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Canonical quantization of macroscopic electrodynamics in a linear,
inhomogeneous magnetoelectric medium
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We present a canonical quantization of macroscopic electrodynamics. The results apply to inhomogeneous
media with a broad class of linear magnetoelectric responses, which are consistent with the Kramers-Kronig and
Onsager relations. Through its ability to accommodate strong dispersion and loss, our theory provides a rigorous
foundation for the study of quantum optical processes in structures incorporating metamaterials, provided these
may be modeled as magnetoelectric media. Previous canonical treatments of dielectric and magnetodielectric
media have expressed the electromagnetic field operators in either a Green’s function or mode expansion
representation. Here we present our results in the mode expansion picture with a view to applications in guided
wave and cavity quantum optics.
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I. INTRODUCTION

The power of the classical theory of the electrodynamics of
continuous media depends on capturing the detailed properties
of the medium by a small number of spatially averaged
fields and effective response functions, such as the linear and
nonlinear electric susceptibility. The response functions may
take a variety of forms depending on the type of system under
study (e.g., dielectric, magnetic, magnetoelectric, optically
active, etc.) but in all cases we replace the microscopic inter-
actions of an enormous number of charges by a few effective
macroscopic functions satisfying some general restrictions
including the Kramers-Kronig and Onsager relations. In this
way, many-body systems that would be impossibly difficult to
analyze directly become easily tractable.

The use of effective fields and response functions is just as
helpful in many types of many-body quantum theories and the
concept of a quantized theory of macroscopic electrodynamics
has held appeal for many authors. However, handling effective
response functions in quantum mechanics can be challenging
because, at least in a unitary evolution picture governed
by a Hamiltonian, a quantum treatment involving only the
electromagnetic field is incompatible with dissipation, while
dissipation is typically one of the key effects in complex
systems. In the electrodynamics of macroscopic media, the
relation between dispersion and dissipation, or loss, through
the Kramers-Kronig relations is of central importance, and a
fully quantum theory must account for it correctly. Moreover,
since many important materials show very strong dispersion,
approximate treatments of dispersion can have only limited
validity.

Consequently, although quantization of the vacuum field
was achieved soon after the formulation of quantum mechanics
and the corresponding treatment for electromagnetic materials
was considered soon afterwards, complete formulations of
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such a theory have only emerged in the last decade or so. These
theories are timely since metamaterials (MMs) with unusual
dispersion and significant loss are becoming increasingly
common and useful. The recent studies of spontaneous
emission and other phenomena in hyperbolic media [1,2],
for instance, suggest that quantum descriptions of MMs and
negative media will grow rapidly in importance.

A satisfactory quantization of electrodynamics should have
the following properties: it should be consistent with the
Kramers-Kronig and Onsager restrictions on the response
functions; recover the Maxwell equations in the classical
limit; preserve the correct commutation relations between
the electromagnetic field operators; and as far as possible
accommodate otherwise arbitrary constitutive relations. A
canonical quantization of the classical theory with given
constitutive relations meets these requirements. Specifically,
one must identify a Hamiltonian equal to the energy of the
system and expressed in terms of the conjugate variables
which, when combined with the commutation relations, yields
the quantum analog of the classical equations; in this case,
the Maxwell equations. Efforts to perform such a quantization
chart a long history commencing with the work of Jauch and
Watson on a covariant quantum theory of linear, homoge-
neous, nondispersive dielectrics [3]. Towards the same end,
Drummond presented a canonical treatment of a nonlinear,
dispersive, but nonabsorbing dielectric by assuming that the
linear susceptibility may be approximated by a truncated
Taylor expansion over a narrow bandwidth [4]. In attempts
to treat causal, absorptive media, the main challenge has
been reconciling the temporal nonlocality inherent to a causal
theory of electrodynamics with what must be a temporally
local Hamiltonian formalism. This task was completed for
a linear, homogeneous, absorbing dielectric by Huttner and
Barnett [5] who added additional degrees of freedom to the
system. In their model, following the tradition of Hopfield
[6], the electromagnetic field is coupled to a uniform spatial
distribution of simple harmonic oscillators. The practice of
including degrees of freedom for the medium explicitly in a
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classical Lagrangian treatment of electromagnetic interactions
was developed extensively by Nelson and coworkers for a
broad class of media [7,8]. In developing a dissipative quantum
theory, Huttner and Barnett also introduced a reservoir of
oscillators, coupled to the medium oscillators, to facilitate
dissipation. However, their representation of the canonical
variables using spatial Fourier transforms leads to a cumber-
some theory when applied to inhomogeneous media.

