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Dissipation-driven two-mode mechanical squeezed states in optomechanical systems
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In this paper, we propose two quantum optomechanical arrangements that permit the dissipation-enabled
generation of steady two-mode mechanical squeezed states. In the first setup, the mechanical oscillators are
placed in a two-mode optical resonator while in the second setup the mechanical oscillators are located in two
coupled single-mode cavities. We show analytically that for an appropriate choice of the pump parameters, the
two mechanical oscillators can be driven by cavity dissipation into a stationary two-mode squeezed vacuum,
provided that mechanical damping is negligible. The effect of thermal fluctuations is also investigated in detail
and shows that ground-state precooling of the oscillators is not necessary for the two-mode squeezing. These
proposals can be realized in a number of optomechanical systems with current state-of-the-art experimental
techniques.
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I. INTRODUCTION

Quantum squeezing and entanglement have been observed
in a number of atomic and photonic systems and are expected
to play an increasing role in applications ranging from
the measurement of feeble forces and fields to quantum
information science [1–4]. For example, it has been know
for over three decades that squeezed vibrational states are of
importance for the measurement beyond the standard quantum
limit of the weak signals expected to be produced, e.g., in
gravitational wave antennas [5]. Although achieving such
effects in macroscopic systems remains a major challenge due
in particular to the increasing rate of environment-induced
decoherence [6], recent progress toward the ground-state
cooling of micromechanical systems [7–11] may change the
situation significantly in the near future. In particular, the
characterization of quantum ground-state mechanical motion
[12], the quantum control of a mechanical resonator deep in
the quantum regime by coupling it to a qubit [13], and the
demonstration of optomechanical ponderomotive squeezing
[14] are important steps toward the broad exploration of
quantum effects in truly macroscopic systems [15–23]. Several
proposals have been put forward to generate mechanical
squeezing in an optomechanical oscillator, including the
injection of nonclassical light [24], conditional quantum
measurements [25], and parametric amplification [26–29]. In
all cases, decoherence and losses are a dominant limiting factor
in the amount of squeezing that can be achieved.

A new paradigm in quantum state preparation and control
has recently received increased attention. Its key aspect is
that it exploits quantum dissipation in the generation of
specific quantum states. Quantum reservoir engineering has
been proposed to prepare desirable quantum states [30–35]
and perform quantum operations [36], and the creation of
steady-state entanglement between two atomic ensembles
by quantum reservoir engineering has been experimentally
demonstrated [37]. This dissipative approach to quantum
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state preparation presents the double advantage of being
independent of specific initial states and of leading to steady
states robust to decoherence.

In this paper we propose to exploit the combined effects of
optomechanical coupling and cavity dissipation to generate the
steady-state, two-mode squeezing of two spatially separated
mechanical oscillators. These states are also entangled states of
continuous variables, a basic resource in quantum information
precessing. We consider specifically two different setups. In
the first one, analyzed in Sec. II, two mechanical oscillators
are placed inside a two-mode optical resonator, while in the
second one, discussed in Sec. III, the mechanical oscillators are
located in two separate single-mode cavities coupled by photon
tunneling. The cavities are driven in both cases by amplitude-
modulated lasers. In the first setup we show analytically that
for appropriate mechanical oscillator positions and pump laser
parameters the mechanics can be driven into a stationary two-
mode squeezed vacuum by cavity dissipation, provided that
mechanical damping is negligible. In the second case a two-
step driving sequence can likewise give rise to a steady two-
mode mechanical squeezed vacuum state. In both cases the
effect of thermal fluctuations on the resulting squeezed states
is also investigated in detail. Finally, Sec. IV is a conclusion
and outlook.

II. MECHANICAL OSCILLATORS IN A SINGLE
TWO-MODE CAVITY

A. Model and equations

Consider an extension of the “membrane-in-the-middle”
arrangement of cavity optomechanics [38] where two mechan-
ical oscillators, modeled as vibrating dielectric membranes of
identical frequencies ωm, are located inside a driven two-mode
optical resonator, as illustrated in Fig. 1. The mechanical
modes are characterized by the bosonic annihilation operators
Ĉj and the cavity modes, at frequencies ωcj (j = 1,2), by an-
nihilation operators Âj . These modes are driven by amplitude-
modulated lasers of frequencies ωlj . The Hamiltonian of the
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FIG. 1. (Color online) Schematic plot of two vibrating mem-
branes (Cj ) placed at appropriately chosen positions in a driven cavity
with two frequency-nondegenerate resonant modes (Aj ).

