtained
by essentially exact (nonperturbative) calculations, is the

possibility of extremely long-distance RDDI almost without
radiation, and correspondingly high concurrence (nearly per-
fect entanglement). This effect is predicted in waveguides for
pairs of atoms whose dipolar transition frequency is just below
the cutoff or band edge of the waveguide. We thereby reveal
the key principle that enables coherent long-range interaction,
potentially much stronger than possible decoherence effects,
namely, the very large density of photon states near the
cutoff. Thus, the enhancement of density of states due to the
cutoff is reminiscent of that obtained using a cavity. However,
unlike a cavity, the waveguide geometry is open along the
propagation axis and does not restrict the separation of the
atoms. In the Markov approximation, the RDDI diminishes
with the interatomic distance z as e−z/ξ , where ξ increases
as the atomic frequency approaches the cutoff (band edge),
allowing for entanglement at long distances. Yet, the standard
Markov approximation fails close to cutoff, which requires a
nonperturbative analysis, supported by numerical calculations.

II. THE MODEL

We consider a pair of atoms, modeled by identical two-level
systems (TLSs) with energy levels |g〉 and |e〉 and transition
frequency ωa . These are coupled to the vacuum field of a
nonleaky waveguide; i.e., we neglect the TLS coupling to
modes outside the waveguide: a relevant assumption in the
situation considered below. The TLS-field dipole couplings are

gkα =
√

ωk

2ε0h̄
d · uk(rα), rα being the location of atom α = 1,2,

d the dipole matrix element of the |g〉 ↔ |e〉 transition (taken
to be real), and ωk and uk(r) the kth mode frequency and
spatial function. The corresponding Hamiltonian in the dipole
approximation [7,16] reads, in the interaction picture,

HAF = h̄

2∑
α=1

∑
k

[igkαâke
−iωkt + H.c.][σ̂−

α e−iωat + H.c.],

(1)

âk , σ̂−
α being the mode and the TLS lowering operators,

respectively. In what follows, we analyze the atomic dynamics
under the perturbative Markov approximation and without it.

III. MARKOVIAN THEORY

Adopting an open-system approach for the problem [17],
we identify the two atoms as the system and the continuum
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FIG. 1. (Color online) (a) Schematic picture of our model. (b)
Dynamics of excited state population for the atoms affected by the
TM11 mode well below cutoff, with [Eqs. (6)–(9)] ω11 = 500�11,
ωa − ω11 = −100�11 and z12 = 0.5λa : Markovian theory (t) and
simulation (s) results. (c) Divergence near cutoff ω11 of the single-
atom spectrum Gαα for TM11 mode, Eq. (9).

of EM vacuum modes as a bath, and consider the effects of
the bath on the system [Fig. 1(a)]. These are dissipative and
dispersive effects that are related by the Kramers-Kronig rela-
tion and determined by the bath’s two-point (autocorrelation)
spectrum Gαα′ (ω), defined via∑

k

gkαg∗
kα′ −→

∫
dωGαα′ (ω). (2)

From Fermi’s Golden Rule we obtain the rate of dissipation
by radiation γαα′ = 2πGαα′ (ωa), which for α = α′ represents
the single-atom spontaneous emission rate to the guided modes
and for α �= α′ describes the two-atom, distance-dependent,
cooperative emission [18]. The dispersive effect is obtained
by second-order perturbation theory for the energy correction
(cooperative Lamb shift [19]) of the two-atom states, associ-
ated with the bath-induced dipole-dipole Hamiltonian term,

HDD = −h̄
1

2

∑
αα′

�αα′ (σ̂+
α σ̂−

α′ + σ̂−
α σ̂+

α′ ), (3)

where �αα′ = �αα′,− + �αα′,+ and

�αα′,∓ = P
∫ ∞

0
dω

Gαα′ (ω)

ω ∓ ωa

, (4)

with P denoting the principal value. The dissipative, incoherent
effect of γαα′ gives rise to probabilistic interaction between the
atoms. Hence, in order to achieve nonradiative, deterministic
interaction we need a vanishing γαα′ , leaving intact the coher-
ent dynamics governed by HDD in Eq. (3). Then, if initially
only atom 1 is excited, we get a periodic exchange of the exci-
tation between the atoms, at a rate �12, in the two-atom state

|ψ12(t)〉 = cos(�12t)|e1,g2〉 + i sin(�12t)|g1,e2〉 (5)

that superposes singly-excited product states of atoms 1 and 2.
A maximally entangled state is then achieved at odd multiples
of the time t = π/(4�12).