An alternative phenomenological approach to quantization
focuses on preserving the commutation relations of the elec-
tromagnetic field operators. This is accomplished by invoking
the fluctuation-dissipation theorem to introduce source terms
into the Maxwell equations corresponding to quantum noise
currents [9–11]. In transferring to an operator formalism,
these noise currents are associated with a set of bosonic
fields, which ensure that the commutation relations for the
electromagnetic field variables are satisfied. These source
terms then lead to a Green’s function representation for
the electromagnetic field operators. Several of the canonical
treatments of macroscopic quantum electrodynamics have
been motivated, at least in part, by a desire to validate this
phenomenological approach. Towards this purpose, Suttorp
and Wubs [12] presented a canonical quantization scheme
rooted in the Huttner and Barnett model, but extended to
the case of an inhomogeneous, absorptive dielectric. It was
then shown by Bhat and Sipe [13] that the Huttner and Barnett
approach could be refined by discarding the medium oscillators
and coupling the reservoir directly to the electromagnetic
field from the outset. This procedure simplifies the formalism
significantly, while preserving the causality of the medium
response as an intrinsic result of the theory, rather than as an
ingredient in the phenomenological approach, and enables the
normalization of the field mode distributions of the collective
excitations of the system.

In addition to the dielectric case, magnetodielectric media
have been considered, where the response is described by
an electric permittivity ε and a magnetic permeability μ.
Specifically, a canonical treatment also omitting the medium
oscillators [14] has made contact with the application of the
noise current formalism to a magnetodielectric [15], while
spatially dispersive dielectrics likewise have been approached
both canonically [16] and phenomenologically [17]. Most
recently, a canonical treatment has been presented for a
moving dielectric [18], which constitutes a special case of
a magnetoelectric medium where the polarization and mag-
netization each depend upon both the electric and magnetic
fields. It is worth noting here that magnetodielectric and
magnetoelectric media may not always be considered as
approximate, or limiting cases of a more general, spatially
dispersive dielectric medium. While this is certainly true in
homogeneous media of infinite extent, this correspondence no
longer strictly holds when discontinuities between different
media are considered. Specifically, the presence of boundaries
gives rise to surface currents, which involve the parameters
of the magnetic response alone, and the separation of the
total response of the medium into currents associated with
the polarization and magnetization is no longer arbitrary [19].
In obtaining a magnetoelectric response as an approximation
to a spatially dispersive dielectric, information is lost by
truncating a Taylor expansion in the wave vector, which must

be compensated for by the introduction of additional boundary
conditions. Thus, the two models are not equivalent, and
the consideration of an inhomogeneous (i.e., discontinuous)
magnetoelectric medium explicitly, as distinct from a spatially
dispersive dielectric, requires an independent investigation.

Once a quantum theory of macroscopic electrodynamics
has been established via the canonical route, the door is then
opened to the rigorous treatment of quantum electrodynamical
processes involving dispersive and lossy bulk media. An
example of such a process is the Casimir-Lifshitz effect [20,21]
whereby forces on solid bodies arise as a result of intrinsically
quantum mechanical fluctuations in the electromagnetic field.
Although the best known prediction of this theory is an
attractive force between two parallel conducting plates [20],
the possibility of repulsive Casimir forces [22] has arisen with
the consideration of left-handed media (LHM). Furthermore,
with regard to the study of spontaneous processes, LHM
offer novel opportunities in the tailoring of spontaneous
emission by atoms [23,24] as well as phase matching in
nonlinear optical processes [25–27]. In the absence of such
materials in nature, LHM are realized through artificial MMs
consisting of structures engineered, for optical wavelengths,
on the nanoscale [28]. In order to treat these materials as bulk
constituents in an optical system, some process of homog-
enization must be performed whereby the electromagnetic
response of the subwavelength structure is expressed by
effective parameters for an equivalent continuous medium.
Standard parameter retrieval techniques, however, frequently
return results that appear to violate basic considerations such as
causality and energy conservation [29,30], initiating a debate
on the thermodynamic validity and physical interpretation of
the effective constitutive parameters [31]. It is argued [32] that
the problem lies in the finite phase velocity along the MM array
and may be remedied to some extent by modeling the MM as
a magnetoelectric medium. Thus, a magnetoelectric response
may be a general property of any plausible MM realization of
a LHM. Furthermore, the unusual interaction of light with left-
handed MMs arises from their resonant properties [28], which
implies the presence of strong dispersion in the frequency
ranges of interest for any application that exploits attributes
unique to these media. Strong dispersion and, through the
Kramers-Kronig relations, strong absorption, is therefore
inherent to MM-based realizations of LHM. A quantum
treatment of the electromagnetic field in such materials must
therefore include causal, magnetoelectric constitutive relations
representing a complete description of dispersion and loss, as
opposed to a perturbative approach.