driven cavity-oscillators system reads

H =
∑

j,k=1,2

{ωcj Â
†
j Âj + ωmĈ

†
j Ĉj + gjkÂ

†
j Âj (Ĉk + Ĉ

†
k)

+ iEj (t)e−iωlj t Â
†
j − iE∗

j (t)eiωlj t Âj }, (1)

where Ej (t) are the time-dependent amplitudes of the pump
lasers. Their specific forms will be given later. The single-
photon optomechanical coupling constants are [38]

gjk = ωcjfjk(x̄k)

L

√
h̄

mωm

, (2)

where L is the length of the cavity, m are the identical masses
of the membranes, and

fjk(x̄k) = 2Rk sin(2kcj x̄k)√
1 − R2

k cos2(2kcj x̄k)
. (3)

Here Rk and x̄k are the reflection coefficients and equilibrium
positions of the two membranes and kcj the wave numbers of
the cavity modes.

For an appropriate combination of cavity length and
membrane positions of the membranes (see Fig. 1), it is
possible to find a situation such that the “symmetrical” and
“antisymmetric” optomechanical coupling strengths satisfy
the equalities

g11 = g12 = g1, g21 = −g22 = g2, (4)

as discussed in Ref. [39]. Introducing then the new bosonic
annihilation operators

B̂1 = (Ĉ1 + Ĉ2)/
√

2, (5a)

B̂2 = (Ĉ1 − Ĉ2)/
√

2, (5b)

the Hamiltonian H becomes H = ∑
j H̃j , where

H̃j = ωcj Â
†
j Âj + ωmB

†
j B̂j + gj Â

†
j Âj (B̂j + B̂

†
j )

+ iEj (t)e−iωlj t Â
†
j − iE∗

j (t)eiωlj t Âj . (6)

In terms of the normal operators B̂j , the system is therefore
decoupled and reduces to two independent single-membrane
optomechanical systems.

Further decomposing the operators Âj and B̂j as

Âj = 〈Âj (t)〉 + âj ≡ αj (t) + âj ,
(7)

B̂j = 〈B̂j (t)〉 + b̂j ≡ βj (t) + b̂j .

With |αj (t)|2 � 〈â†
j âj 〉 and |βj (t)|2 � 〈b̂†j b̂j 〉 one can lin-

earize the Hamiltonians H̃j to get

H̃ lin
j = �j â

†
j âj + ωmb̂

†
j b̂j + [χ∗

j (t)âj + χj (t)â†
j ](b̂j + b̂

†
j ),

(8)

where

�j = δj + gj (βj + β∗
j ),

with δj = ωcj − ωlj , and the effective optomechanical cou-
pling strengths are given by

χj (t) = gjαj (t). (9)

The density matrix ρ̃j of the subsystem composed of the cavity
mode aj and the normal mode bj satisfies the master equation

˙̃ρj (t) = −i
[
H̃ lin

j ,ρ̃j

] + κj

2
(2âj ρ̃j â

†
j − â

†
j âj ρ̃j − ρ̃j â

†
j âj )

+ γm

2
(n̄th + 1)(2b̂j ρ̃j b̂

†
j − b̂

†
j b̂j ρ̃j − ρ̃j b̂

†
j b̂j )

+ γm

2
n̄th(2b̂

†
j ρ̃j b̂j − b̂j b̂

†
j ρ̃j − ρ̃j b̂j b̂

†
j ), (10)

where κj is the cavity dissipation rate, γm the mechanical
damping rate, taken to be the same for both oscillators, and
the mean thermal phonon number is

n̄th = (eh̄ωm/kBT − 1)−1, (11)

with kB the Boltzmann constant and T the temperature.

B. Stationary two-mode mechanical squeezed vacuum
via cavity dissipation

We now show how cavity dissipation can be exploited to
prepare the stationary two-mode mechanical squeezed vacuum
of the vibrating membranes. To this end we consider an
effective optomechanical coupling strength χj (t) of the form

χj (t) = χj1e
−i(�j t−φj ) + χj2, (12)

where χj1 and χj2 are constants. This situation can be realized
by a pump laser of the form discussed in Sec. II C.