In order to illustrate how the radiative effects γαα′ can
be suppressed we first consider the case of atoms placed
inside a rectangular hollow metallic waveguide (MWG), with
longitudinal axis z and transverse dimensions a and b [see
Fig. 1(a)]. Nonideal MWG and optical fiber realizations will
be addressed below. The atom interacts only with the MWG
field modes TEmn (transverse electric) and TMmn (transverse
magnetic) labeled by non-negative integers m,n [20] (see the
Appendix A). Each TE/TMmn transverse mode has its own
cutoff frequency ωmn and dispersion relation ωmn

kz
, kz being the

longitudinal wave number,

ωmn = c
√

(mπ/a)2 + (nπ/b)2,
(6)

ωmn
kz

=
√

(ckz)2 + ω2
mn,

where ωk = ωmn
kz

is the frequency of the k = TE/TMmn,kz

mode, and c is the speed of light. The contribution of a specific
transverse mode λmn (λ = TE,TM) to the bath spectrum in
Eq. (2) is obtained from the dispersion relation kz(ω) [Eq. (6)]
upon identifying ωmn

kz
= ω,

Gλ
mn,αα′ (ω) = ∂kz

∂ω
gλ

mn,α(ω)gλ∗
mn,α′ (ω)�(ω − ωmn), (7)

∂kz

∂ω
= 1

c

ω

ωmn

1√
(ω/ωmn)2 − 1

, (8)

�(x) being the Heaviside step function. At this stage two key
features of the waveguide structure must be noted: (1) below
the cutoff ωmn no λmn guided photon modes exist, and (2) the
density of states ∂kz

∂ω
diverges near the cutoff. In what follows,

we use feature 1 to suppress radiation and feature 2 to obtain
long-distance and strong RDDI.

In order to facilitate the analysis it is sufficient to consider
the case where the atoms are polarizable only in the z direction,
d = dzez (for other polarizations see the Appendix A or
Ref. [15]). Since TE modes have a vanishing z component
of the electric field, only TM modes contribute to the bath
spectrum,

Gαα′ (ω) =
∑
mn

�mn

2π

cos[kz(zα − zα′)]√
(ω/ωmn)2 − 1

�(ω − ωmn). (9)

Here �mn ≡ 4ωmnd̃
(z)
mn,α d̃

(z)
mn,α′

πε0h̄cab
is introduced, where d̃ (z)

mn,α =
dz sin( mπ

a
xα) sin( nπ

b
yα) and xα,yα is the transverse position

of atom α. Also note that kz is a function of ω by virtue of
Eq. (6).

Now, consider the case where the atomic resonance is below
the lowest cutoff frequency, ωa < ω11 for TM modes. Then, the
atomic dipoles are not resonant with any of the field modes and
radiation is suppressed, γαα′ = 2πGαα′ (ωa) = 0, from Eq. (9).
We are thus left only with the nonradiative RDDI [Eq. (4)],

�12 =
∑
mn

�mn

2

1√
1 − (ωa/ωmn)2

e
− z12

ξmn , (10)

where z12 ≡ |z1 − z2| and the effective interaction range is

ξmn = c

ωmn

1√
1 − (ωa/ωmn)2

. (11)

These Markovian theory results [15] predict that radiative
dissipation is absent, while the RDDI decays exponentially
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with interatomic distance, typical of interaction mediated by
evanescent waves. Yet, remarkably, Eqs. (10) and (11) imply
that as the atomic resonance ωa approaches the lowest cutoff
ω11 from below, the RDDI diverges owing to the contribution
of the TM11 mode, and so does its range, determined
by ξ11. This potentially enables deterministic generation of
entanglement at very large distances.