Although a quantization of a nondispersive, nonabsorptive
magnetoelectric medium was carried out by Kong [33], to
our knowledge a canonical quantization of electrodynamics
in a dissipative, intrinsically magnetoelectric medium (as
distinct from a moving dielectric [18]) has not been presented.
To achieve this, we must identify a Hamiltonian operator
that is consistent with macroscopic electrodynamics and
yields the desired causal constitutive relations. As a first
step towards such a goal, the oscillator model employed in
the magnetodielectric case by Philbin [14] was generalized
in a Lagrangian picture to encompass a magnetoelectric
medium by Horsley [34]. However, no construction of the
corresponding Hamiltonian was attempted.
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In this paper we present a Hamiltonian operator, which,
with the standard commutation relations, is consistent with
macroscopic electrodynamics in a causal, linear, inhomo-
geneous, magnetoelectric medium. In order to allow for
dissipation, degrees of freedom corresponding to the medium
are introduced as bosonic excitations, which are then coupled
to the electromagnetic field variables in a bilinear fashion.
This generalization of the interaction Hamiltonian constructed
previously for a dielectric medium [13] allows for the treatment
of magnetoelectric responses. It is possible to define this
coupling to permit a description of materials where absorption
is absent below a cutoff frequency �c, such as below the band
gap in semiconductors [13]. In the interest of simplicity we do
not make this provision here, and rather assume the presence
of absorption at all frequencies. Our aim is to obtain the
dressed eigenoperators of the system, the polariton operators,
from which the electromagnetic field operators may then
be constructed. A significant simplification in the dynamics
of the system is thus obtained due to the harmonic time
dependence of the polariton operators. In pursuing this aim we
introduce modal polariton operators (i.e., polariton operators
independent of field point r) and derive corresponding mode
field distributions, thus separating the spatial dependence of the
fields from the time-dependent polariton operators. This allows
us to express the electromagnetic field operators in the form of
a modal expansion where the polariton operators appear in the
place of mode amplitudes. The results thus obtained constitute
a complete description of the electromagnetic field operators
in a broad class of a linear, causal magnetoelectric media in
the absence of a band gap.

This paper is structured as follows. In Sec. II A we outline
the classical theory of macroscopic electrodynamics to which
the quantum theory must correspond, with particular attention
given to energy transfer and the general properties of the
susceptibility tensors describing the response of a causal
magnetoelectric medium. In Sec. II B we introduce our Hamil-
tonian operator consisting of the electromagnetic field coupled
to the bosonic excitations of a model medium. We then show
in Sec. II C how this Hamiltonian leads to the quantum analog
of the classical theory with constitutive relations expressed
in terms of susceptibilities which possess the Kramers-Kronig
and Onsager properties required of their classical counterparts.
In Sec. III we introduce the eigenoperators of the collective
Hamiltonian and use them to construct solutions for the
electromagnetic field operators. Finally, a general discussion
is expounded in Sec. IV.

II. QUANTIZATION

A. Classical macroscopic electrodynamics

1. Independent field variables

We begin by identifying the key results of the classical
field theory, which serve as the starting point of our canonical
quantization scheme. The electrodynamics of continuous
media in the absence of free charges is governed by the
source-free macroscopic Maxwell equations, written here in
Heaviside-Lorentz (HL) units,

Ḋ = c ∇ × H, Ḃ = −c ∇ × E, (1a)

∇ · D = 0, ∇ · B = 0. (1b)

The field variables D(r,t), B(r,t), E(r,t), and H(r,t) are
the electric induction, magnetic induction, electric field, and
magnetic field, respectively. A dot above a quantity denotes a
time derivative, and c is the speed of light in vacuo. Conversion
to SI units is effected by replacement of D, B, E, and H, by
D/

√
ε0, B/

√
μ0,

√
ε0 E, and

√
μ0 H, respectively, where ε0

is the permittivity of free space and μ0 is the permeability
of free space. Although the choice of HL units is somewhat
unorthodox, it is particularly convenient in the consideration
of magnetoelectric media in that the electromagnetic field
variables all share the same dimensions. From the outset we
may identify (1b) as initial conditions for D and B since,
on account of (1a), if they are satisfied at one time they are
satisfied at all times. In addition to (1), a complete description
of the field dynamics requires that one pair of the field variables
be treated as independent and the remaining pair be expressed
as functions of them through a set of constitutive relations. In
doing so, there is a freedom regarding which two quantities
are chosen as the independent pair. Here we take D and B to
be the independent fields. In order to justify such a choice we
write down the standard expression for the incremental change
in the energy density as a result of changes in the fields alone,

dU = E · dD + H · dB. (2)