For weak optomechanical coupling we have �j ≈ δj ,
so that if the cavity-laser detuning δj and the modulation
frequency �j are

δj = ωm, �j = 2ωm, (13)

and the transformations âj → âj e
−i�j t and b̂j → b̂j e

−iωmt

reduce the Hamiltonian H̃ lin
j to

H̃ lin
j = (χj1e

−iφj b̂j + χj2b̂
†
j )aj

+ (χj1e
2iωmt−iφj b̂j + χj2e

−2iωmt b̂
†
j )âj + H.c. (14)

This form can be further simplified for a mechanical frequency
ωm � χjk , in which case the rapid oscillating terms e±2iωmt

can be neglected and

H̃ lin
j 
 (χj1e

−iφj b̂j + χj2b̂
†
j )âj + H.c. (15)

This Hamiltonian describes the coupling of the cavity field
aj to the normal mode bj simultaneously via parametric
amplification—through the term proportional to χj1– and via
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a beam-splitter-type coupling—through the constant contribu-
tion χj2. It is known that the first term in the Hamiltonian (15)
leads to photon-phonon entanglement and phononic heating of
the normal mode bj , while the second term results in quantum
state transfer between the cavity mode aj and the mechanical
mode bj as well as to mechanical cooling (cold damping).
To ensure the stability of the system, the coupling strengths
must satisfy the inequality χj2 > χj1, that is, cooling should
dominate over antidamping.

When absorbing a laser photon, the parametric amplifica-
tion term results in the simultaneous emission of a photon
into the cavity mode aj and a phonon in the normal mode
bj , while the beam-splitter interaction corresponds to the
annihilation of a photon and the emission of a phonon. We
now show that the combined effect of these processes is
the generation of steady-state, single-mode squeezing of the
normal mechanical mode bj , or equivalently, of two-mode
squeezing of the original modes c1 and c2.

We proceed by first performing the unitary transformation


j (t) = Ŝ
†
j (ξj )ρ̃j (t)Ŝj (ξj ), (16)

where the squeezing operator

Ŝ(ξj ) = exp
[−ξ ∗

j b̂
†2
j

/
2 + ξj b̂

2
j

/
2
]

(17)

with

ξj = rj e
−iφj , rj = tanh−1(χj1/χj2). (18)

For γm = 0 the master equation (10) becomes then


̇j (t) = −i
[
Hlin

j ,
j

] + κj

2
(2âj 
j â

†
j − â

†
j âj 
j − 
j â

†
j âj ),

(19)

where

Hlin
j = Gj (â†

j b̂j + b̂
†
j âj ) (20)

with

Gj = χj2

√
1 − (χj1/χj2)2 (21)

describes quantum-state transfer between the cavity mode aj

and the mechanical mode bj in the transformed picture. It can
be inferred from that master equation that in the transformed
picture and for γm = 0 the cavity mode aj and the mechanical
mode bj asymptotically decay to the ground state


j (∞) = ∣∣0aj
0bj

〉〈
0aj

0bj

∣∣. (22)

Simply reversing the unitary transformation (16) we have then
that in the steady-state regime the normal mode bj is indeed
in the squeezed vacuum state

ρ̃bj
(∞) = Ŝ(ξj )

∣∣0bj

〉〈
0bj

∣∣Ŝ†(ξj ). (23)

It is possible to adjust the amplitude χjk and phase φj of the
optomechanical coupling coefficient (12) in such a way that
the squeezing parameters satisfy the conditions

r ≡ rj , (24a)

φ ≡ φ1 = φ2 − π, (24b)

in which case the two normal modes b1 and b2 exhibit the
same amount of steady-state squeezing, but in perpendicular

directions. With Eqs. (5) and (23) we then have

ρc1c2 (∞) = Ŝ12(ξ12)
∣∣0c1 ,0c2

〉〈
0c1 ,0c2

∣∣Ŝ†
12(ξ12), (25)

where we have introduced the two-mode squeezing operator

Ŝ12(ξ12) = exp(−ξ ∗
12ĉ

†
1ĉ

†
2 + ξ12ĉ1ĉ2), (26)

and ξ12 = re−iφ . This two-mode squeezed vacuum of the
mechanical oscillators can be thought of as the output from a
50:50 beam splitter characterized by the unitary transformation
(5), the two inputs being the normal modes bj squeezed
in perpendicular directions. This shows that for γm → 0
the dissipation of the intracavity field can be exploited to
prepare pure two-mode mechanical squeezed vacuum state.
The minimum time tmin required for preparing such states can
be evaluated from the eigenvalues of Eq. (19),

ηj± = −κj

2
±

√
κ2

j

4
− G2

j . (27)

For symmetric parameters κ = κj , χj = χjk , and Gj = G one
finds tmin = 4/κ for G � κ/2.