In order to test the above results we performed direct
numerical simulations of the Schrödinger equation for the
Hamiltonian (1), taking only the dominant m = 1, n = 1
mode into account (see the Appendix B). Figure 1(b) portrays
typical dynamics of the atoms’ populations, along with their
entanglement, quantified by the concurrence [21], for z12 =
0.5λa with λa the atomic transition wavelength. As expected
from Eq. (5), the maximally entangled state is generated at
half the oscillation period of the population exchange. It is also
apparent that when ωa is not too close to the cutoff ω11, the
simulation results agree with those of the Markovian analysis,
Eqs. (5) and (10), within numerical accuracy.

IV. VALIDITY OF THE MARKOVIAN THEORY

The Markov approximation used above breaks down as ωa

approaches the cutoff. The general conditions for the validity
of the Markov approximation reduce in our case to (see the
Appendix C)

�12(ωa)�′′
12(ωa) � 1, (12)

where �12(ωa) is given by Eq. (10) and �′′
12(ωa) is its

second derivative with respect to ωa . In the limit ωa → ωmn,
�12(ωa) and �′′

12(ωa) become singular and condition (12) is
not satisfied, as seen from Eq. (10) and Fig. 1(c). Thus, a
non-Markovian theory is required in order to fully analyze
the possibility of long-distance RDDI and entanglement.
Non-Markovian analysis has been performed before for a
single atom coupled to a continuum with a cutoff [22,23],
yielding the possibility of incomplete decay: decay of the
excited state population to a steady-state value different from
zero, as a result of the formation of atom-photon bound states.
Nevertheless, the Markovian analysis is very useful for RDDI
in cases where nearly complete entanglement (e.g., C > 0.95)
is to be achieved, as seen below.

V. NON-MARKOVIAN THEORY

In order to account for the situation where ωa approaches
the cutoff, we develop a nonperturbative and non-Markovian
theory for RDDI, in the spirit of Ref. [22]. From Hamiltonian
(1), assuming that only atom 1 is initially excited, the state of
the combined (atoms + modes) system can be written within
the rotating-wave approximation [16] as

|ψ(t)〉= a1(t)|e1,g2,0〉+a2(t)|g1,e2,0〉+
∑

k

bk(t)|g1,g2,1k〉.

Inserting this state into the Schrödinger equation, we obtain
dynamical equations for a1(t), a2(t), and bk(t). As before, we
consider only the MWG transverse mode m = 1, n = 1, this
time for ωa close to the cutoff ω11, such that the denominator
of the spectrum (9) is well approximated by

√
(ω/ω11)2 − 1 ≈√

2
√

ω/ω11 − 1. Using the Laplace transform in order to solve

the dynamical equations, we then obtain the dynamics of the
first atom (more details can be found in the Appendix D):

a1(t) =
√

ie−iω11t

5∑
j=1

cj

[
1√
πt

+
√

iuj e
iu2

j terfc(−
√

iuj

√
t)

]
.

(13)

Here uj are the roots of d(u) = u5 + 2Wau
3 −

1√
2
�11

√
ω11u

2 + W 2
a u − 1√

2
�11

√
ω11Wa − 1

8�2
11ω11

1
u
F (u),

where Wa = ωa − ω11, cj = n(uj )/d ′(uj ) with n(u) =
−i(u3 + Wau − 1

2
√

2
�11

√
ω11), and F (u) = (e−2z12(

√
ω11/c)u −

1), where F (u) is expanded in Taylor series up to fifth
order in u (see the Appendix D). The conditions of validity
for this theory are thus given by the approximation of the
spectrum and the expansion of F (u), yielding ωa−ω11

4ω11
� 1

and z12 � ( 45
4 )1/6 1

2π

ωa

ω11

√
ω11

2|ω11−ωa | , respectively. However, in

practice, another limitation on the precision of the theory
comes from the numerical calculation of the roots of d(u).