In the absence of dispersion the relationship between the field
variables is local in time and E and H may then be written as

E = ∂U

∂D
, H = ∂U

∂B
, (3)

which then allows (1) to be rewritten solely in terms of D, B,
and the energy density U , viz.,

Ḋ = c ∇ × ∂U

∂B
, Ḃ = −c ∇ × ∂U

∂D
, (4a)

∇ · D = 0, ∇ · B = 0. (4b)

The pairs (E,B) and (D,H) are commonly viewed as primary
and subsidiary variables, respectively (e.g., [35]). However,
(2)–(4) suggest that, for a Hamiltonian picture of disper-
sionless macroscopic electrodynamics in the absence of free
charges, the natural choice of independent field variables is
the pair (D,B), as first noted by Born and Infeld [36]. In
the context of nonrelativistic quantum electrodynamics, this
choice was also used by Power and Zienau [37] and Healy [38],
as well as by Drummond [4]. Motivated by these results, as
well as the advantage of working with transverse fields, we
extend this choice to the present treatment where dispersion
and loss are included, and (3) no longer follows directly from
(2). Nonetheless, we note that the quantum analog of (3) holds
with the energy density U replaced with the Hamiltonian
density corresponding to the Hamiltonian operator Ĥ to be
presented in Sec. II B.

The required constitutive relations must therefore express
the fields E and H in terms of D and B at all times.
With the standard definitions of the polarization P(r,t) and
magnetization M(r,t) as

P = D − E, M = B − H, (5)

this is equivalent to writing

P = P {D,B} , M = M {D,B} , (6)
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TABLE I. Definitions of some common classes of media through
the dependencies of the polarization P and magnetization M upon the
electric induction D and magnetic induction B, when the latter pair
are chosen as the independent fields.

Medium class P M

Dielectric P{D} 0
Magnetic 0 M{B}
Magnetodielectric P{D} M{B}
Magnetoelectric P{D,B} M{D,B}

where the temporal nonlocality is implied (SI units are ob-
tained by the replacements P → P/

√
ε0 and M → √

μ0 M).
In the absence of explicit spatial dispersion, the dependencies
of P and M upon the independent fields D and B in (6)
represent the most general case of an anisotropic, gyrotropic,
magnetoelectric medium. The definitions of several other
common classes of media are summarized in Table I.

2. Susceptibility tensors

The choice of independent fields, and therefore the form
of the constitutive relations in (6), have ramifications for how
the transfer of energy between the electromagnetic field and
the medium is viewed. By considering this energy transfer we
now derive some properties of the medium response functions.
Standard manipulation of (1a) yields

− ∇ · SEH = E · Ḋ + H · Ḃ, (7)

where SEH = cE × H is the Heaviside-Lorentz form of the
electromagnetic energy flux associated with E and H. With
the present choice of independent variables it is natural to
define the energy UDB associated with the fields D and B in
the volume V ,

UDB =
∫
V

dV
1

2
(D · D + B · B) . (8)

We then insert (5) into (7) and integrate over all time and over
the volume V to obtain

−
∫ ∞

−∞
dt

∮
S

dA n · SEH

= �UDB −
∫ ∞

−∞
dt

∫
V

dV (P · Ḋ + M · Ḃ), (9)

where �UDB is the total change in the independent field
energy, and n is the outward unit vector normal to the surface
S. There has been much discussion regarding the correct
definition of the Poynting vector as the representation of
electromagnetic flux (e.g., [39]). By taking S to lie exclusively
in the vacuum we avoid this controversy in that, for the
purposes of the integral on the left-hand side of (9), all the
possible flux vectors are equivalent; i.e., SEH = SEB = SDH =
SDB = cD × B. Assuming that the only flux of energy across
S is of an electromagnetic nature, we may then use (9) to write
the total change in the energy of the system enclosed within

V , �Utot, as

�Utot = −
∫ ∞

−∞
dt

∮
S

dA n · SDB

= �UDB +
∫ ∞

−∞
dt

∫
V

dV (Ṗ · D + Ṁ · B). (10)