C. The choice of pump lasers

Next we consider the choice of pump laser amplitudes Ej (t)
that result in the time-dependent optomechanical coupling
(12), and the specific form (24) that results in the pure
two-mode mechanical squeezing (25). From Eq. (9) an obvious
starting ansatz is

Ej (t) = Ej1e
−i(�j t−ϕj1) + Ej2e

iϕj2 , (28)

where ϕjk are the initial phases of two components, with
amplitudes Ejk and �j the modulation frequencies. The
corresponding amplitudes αj (t) and βj (t) of the cavity and
mechanical modes are

d

dt
αj (t) = −[κ/2 + iδj + igj (βj + β∗

j )]αj

+ Ej1e
−i(�j t−ϕ1j ) + Ej2e

iϕj2 , (29)

d

dt
βj (t) = −(γm/2 + iωm)βj − igj |αj |2.

It is difficult to find exact solutions of these equations
in general. For the case of weak optomechanical coupling
strengths gj , however, approximate analytical solutions can
be found by expanding the amplitudes αj and βj in powers
of gj as αj = α

(0)
j + α

(1)
j + α

(2)
j + · · · and βj = β

(0)
j + β

(1)
j +

β
(2)
j + · · ·. Substituting these into Eqs. (29) and for times

t � 1/κ , ωm � γm, δj = ωm, and �j = 2ωm one then finds
(higher-order corrections can be derived straightforwardly)

α
(0)
j = Ej1√

κ2/4 + ω2
m

e−i(�j t−φj ) + Ej2√
κ2/4 + ω2

m

, (30a)

α
(1)
j = 0, β

(0)
j = 0, β

(2)
j = 0, (30b)

α
(2)
j = 2ig2

jEj2
(
2E2

j1 + 3E2
j2

)
e−iϕj2

3ωm

(
κ2/4 + ω2

m

)2

+ 2ig2
jEj1

(
3E2

j1 + 2E2
j2

)
e−2iωmt−iϕj1

3ωm

(
κ2/4 + ω2

m

)2
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− 2ig2
jEj1E2

j2e
2iωmt−iϕj1

3ωm

(
κ2/4 + ω2

m

)2

− 2ig2
jE2

j1Ej2e
−4iωmt+2iϕj1

3ωm

(
κ2/4 + ω2

m

)3/2
(κ/2 − 3iωm)

, (30c)

β
(1)
j = − gj

(
E2

j1 + E2
j2

)
ωm

(
κ2/4 + ω2

m

) − gjEj1Ej2e
2iωmt−iϕj2

3ωm

(
κ2/4 + ω2

m

)
+ gjEj1Ej2e

−2iωmt+iϕj2

ωm

(
κ2/4 + ω2

m

) , (30d)

with the phases

φj = ϕj1 − ϕj2, ϕj2 = arctan(2ωm/κ). (31)

For coupling strengths gj � {κ,εjk,ωm}, for example,
for gj ∼ 10−6ωm, κ ∼ 0.05ωm, and Ejk ∼ 104ωm, we
find |α(2)

j | ∼ 1 � |α(0)
j | ∼ 104 and δj ∼ ωm � gj (βj + β∗

j ) ∼
10−4ωm. We can therefore set �j = δj + gj (βj + β∗

j ) 
 δj ,
and the effective optomechanical coupling strength χj (t) 

gjα

(0)
j takes the required form (12) for

χjk = gjEjk√
κ2/4 + ω2

m

. (32)

Finally, Eqs. (24b) and (31) give

ϕ21 − ϕ11 = π, ϕj2 = arctan(2ωm/κ). (33)

D. Thermal fluctuations

For finite mechanical damping, γm �= 0, the mechanical
modes c1 and c2 are no longer in a pure squeezed state but
rather in a two-mode squeezed thermal state. In that case we
find from Eqs. (5) and (10)