FIG. 2. (Color online) Atomic dynamics affected by TM11 mode
in the non-Markovian regime. (a) Atomic excitation probabilities and
concurrence as a function of time. Here ω11 = 500�11, z12 = λa ,
and ωa − ω11 = −10�11. The simulations (s) well agree with the
theory (t) [Eq. (13)]. (b) Tradeoff between RDDI strength �12 and
maximal achievable concurrence Cmax as a function of the atomic-
resonance mismatch with cutoff (simulation results for ω11 = 500�11,
z12 = 0.5λa), compared with Markovian theory �12,M , Eq. (10). The
estimates for �12 are extracted by fitting the dynamics of simulations
for various ωa values to Eq. (5). (c) Entanglement generation as a
function of time at long distance: The excitation of the first atom
is calculated by Eq. (13), and the concurrence is bounded by the
maximal value of the plot. MWG realization (blue thin line): ω11 =
2.17 × 1010�11, ωa − ω11 = −2 × 104�11, z = 100λa . Fiber-Bragg-
grating realization (red thick line): ω11 = 6 × 107�11, ωa − ω11 =
−1500�11, z = 20λa . (d) Fiber-Bragg-grating scheme: The atoms are
coupled to the guided modes by their transverse evanescent tails [28]
or when inserted into the fiber [27].
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Figure 2(a) presents the dynamics of the atomic populations
and interatomic entanglement in the non-Markovian regime.
Very good agreement between the above theory and numerical
simulations is observed. The main feature of the dynamics
are Rabi-like oscillations similar to those of the Markovian
case. Nevertheless, their amplitude is decreased as a result of
excitation loss to the field modes by incomplete decay, setting
the upper bound on the achievable entanglement. Hence, as ωa

approaches the cutoff, while the interatomic distance z is kept
fixed, we get a tradeoff between increased RDDI strength and
decreased maximum entanglement. This is shown in Fig. 2(b),
where ωa is varied from very far from cutoff, where Markovian
theory predictions �12,M and Cmax = 1 apply, to very close to
the cutoff, where �12 increases on the expense of Cmax.

VI. LONG-DISTANCE ENTANGLEMENT
AND POSSIBLE REALIZATIONS

Using the analytical theory above, we shall now illustrate
the possibility of long-distance entanglement by two examples.
First, consider Rydberg atoms that pass through a cold metallic
waveguide (MWG), similar to the setup in Refs. [24,25] where
the MWG replaces the superconducting cavity. The states |g〉
and |e〉 are the two circular states with principal quantum
numbers 51 and 50, with transition frequency and dipole
moment ωa = 2π × 51.1 GHz and d ∼ 1250ea0, respectively,
with e the charge of an electron and a0 the Bohr radius [25].
Near the cutoff, �11 is similar to the free space |e〉 → |g〉 decay

rate, estimated to be ω3
ad

2

3πε0h̄c3 ≈ 14.7 Hz. The corresponding
dynamics for z = 100λa are plotted in Fig. 2(c), where
λa ∼ 6 mm is the atomic wavelength, such that we obtain
entanglement with concurrence C = 0.983, at a distance
z ∼ 0.6 m and for interaction time t ≈ 0.2 ms [Fig. 2(c)].
Considering possible imperfections we derived the dissipation
rate due to ohmic losses of the atom-induced evanescent
fields in a square waveguide (a = b), γloss � 2Rs

μ0a
, with μ0

the vacuum permeability and Rs the surface resistance (see
the Appendix E). Normal metals may limit the achievable
entanglement distance and fidelity as in Ref. [11]. However,
for niobium superconducting plates at temperature T < 1 K,
we take, as in Ref. [24], Rs = 75 n�, yielding, for a ≈ 6 mm,
γloss = 19.89 Hz, much slower than the 0.2 ms required
for entanglement. Such a temperature also ensures that the
thermal photon occupancy at ωa is negligible. In addition, as
analyzed in Ref. [26], surface roughness of the metal plate
may slightly change the mode structure and the location of the
cutoff frequency, and correspondingly the calculated RDDI
rate. Nevertheless, a cutoff below which the modes become
evanescent with diverging density of states persists; hence the
principle of our scheme still applies. Regarding our initial
assumption of isolated waveguide modes, we recall that ωa

is much smaller than the typical plasma frequency in metals
(∼1016 Hz), so that the isolated modes of a perfect conductor
used here are indeed adequate.