The second term on the right-hand side of (10) represents the
contribution to �Utot due to the presence of a medium within
V . In order to relate this change in energy to the response of a
magnetoelectric medium, we write explicit expressions for the
constitutive relations in (6) by defining the real susceptibility
tensors �σν(r,t), with σ,ν = e,m. These relate P and M at
time t to D and B at all times through

P(t) =
∫ ∞

−∞
dt [�ee(t − t ′) · D(t ′) + �em(t − t ′) · B(t ′)],

(11)

M(t) =
∫ ∞

−∞
dt [�me(t − t ′) · D(t ′) + �mm(t − t ′) · B(t ′)],

(12)

with the Fourier domain representation

P(ω) = �ee(ω) · D(ω) + �em(ω) · B(ω), (13)

M(ω) = �me(ω) · D(ω) + �mm(ω) · B(ω). (14)

In order to identify the dissipative and nondissipative parts of
the susceptibility tensors we define

�σν
disp(ω) = 1

2 [�σν(ω) + �̄
νσ∗(ω)], (15)

�σν
diss(ω) = 1

2 [�σν(ω) − �̄
νσ∗(ω)], (16)

where an overbar denotes a tensor with Cartesian components
obtained from those of the unbarred quantity by a matrix
transpose (recall that σ,ν = e,m). Thus an overbar combined
with a star indicates the Hermitian transpose (the superscript
† is reserved for the adjoint of an operator). This allows �σν

to be written as

�σν(ω) = �σν
disp(ω) + �σν

diss(ω). (17)

We note that for σ = ν, �σσ
disp(ω) and �σσ

diss(ω) are the Hermitian
and anti-Hermitian parts, respectively, of �σσ (ω). We may then
employ (13)–(16) to express the second term on the right-hand
side in (10) as∫ ∞

−∞
dt

∫
V

dV (Ṗ · D + Ṁ · B)

= 2
∫ ∞

0

dω

2π
(−iω)

∫
dV

×
{

[D∗(ω) B∗(ω)]

[
�ee

diss(ω) �em
diss(ω)

�me
diss(ω) �mm

diss(ω)

][
D(ω)
B(ω)

]}
,

(18)

where the Fourier transform of an arbitrary function f (t) is
defined as

f (ω) =
∫ ∞

−∞
dt eiωtf (t). (19)
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Now consider a transient interaction of the electromagnetic
field with a medium of finite extent, such that S may be
assumed to lie in the vacuum and �UDB = 0 [UDB(t) = 0
for t = ±∞, say]. From (10) we see that the right-hand
side of (18) is unambiguously the total energy transferred
between the electromagnetic field and the medium. Thus, only
the medium response described by �σν

diss(ω) leads to gain or
dissipation of electromagnetic energy, and �σν

disp(ω) describes
the nondissipative interaction.

Further symmetries of the susceptibility tensors may be
determined through applying time reversal. We impose the
following properties upon the fields in the time domain:

{D}−T = D, {B}−T = −B,
(20)

{P}−T = P, {M}−T = −M,

where {}−T represents the operation of time reversal upon
the enclosed expression. Additionally, the application of
time reversal in the Fourier domain corresponds to the
replacement ω → −ω, as well as the appropriate trans-
formation of any parameters; e.g., in the case where the
susceptibility tensors are dependent upon an ambient magnetic
field B0 we have {�σν

diss(ω,B0)}−T = {�σν
diss(−ω,B0)}−B0 =

�σν
diss(−ω, − B0). Using {}−B0 to represent the time reversal

of all such parameters, we may then use (18), along with the
reality condition for the fields, to obtain{

�σσ
diss(ω)

}
−B0

= �̄
σσ

diss(ω),
(21){

�σν
diss(ω)

}
−B0

= −�̄
νσ

diss(ω), σ �= ν.

Expressions analogous to (21) for �σν
disp(ω) are obtained by

imposing causality. This amounts to setting �σν(t) = 0 for
t < 0, which results in the Kramers-Kronig relations [40,41]

�σν
disp(ω) = 2iP

∫ ∞

−∞

dω′

2π

�σν
diss(ω

′)
ω − ω′ , (22)

�σν
diss(ω) = 2iP

∫ ∞

−∞

dω′

2π

�σν
disp(ω′)

ω − ω′ , (23)

where P indicates a Cauchy principal value integral. Com-
bining (21)–(23) then leads to{

�σσ
disp(ω)

}
−B0

= �̄
σσ

disp(ω),
(24){

�σν
disp(ω)

}
−B0

= −�̄
νσ

disp(ω), σ �= ν.