〈ĉ†j ĉj 〉∞ = d0d1 cosh 2r − d0d2 sinh 2r + sinh2 r, (34a)

〈ĉ1ĉ2〉∞ = [−(d0d1 + 1/2) sinh 2r + d0d2 cosh 2r]eiφ, (34b)

where

d0 = 1 − 4κG2

(κ + γm)(κγm + 4G2)
, (35a)

d1 = n̄th cosh 2r + sinh2 r, (35b)

d2 = (n̄th + 1/2) sinh 2r. (35c)

The quantum correlations between the mechanical oscilla-
tors can be quantified by the sum of variances [3,40]

�EPR = 〈(
X̂

θ1
1 + X̂

θ2
2

)2〉 + 〈(
X̂

θ1+ π
2

1 − X̂
θ2+ π

2
2

)2〉
, (36)

where X̂
θj

j = (ĉj e
−iθj + ĉ

†
j e

iθj )/
√

2 are quadrature operators
with local phase θj . A value of �EPR < 2 is a signature of
Einstein-Podolsky-Rosen (EPR)-type correlations between the
two mechanical modes, with �EPR = 0 corresponding to the
ideal quantum mechanical limit [3]. In our case we find that
�EPR,min is minimum for the choice of local phases θ1 + θ2 =
φ. In the long-time limit it is equal to

�EPR,min = 2e−2r (1 − d0) + 2(2n̄th + 1)d0. (37)

We observe that for κ = 0 we have d0 = 1 and hence
�EPR,min = 4n̄th + 2, showing that in the absence of cavity

dissipation the oscillators are just prepared in the thermal state
imposed by their mechanical coupling to the environment.
This confirms that cavity dissipation is an essential component
of this realization of steady-state, two-mode mechanical
squeezing. From Eq. (37), steady-state squeezing requires that

n̄th < n̄th,max = 1 − d0

2d0
(1 − e−2r ). (38)

In practice, it is important to be able to operate at as high
a number of mean thermal phonons as possible. This can
be achieved by decreasing d0 via keeping the “cooperative
parameter” 4G2/(κγm) � 1. From Eq. (35a) and for the
realistic case κ � γm, d0 reduces approximately to

d0 
 γm

κ
+ κγm

4G2
, (39)

indicating that by increasing the coupling frequency G while
keeping the ratio χ1/χ2 fixed it is possible to increase the value
of n̄th,max, which is approximately given by

n̄th,max 
 4κχ1(χ2 − χ1)

γm

[
κ2 + 4

(
χ2

2 − χ2
1

)] . (40)

As a concrete example [38,41], for a mechanical frequency
ωm/2π ≈ 2 MHz, a cavity dissipation rate κ/2π ≈ 1 MHz,
a mechanical damping γm/2π ≈ 1 Hz, and effective optome-
chanical coupling strengths χ2/2π ≈ 20 kHz and χ1 = 0.5χ2,
we find n̄th,max ≈ 400. Note also that strong coupling χ2 ≈ κ

has recently been reported in Ref. [41]. This indicates that
two-mode mechanical squeezing is robust against thermal
fluctuations and ground-state precooling of the mechanical
modes may not be necessary.

III. MECHANICAL OSCILLATORS IN SEPARATE
SINGLE-MODE CAVITIES

In this section we show that the same combined effects of
optomechanical coupling and dissipation can also be utilized
to generate a two-mode squeezed state of two mechanical
oscillators in separate single-mode cavities. The specific
example that we consider consists of two identical single-mode
cavities of frequency ωc, optically coupled via a fiber (a) or
evanescent-wave coupling (b) (see Fig. 2). Each cavity field is
driven by a modulated laser and optomechanically coupled to
a mechanical oscillator of frequency ωm.