Another option is that of optical fiber modes coupled to
the atoms [27,28]. Although the fiber’s guided modes also
possess cutoffs, they lack the two important features that we
have highlighted for the MWG: (1) below cutoff the atoms are

coupled to outside modes, and hence spontaneous emission
exists at a rate comparable to that in free space; (2) the group
velocity ∂ω

∂kz
does not vanish at the fiber cutoff so that the

density of states ∂kz

∂ω
does not diverge. We can restore the second

feature by considering a fiber Bragg grating [29]: then, for a
transverse fiber mode with dispersion ω(kz), the group velocity
does vanish at the band edge of the ω spectrum corresponding
to kz = π/(�n̄), with � the period of the grating and n̄ the
average refractive index [Fig. 2(d)]. The dispersion near the
upper boundary of the gap, ωu, can be approximately written
as ω ≈ ωu + B[kz − π/(�n̄)]2 with constant B, so that ∂kz

∂ω
∝

1/
√

ω − ωu diverges at ωu in the same way assumed in our
non-Markovian theory (see the Appendix F for more details).
Then the atom can still emit to outside modes, but just below
the bandedge ωu, RDDI, which is mediated by evanescent
waves in the gap, can become much stronger and more long
distance, due to the divergence. We consider optical atomic
transitions, e.g., the D2 line of 87Rb atoms with λa ≈ 780 nm
and natural line width 2π × 6.07 MHz. The results for z =
20λa ∼ 16 μm are plotted in Fig. 2(c), yielding concurrence
C = 0.9605 after t ≈ 3.55 ns of interaction.

VII. CONCLUSIONS

To conclude, the main result of this study is the demon-
stration of the possibility of long-distance interaction between
dipoles by a nonradiative, deterministic and coherent process
(RDDI) that is crucially dependent on the waveguide geometry.
The proposed scheme relies mostly on the possibility of
vanishing group velocity, i.e., diverging density of states,
for the guided modes, at a frequency cutoff (or band gap)
of the waveguide. An important innovation of this work is
the derivation of a nonperturbative analytic theory for RDDI
near a cutoff of the photonic spectrum. The theory exhibits
non-Markovian features, particulary population loss of the
atoms by incomplete decay and the resulting reduction of
entanglement, in agreement with numerical simulations.

Possible manifestations of the predicted effect include
high-concurrence entanglement as well as energy transfer
between dipoles at giant separations. The analysis and the
potential realizations discussed above suggest that the effect
is significant for a wide range of atomic and waveguide pa-
rameters, constrained only by the tradeoff between interaction
strength and the maximal achievable entanglement.
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APPENDIX A: DIPOLE-DIPOLE INTERACTION FOR
ARBITRARY ORIENTED DIPOLES

In the main text we considered the case where the dipoles
are oriented in the z direction. For a general orientation,
we need to consider all the TE/TMmn,kz

modes with their
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normalized spatial functions [20],

uTM
mn,kz

(x,y,z) = 2√
AL

eikzz

{
ωmn

ωmn
kz

sin

(
mπ

a
x

)
sin

(
nπ

b
y

)
ez + ikzc

ωmnω
mn
kz

[
c
π

a
m cos

(
mπ

a
x

)
sin

(
nπ

b
y

)
ex

+ c
π

b
n sin

(
mπ

a
x

)
cos

(
nπ

b
y

)
ey

]}
(A1)

uTE
mn,kz

(x,y,z) = 2√
AL

eikzz

[
− c

π

b
n cos

(
mπ

a
x

)
sin

(
nπ

b
y

)
ex + c

π

a
m sin

(
mπ

a
x

)
cos

(
nπ

b
y

)
ey

]
,

where A = ab is the transverse area of the waveguide. Inserting these mode functions into Eq. (6), we obtain the bath spectrum:

Gαα′ (ω) = GTM
αα′ (ω) + GTE

αα′ (ω),

GTM
αα′ (ω) = 1

πε0h̄cA

∑
mn

ωmn√
(ω/ωmn)2 − 1

{
cos[kz(zα − zα′)]2d̃ (z)

mn,αd̃
(z)
mn,α′ + cos[kz(zα − zα′)]2d̃TM

mn,αd̃TM
mn,α′

[(
ω

ωmn

)2

− 1

]