From (17), (21), and (24) we may now identify the Onsager
relations

{�σσ }−B0
= �̄

σσ
, {�σν}−B0

= −�̄
νσ

, σ �= ν, (25)

which hold in both the time and frequency domains. It should
be noted that in deriving the Kramers-Kronig and Onsager
relations expressed in (22), (23), and (25), only the macro-
scopic Maxwell equations, the behavior of the fields under
time reversal, and the assumption of causality have been used.
Therefore, these conditions upon the susceptibility tensors
represent fundamental properties of a causal, electromagnetic
medium, and they must be reflected in a valid quantum theory.

B. Hamiltonian operator

We now turn to the construction of a Hamiltonian operator
that, with the standard commutation relations, leads to the

quantum analog of (1) with constitutive relations of the
form given in (11) and (12). The associated susceptibility
tensors must satisfy standard Kramers-Kronig and Onsager
relations. Some Hamiltonian formulations of macroscopic
electrodynamics have proceeded from a Lagrangian [5,12,14].
However, it is sufficient to provide a Hamiltonian operator
directly. Indeed, transforming from the Lagrangian to a
Hamiltonian leads to a complicated field-medium interaction
that is difficult to diagonalize. Instead we directly construct
a Hamiltonian, which describes a rather general class of
magnetoelectric media. This allows us to define the various
couplings straightforwardly in terms of the canonical variables,
and avoid the complications of transitioning from a Lagrangian
to a Hamiltonian picture. In addition, the classical value
of the Hamiltonian must be equal to the energy of the
system, which is satisfied in our theory below by construction.
The full system consists of two linearly coupled subsystems
representing the vacuum electromagnetic field and a medium.
The corresponding Hamiltonian is therefore of the form

Ĥ = Ĥemf + Ĥmed + Ĥint, (26)

where Ĥemf, Ĥmed, and Ĥint are the electromagnetic field,
medium, and interaction Hamiltonians, respectively, and a
hat denotes an operator. In what follows, all operators may
be presumed to commute unless specified otherwise. In the
Heisenberg picture, the time evolution of an arbitrary operator
Ô is governed by the equation

ih̄ ˙̂O = [Ô,Ĥ ], (27)

where [ , ] represents a commutator, and the dot denotes a total
derivative with respect to time (in that the components of the
field point r are not dynamical variables).

The Hamiltonian for the electromagnetic field is [36] [c.f.,
(8)]

Ĥemf = 1

2

∫
dV [D̂(r,t) · D̂(r,t) + B̂(r,t) · B̂(r,t)], (28)

and the equal time commutation relations (ETCRs) for the
components of the field operators are [36,42]

[D̂i(r,t),B̂j (r′,t)] = ih̄cεikj

∂

∂rk

δ(r − r′), (29)

where Cartesian vector and tensor components are indexed by
Latin subscripts, a sum over repeated indices is implied, ε is
the Levi-Civita pseudotensor, and δ(r) is the Dirac δ function.

The construction of the medium and interaction Hamiltoni-
ans requires some discussion. Previous models for a medium
that exhibits both an electric and magnetic response have
typically involved independent electric and magnetic subsys-
tems. In the application of the phenomenological approach
to a magnetodielectric medium [15], the noise polarization
and magnetization are made to originate from independent
bosonic vector and pseudovector fields, respectively. Such a
separation of the medium is deemed appropriate in modeling
materials where the electric and magnetic responses arise from
physically distinct material constituents or degrees of freedom.
Similarly, in the canonical treatment of a magnetodielectric
[14] this prescription is reflected in the introduction of two
separate sets of harmonic oscillator fields in the model for
the medium. Following on from this work, the identification
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of these fields as corresponding to electric and magnetic
oscillators was then made explicitly in the construction
of a Lagrangian for a magnetoelectric medium [34]. This
was effected by associating the symmetry properties of the
oscillator amplitudes under spatial inversion and time reversal
with those of the electric or magnetic field, as appropriate.
We have found that a magnetoelectric response may be
obtained with a single set of oscillators. However, such a
response is severely restricted (e.g., the cross coupling is
completely fixed by the dielectric and magnetic responses in
the isotropic case). Here we present the most general form
of magnetoelectric response obtainable within the context of
the established harmonic oscillator model. Since the coupling
of the field to multiple continua is already implied in the
vector nature of the oscillators, it is a straightforward matter
to add additional degrees of freedom to the medium. We
pursue this by including an arbitrary number of such oscillator
sets (to represent a MM with electromagnetic resonances
associated with several material constituents, for instance).
In general, we may expect each class of oscillators to

exhibit a magnetoelectric coupling, with no purely electric or
magnetic character, and we model the medium with N sets of
vector operators b̂λ�(r,t), λ = 1, . . . ,N , representing bosonic
excitations associated with each frequency � > 0 and field
point r. The required symmetry properties of the response are
then imposed on the coupling coefficients between the field and
medium. The corresponding Hamiltonian for the medium is