FIG. 2. (Color online) (a) Two vibrating membranes (Cj ) in
separate single-mode cavities (Aj ) are optically coupled by an optical
fiber. (b) Two evanescent-wave-coupled optomechanical crystal
nanocavities.
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Adopting the same symbols as before, the Hamiltonian of
that system reads

H =
∑
j=1,2

{ωcÂ
†
j Âj + ωmĈ

†
j Ĉj + gÂ

†
j Âj (Ĉj + Ĉ

†
j )

+ iE(t)e−iωl t Â
†
j − iE∗(t)eiωl t Âj }

+J12(Â1Â
†
2 + Â

†
1Â2), (41)

where g accounts for the optomechanical coupling strengths,
assumed to be identical, and J12 describes the coupling
between the two cavities. Here we consider two pump fields
of equal frequency ωl and time-dependent amplitude

E(t) = E1e
−i�t+iϕ1 + E2e

iϕ2 . (42)

For that symmetrical situation, both cavity fields have the same
amplitude αj (t) = α(t) and the linearized Hamiltonian is

Hlin =
∑

j

�â
†
j âj + ωmĉ

†
j ĉj + [χ∗(t)âj + χ (t)â†

j ](ĉj + ĉ
†
j )

+J12(â1â
†
2 + â

†
1â2), (43)

where

χ (t) = gα(t) (44)

and � 
 (ωc − ωl) for weak optomechanical coupling. By
introducing the new bosonic operators

b̂1,2 = (ĉ1 ± ĉ2)/
√

2, (45a)

d̂1,2 = (â1 ± â2)/
√

2, (45b)

the Hamiltonian separates as before into the sum of two
uncoupled Hamiltonians, Hlin = ∑

j=1,2 H̃ lin
j , where

H̃ lin
j = �j d̂

†
j d̂j + ωmb̂

†
j b̂j + [χ∗(t)d̂j + χ (t)d̂†

j ](b̂j + b̂
†
j ),

(46)

and the effective detunings are �1 = � + J12 and �2 = � −
J12. The dynamics of the two independent optomechanical
subsystems are governed by the same master equations as
before [see Eq. (10)].

In contrast to the preceding case, though, in the two-cavity
setup it is not possible to simultaneously achieve single-mode
squeezing of the normal modes b1 and b2, since there is only
one driving laser field and one set of control parameters
(ωl,�,ϕj ). However, for a sufficiently weak mechanical
decoherence it is possible in principle to implement a two-step
process that can still achieve that goal.

For the first step we choose the frequencies ωl and � such
that

�1 = ωc − ωl + J12 = ωm, � = 2ωm, (47)

and the phases

ϕ1 = φ1 + ϕ2, ϕ2 = arctan(2ωm/κ), (48)

where φ1 is arbitrary. With the transformation âj → âj e
−i�j t

and b̂j → b̂j e
−iωmt , the Hamiltonians H̃ lin

j reduce to

H̃ lin
1 = (χ1e

−iφ1 b̂1 + χ2b̂
†
1)d̂1

+ (χ2e
−2iωmt b̂1 + χ1e

i(2ωmt−φ1)b̂
†
1)d̂1 + H.c., (49a)

H̃ lin
2 = (χ1e

i(2J12t−φ1)b̂1 + χ2e
−2iJ12t b̂

†
1)d̂1

+ (χ1e
2i(J12−ωm)t b̂1 + χ2e

i[2(J12+ωm)t−iφ1]b̂
†
1)d̂1 + H.c.

(49b)

For χj � {ωm,J12,|J12 − ωm|}, the nonresonant terms in
these Hamiltonians can be neglected and they reduce to

H̃ lin
1 
 (χ1e

−iφ1 b̂1 + χ2b̂
†
1)d̂1 + H.c., (50a)

H̃ lin
2 
 0, (50b)

respectively. For the mode b1 this is formally the same
situation as encountered in Sec. II B. Neglecting then as before
the mechanical damping, γm = 0, cavity dissipation brings
likewise that normal mode into a steady-state, single-mode
squeezed vacuum for long enough time, and at the same time
mode b2 simply decays into the vacuum, i.e.,

ρ̃b1 (t � tmin) = Ŝ(ξ1)
∣∣0b1

〉〈
0b1

∣∣Ŝ†(ξ1), (51a)

ρ̃b2 (t � tmin) = ∣∣0b2

〉〈
0b2

∣∣, (51b)

where tmin, as defined before, is a time long enough that steady
state has been reached. After the first step the mechanical
oscillators c1 and c2 are therefore prepared in a pure two-mode
squeezed state, although not a standard two-mode squeezed
vacuum. That latter goal can be achieved in a second step by
changing the frequency and phase of the pump laser at time
tmin so that

�2 = ωc − ωl − J12 = ωm, � = 2ωm, (52)

and the phases

ϕ1 = φ1 + arctan(2ωm/κ) + π, ϕ2 = arctan(2ωm/κ). (53)