+ sin[kz(zα − zα′)]2
[
d̃z

mn,αd̃TM
mn,α′ − d̃TM

mn,αd̃z
mn,α′

]√(
ω

ωmn

)2

− 1

}
�(ω − ωmn), (A2)

GTE
αα′ (ω) = 1

πε0h̄cA

∑
mn

ω2√
ω2 − ω2

mn

cos[kz(zα − zα′ )]2d̃TE
mn,αd̃TE

mn,α′�(ω − ωmn),

where �(x) is the Heaviside step function. The effective dipole moments read

d̃ (z)
mn,α = dz sin

(
mπ

a
xα

)
sin

(
nπ

b
yα

)
,

d̃TM
mn,α = dx

c π
a
m

ωmn

cos

(
mπ

a
xα

)
sin

(
nπ

b
yα

)
+ dy

c π
b
n

ωmn

sin

(
mπ

a
xα

)
cos

(
nπ

b
yα

)
, (A3)

d̃TE
mn,α = −dx

c π
b
n

ωmn

cos

(
mπ

a
xα

)
sin

(
nπ

b
yα

)
+ dy

c π
a
m

ωmn

sin

(
mπ

a
xα

)
cos

(
nπ

b
yα

)
,

with dj = d · ej and xα,yα the transverse position of atom α. In order to find the RDDI �αα′ = �αα′,− + �αα′,+, we recall Eq. (4)
and find by contour integration methods:

�12 = �TM
12 + �TE

12 ,

�TM
12 =

∑
mn

2ωmn

ε0h̄cA

[
1√

1 − ω2
a

ω2
mn

d̃
(z)
mn,1d̃

(z)
mn,2 −

√
1 − ω2

a

ω2
mn

d̃TM
mn,1d̃

TM
mn,2 + sign(z1 − z2)

(
d̃

(z)
mn,1d̃

TM
mn,2 − d̃TM

mn,1d̃
(z)
mn,2

)]
e
− |z1−z2 |

ξmn , (A4)

�TE
12 =

∑
mn

2ωmn

ε0h̄cA

ω2
a

ω2
mn

1√
1 − ω2

a

ω2
mn

d̃TE
mn,1d̃

TE
mn,2e

− |z1−z2 |
ξmn ,

with ξmn = c
ωmn

1√
1−(ωa/ωmn)2

.

APPENDIX B: NUMERICAL SIMULATIONS

We performed direct numerical simulations of the
Schrödinger equation for the Hamiltonian from Eq. (1), taking
only the dominant TM11 mode into account. The dipole
couplings gk relate to the 1D spectrum, from Eq. (7), by
gω,α = √

Gαα(ω)dωeikzzα , where dω is the sampling reso-
lution used to discretize the frequency space ω. The initial
atomic state is |e1,g2〉 where the modes are in the vacuum
|0〉. By taking the rotating wave approximation [16], i.e.,
neglecting nonenergy-conserving Hamiltonian terms of the
form σ̂+â†

ω,σ̂−âω, we restrict ourselves to the single-excitation
Hilbert space, |e1,g2,0〉, |g1,e2,0〉 and {|g1,g2,1ω〉,∀ω}, which
is solved numerically.

APPENDIX C: VALIDITY OF THE MARKOV
APPROXIMATION

The dissipative and dispersive coefficients, γαα′ and �αα′ ,
can be obtained by deriving the master equation [16,17] for the
atoms’ density matrix. Equivalently, here we will use instead
the latter, second order perturbation theory for the transition
amplitude. We begin with Eq. (23) on page 28 of Ref. [16],

U
(2)
αα′ = 1

2πi

∫ T/2

−T/2
dt1

∫ T/2

−T/2
dt2

∫ ∞

−∞
dωei(ωa−ω)(t2−t1)Wαα′ (ω),

(C1)

where U
(2)
αα′ is the second order contribution to the transition

amplitude from the state where only atom α is excited to the
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state where only atom α′ is excited, T is the interaction time,
and

Wαα′ (ω) = limη→0+

[∑
k

gkαg∗
kα′

ω − ωk − iη

+
∑

k

gkα′g∗
kα

ω − 2ωa − ωk − iη

]
. (C2)