Ĥmed =
∑

λ

∫
dV

∫ ∞

0

d�

2π
h̄� b̂†

λ�(r,t) · b̂λ�(r,t), (30)

and the vector components of the medium operators obey the
ETCR

[b̂λ�i(r,t),b̂
†
λ′�′j (r′,t)] = 2πδλλ′δij δ(� − �′) δ(r − r′),

(31)

where δλλ′ and δij are Kronecker δ. The interaction
Hamiltonian is then constructed as a spatially and temporally
local, bilinear coupling between the vacuum electromagnetic
field and medium operators, viz.,

Ĥint = −h̄
1
2

∫
dV D̂(r,t) ·

∑
λ

∫ ∞

0

d�

2π

[
�e

λ(r,�) · b̂λ�(r,t) + �e∗
λ (r,�) · b̂†

λ�(r,t)
]

− h̄
1
2

∫
dV B̂(r,t) ·

∑
λ

∫ ∞

0

d�

2π

[
�m

λ (r,�) · b̂λ�(r,t) + �m∗
λ (r,�) · b̂†

λ�(r,t)
]
, (32)

where the complex valued, second rank proper tensors �e
λ(r,�) and pseudotensors �m

λ (r,�) are defined for positive �. Since
the coupling is purely local in space through its dependence only upon the single field point r, inhomogeneous media involving
discontinuous boundary conditions may be dealt with in the usual way. Finally, we assume that the microscopic dynamics
that underlie our macroscopic picture lead to a Hamiltonian that is symmetric under time reversal. We therefore require that
�e

λ → �e∗
λ and �m

λ → −�m∗
λ under this operation. This requirement also ensures consistency with the classical theory [see (37)

and (38) below]. For the alternate representation where the medium fields are represented as harmonic oscillators with coordinate
operators q̂λ�(r,t) and conjugate momenta p̂λ�(r,t) (e.g., [13,14]) the form of (32) corresponds to the coupling of D̂ and B̂
to both q̂λ� and p̂λ�. Ultimately, the coupling tensors �e

λ and �m
λ in (32) are to be determined by the measured or calculated

susceptibility of the medium. However, making the replacements �σ
λ → �σ

λ · Ū∗
λ and b̂λ� → Uλ · b̂λ�, where σ = e,m and the

tensor Uλ represents an arbitrary unitary transformation, leaves the Hamiltonian unchanged. This represents an inherent freedom
in the model for the medium.

Thus, inserting (28), (30), and (32) into (26) we may write the full Hamiltonian explicitly as

Ĥ = 1

2

∫
dV [D̂(r,t) · D̂(r,t) + B̂(r,t) · B̂(r,t)] +

∑
λ

∫
dV

∫ ∞

0

d�

2π
h̄� b̂†

λ�(r,t) · b̂λ�(r,t)

− h̄
1
2

∫
dV D̂(r,t) ·

∑
λ

∫ ∞

0

d�

2π

[
�e

λ(r,�) · b̂λ�(r,t) + �e∗
λ (r,�) · b̂†

λ�(r,t)
]

− h̄
1
2

∫
dV B̂(r,t) ·

∑
λ

∫ ∞

0

d�

2π

[
�m

λ (r,�) · b̂λ�(r,t) + �m∗
λ (r,�) · b̂†

λ�(r,t)
]
. (33)

C. Dynamical equations and constitutive relations

To demonstrate the consistency of the Hamiltonian system
presented in Sec. II B with macroscopic electromagnetism, we
first insert D̂ and B̂ into (27) and use (29) to obtain

˙̂D = c∇ × B̂ − c∇ × h̄
1
2

∑
λ

∫ ∞

0

d�

2π

× [
�m

λ (�) · b̂λ� + �m∗
λ (�) · b̂†

λ�

]
, (34)

and

˙̂B = −c∇ × D̂ + c∇ × h̄
1
2

∑
λ

∫ ∞

0

d�

2π

× [
�e

λ(�) · b̂λ� + �e∗
λ (�) · b̂†

λ�

]
. (35)