For weak optomechanical coupling, we then have

H̃ lin
1 
 0, (54a)

H̃ lin
2 
 (χ1e

−iφ2 b̂2 + χ2b̂
†
2)d̂2 + H.c. (54b)

That is, the mode b1 evolves freely to the state of Eq. (51a),
and after a time t � 2tmin both the normal modes b1 and b2 are
in steady-state, single-mode squeezed vacua,

ρ̃b1 (t � 2tmin) = Ŝ(ξ1)
∣∣0b1

〉〈
0b1

∣∣Ŝ†(ξ1), (55a)

ρ̃b2 (t � 2tmin) = Ŝ(ξ2)
∣∣0b2

〉〈
0b2

∣∣Ŝ†(ξ2). (55b)

Hence the mechanical modes c1 and c2 evolve to the two-mode
squeezed vacuum state

ρc1c2 (t � 2tmin) = Ŝ12(ξ12)
∣∣0c1 ,0c2

〉〈
0c1 ,0c2

∣∣Ŝ†
12(ξ12).

When accounting for mechanical damping the two-step
preparation scheme remains efficient for mean thermal phonon
numbers such that γmn̄th � κ so that [γmn̄th]−1 � tmin � κ−1

and thermal effects can be neglected during the state prepa-
ration. In case this condition is not satisfied, γmn̄th � κ ,
following the second step the mode b1 is thermalized while
the mode b2 is in a squeezed thermal state,

ρ̃b1 (t � 2tmin) = ρ̃th,b1 , (56a)

ρ̃b2 (t � 2tmin) = Ŝ(ξ̃2)ρ̃th,b2 Ŝ
†(ξ̃2), (56b)
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with


th,bi
=

∞∑
nbi

=0

n̄
nbi

i

(n̄i + 1)nbi
+1

∣∣nbi

〉〈
nbi

∣∣, i = 1,2,

ξ̃2 = (r − r̃)e−iφ1 , (57)

r̃ = 1

4
ln

2d0(d1 + d2) + 1

2d0(d1 − d2) + 1
,

and n̄1 = n̄th and

n̄2 =
√

(d0d1 + 1/2)2 − d2
0d2

2 − 1/2. (58)

Note, however, that a two-step procedure is not required in that
situation since a single step with laser parameters satisfying
either Eq. (47) [or (52)] will result in the preparation of mode
b1 [or b2] in a squeezed thermal state while the other mode in
the thermal state (56a), with the degree of EPR correlations
between the mechanical modes c1 and c2:

�EPR,min(∞) = e−2r (1 − d0) + (2n̄th + 1)(1 + d0). (59)

Hence, the maximum mean number of thermal phonons n̄th,max

for which squeezing can be achieved is

n̄th,max = 1 − d0

2(1 + d0)
(1 − e−2r ), (60)

which is obviously smaller than that in Eq. (38) because just
one normal mode is now in a squeezed state.

IV. DISCUSSION AND CONCLUSION

To conclude this paper we comment briefly on possible
ways to verify the successful generation of two-mode me-
chanical squeezing and to fully characterize that state. One
method that is straightforward in principle would involve using

two weak probe lasers to excite two additional cavity modes
that are linearly coupled to the mechanical oscillators. In the
weak-coupling regime, the two-mode mechanical squeezing
can be mapped onto these two cavity modes via coherent
quantum state transfer between the cavity and mechanical
modes, similarly to the approach proposed by Vitali et al.
[42] to quantify the optomechanical entanglement between a
movable mirror and a cavity field. The two-mode mechanical
squeezing can then be fully characterized via homodyne
detection of the cavity field outputs.

In summary, we have proposed two possible quantum
optomechanical setups to generate two-mode mechanical
squeezed states of mechanical oscillators in optical cavities
driven by modulated lasers. We showed analytically that for
appropriate laser pump parameters the two spatially separated
oscillators can be prepared into a stationary two-mode mechan-
ical squeezed vacuum with the aid of the cavity dissipation.
The effect of thermal fluctuations on the two-mode mechanical
squeezing was also investigated in detail, and we showed that
mechanical squeezing is achievable without precooling the
mechanical oscillators to their quantum ground states. The
present schemes are deterministic and can be implemented in a
variety of optomechanical systems with current state-of-the-art
experimental techniques.
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