Recalling the definition of the bath spectrum in Eq. (2), we
can rewrite Wαα′ as

Wαα′ (ω) = limη→0+

[ ∫
dω′ Gαα′ (ω′)

ω − ω′ − iη

+
∫

dω′ Gαα′ (ω′)
ω − 2ωa − ω′ − iη

]
. (C3)

Using the relation limη→0+ 1
x+iη

= iπδ(x) + P 1
x

under integra-
tion, we obtain

U
(2)
αα′ = 1

2πi

∫ ∞

−∞
dωδ2

T (ω − ωa)

[
− i

1

2
γαα′ (ω)

− i
1

2
γαα′ (ω − 2ωa) − �αα′ (ω) − �αα′ (ω − 2ωa)

]
(C4)

with δT (ω) = ∫ T/2
−T/2 dte−iωt being a sinc function of width 1/T

and amplitude T , and

γαα′ (ω) = 2πGαα′ (ω); �αα′ (ω) = P
∫

dω′ Gαα′ (ω′)
ω′ − ω

. (C5)

In the limit T → ∞, i.e., δT (ω) ∼ δ(ω), we recover the
Markovian results γαα′ = γαα′ (ωa) and �αα′ = �αα′ (ωa) +
�αα′ (−ωa) [noting that Gαα′ (ω < 0) = 0]. Let us specify
when such a limit is reasonable. Consider T as the time
resolution we are interested in, i.e. T is much smaller than
the typical time scale of the atomic dynamics. Nevertheless,
we assume that T is sufficiently large, such that in a width
1/T of δ2

T (ω − ωa) around ωa , γαα′ (ω),�αα′ (ω) do not change
appreciably. Then, we can expand γαα′(ω),�αα′ (ω) around ωa

(and also around −ωa for �αα′ ) and get∫ ∞

−∞
dωδ2

T (ω − ωa)�αα′(ω) ∝ �αα′ (ωa) + O

[
�′′

αα′ (ωa)

T 2

]
,

(C6)

where a similar result is obtained for γαα′ . For the Markovian
approximation to be valid, we demand that the lowest order
relative correction for the Markovian result is small:

�′′
αα′ (ωa)

�αα′ (ωa)

1

T 2
� 1. (C7)

As a typical atomic dynamics time scale, for the case of RDDI,
we may take �αα′ . Then, using it in (C7), we obtain the
condition of validity in Eq. (12).

APPENDIX D: NON-MARKOVIAN THEORY

Taking the Laplace transform of the dynamical equations
for a1(t), a2(t), and bk(t) with the initial conditions a1(0) =

1, a2(0) = bk(0) = 0, we find

ã1(s) =
[
s + J11(s) + iωa − J12(s)J21(s)

s + J22(s) + iωa

]−1

. (D1)

Here ã1(s) is the Laplace transform of a1(t) and Jαα′ (s) =∑
k

g∗
k,αgk,α′
s+iωk

. We note that by virtue of Eq. (4), Jαα′ (−iωa) =
−i�αα′,−. As before, we consider the spectrum in Eq. (9)
for m = 1,n = 1. Since ωa is close to the cutoff ω11, the
main contribution to RDDI comes from frequencies near ω11

so that we approximate the denominator of the spectrum
by

√
(ω/ω11)2 − 1 ≈ √

2
√

ω/ω11 − 1. After performing the
integrals in Jαα′ (s), using the approximated spectrum, we
obtain

ã1(s) = ã1(u) = n(u)

d(u)
,

n(u) = −i

(
u3 + Wau − 1

2
√

2
�11

√
ω11

)
,

(D2)
d(u) = u5 + 2Wau

3 − 1√
2
�11

√
ω11u

2W 2
a u

− 1√
2
�11

√
ω11Wa − 1

8
�2

11ω11
1

u
F (u)

with u = √−i
√

s + iω11, Wa = ωa − ω11 and F (u) =
(e−2(z1−z2)(

√
ω11/c)u − 1). In order to perform the inverse

Laplace transform we first expand F (u) in a Taylor series:
In order to still satisfy the Laplace initial value theorem,
α1(t = 0+) = lims→∞ sα̃1(s), the expansion is taken up to fifth
order. Then, expanding ã1(u) in partial fractions [22],

ã1(u) =
5∑

j=1

cj

u − uj

; cj = c(uj ); c(u) = n(u)

d ′(u)
, (D3)

where uj are the roots of d(u), and using the inverse transform
of 1/(

√
s + a) [30], we finally obtain

a1(t) =
√

ie−iω11t

×
5∑

j=1

cj

[
1√
πt

+
√

iuj e
iu2

j terfc(−
√

iuj

√
t)

]
. (D4)

APPENDIX E: METAL WAVE-GUIDE REALIZATION:
OHMIC LOSSES

We consider ohmic losses on the four conducting plates that
make up the waveguide. The dissipated power per unit area of
a plate is given by

dPloss/dS = 0.5|Js |2Rs, (E1)

where S is the area and Rs its surface resistance [31]. In order
to find the surface current Js we should first find the electric
field of the dipole inside the waveguide. Assuming, as before,
that the dipole is oriented to the z direction, its field is a
superposition of evanescent TMmn modes of a single ωa < ωmn

photon,

Emn(r) = i

√
h̄ωa

2ε0
uTM

mn,ωa
(r), (E2)
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where uTM
mn,ωa

(r) is given by Eq. (A1) with κ =
(1/c)

√
ω2

mn − ω2
a replacing −ikz and 2κ replacing 1/L. We

then find the corresponding magnetic field using the Maxwell
equations for TM modes [20,31],

Hmn(r) = − c2

ω2
mn

iωaε0∇⊥ × (Emn · ez), (E3)

∇⊥ = ∂xex + ∂yey being the curl operator in the xy plane.
The surface currents on the plates are found from the surface
boundary conditions for the magnetic fields, Js = en × H, with
en the normal to the surface. Finally we integrate Eq. (E1)
over the plate area, e.g., for the plate at y = b, Ploss =
2
∫ ∞

0 dz
∫ a

0 dx0.5|Js |2Rs . By defining the dissipation rate per
TMmn mode as γ mn

loss = Ploss/(h̄ωa), we find for all four plates

γ mn
loss =

[
2(

m
n

b
a

)2 + 1

]
Rs

μ0b
+

[
2(

n
m

a
b

)2 + 1

]
Rs

μ0a
. (E4)

Then, for the case a = b, the total dissipation of a single
photon field from the atom is bounded by 2 Rs

μ0a
.

APPENDIX F: FIBER-BRAGG-GRATING REALIZATION

We briefly show how we can relate the fiber-Bragg-grating
case to the theory derived for the MWG in the main text. The
dispersion of a transverse fiber mode with a Bragg grating
is [29]

ω(kz) − ωB = ±1

2

�n

n̄
ωB

√
1 +

(
2

�n

)2 (
kz

kB

− 1

)2

, (F1)

where kB = ωB/c = π/(�n̄) is the Bragg wave vector, � the
grating period, n̄ the average refractive index, and �n the
index difference of the grating. Near the upper cutoff of the
band gap, kz is close to kB and we approximate the dispersion
as

ω(kz) ≈ ωu + B(kz − kB)2, (F2)

where ωu = ωB(1 + 0.5�n/n̄) is the upper band edge and
B = ( c

n̄
)2( n̄

�n
) 1
ωB

. Then the density of states is

∂kz

∂ω
≈ n̄

c

√
n̄

4�n

1√
(ω/ωu) − 1

, (F3)

where ωB ≈ ωu was taken. There are three terms on the
right-hand side of Eq. (F3): The first is a linear dispersion
contribution of a mode with group velocity c/n̄, while the
second increases the usual density of states by a constant
factor. The third term is the divergence due to the band edge.
The spectrum of the fiber mode will then have the form [see
Eq. (7)]

Gαα(ω) ∼ �u

2π

1√
(ω/ωu) − 1

, (F4)

where �u is similar to the free space spontaneous emission rate.
This is the spectrum assumed in our non-Markovian theory for
the MWG, with ωu,�u replacing ω11,�11.
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