Recalling (3) and making the operator definitions analogous
to (5),

P̂ = D̂ − Ê, M̂ = B̂ − Ĥ, (36)
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we are led to identify the polarization P̂(r,t) and magnetization
M̂(r,t) of the medium as

P̂(r,t) = h̄
1
2

∑
λ

∫ ∞

0

d�

2π

[
�e

λ(r,�) · b̂λ�(r,t)

+ �e∗
λ (r,�) · b̂†

λ�(r,t)
]
, (37)

M̂(r,t) = h̄
1
2

∑
λ

∫ ∞

0

d�

2π

[
�m

λ (r,�) · b̂λ�(r,t)

+ �m∗
λ (r,�) · b̂†

λ�(r,t)
]
. (38)

Note that consistency of (37) and (38) with (20) follows
from the time-reversal properties imposed upon the coupling
tensors. Inserting (36)–(38) into (34) and (35) we obtain the
quantum analog of the Maxwell curl equations, (1a), as

˙̂D = c ∇ × Ĥ,
˙̂B = −c ∇ × Ê. (39)

Additionally, the conditions

∇ · D̂ = 0, ∇ · B̂ = 0, (40)

must be enforced independently at this stage to reproduce the
full set of macroscopic Maxwell equations. The description of
the dynamics of the electromagnetic field operators contained
within (36)–(40) remains incomplete, however, until we
establish constitutive relations of the form (11) and (12).

To identify the required constitutive relations for the
medium we must determine the contributions to the dynamics
of b̂λ�(r,t) driven by the electromagnetic field. Having thus
expressed the medium operators in terms of D̂ and B̂, we
may substitute the results into (37) and (38) to yield the
field-induced polarization and magnetization. The dynamical
equation for the medium operators follows from (27), (31),
and (33), as

˙̂bλ�(r,t) = −i�b̂λ�(r,t) + ih̄− 1
2
[
�̄

e∗
λ (r,�) · D̂(r,t)

+ �̄
m∗
λ (r,�) · B̂(r,t)

]
. (41)

Integrating this equation directly for some initial time τ < t

we obtain

b̂λ�(r,t) = ih̄− 1
2

∫ ∞

τ

dt ′ θ (t − t ′) e−i�(t−t ′)

× [
�̄

e∗
λ (r,�) · D̂(r,t ′) + �̄

m∗
λ (r,�) · B̂(r,t ′)

]
+ b̂λ�(r,τ ) e−i�(t−τ ). (42)

where the causality in the relationship between the electro-
magnetic field operators D̂ and B̂, and the medium operators
b̂λ� is clear. The use of the Heaviside step function θ (t) has
allowed extension of the upper limit of the integral to +∞.

Returning to the task of identifying the constitutive rela-
tions, we substitute (42) in (37) and (38) to obtain expressions

for the polarization and magnetization operators,

P̂(r,t) =
∫ ∞

−∞
dt ′ [�ee(r,t − t ′) · D̂(r,t ′)

+ �em(r,t − t ′) · B̂(r,t ′)] + P̂(n)(r,t), (43)

M̂(r,t) =
∫ ∞

−∞
dt ′ [�me(r,t − t ′) · D̂(r,t ′)

+ �mm(r,t − t ′) · B̂(r,t ′)] + M̂(n)(r,t), (44)

where the �σν’s are identified below, and we have defined the
noise operators

P̂(n)(r,t) = h̄
1
2

∑
λ

∫ ∞

0

d�

2π

[
�e

λ(r,�) · b̂λ�(r,τ ) e−i�(t−τ ).

+ �e∗
λ (r,�) · b̂†

λ�(r,τ ) ei�(t−τ )], (45)

M̂(n)(r,t) = h̄
1
2

∑
λ

∫ ∞

0

d�

2π

[
�m

λ (r,�) · b̂λ�(r,τ ) e−i�(t−τ )

+ �m∗
λ (r,�) · b̂†

λ�(r,τ ) ei�(t−τ )
]
. (46)

The domains of the integrals in (43) and (44) have been
extended to −∞ by choosing τ such that t − τ > τR , where
τR is the finite response time of the medium. The expressions
(43) and (44) form the quantum analog of the constitutive
relations (11) and (12), as desired, with the addition of the noise
terms P̂(n)(r,t) and M̂(n)(r,t) involving the initial conditions
for the b̂λ�(r,t) operators. Such noise operators are a hallmark
of dissipative quantum systems wherein they act to preserve
the commutation relations by compensating for the otherwise
dissipative decay of the coupled operators.

The causal susceptibility tensors �σν(r,t) in (43) and (44)
are related to the coupling tensors �σ

λ (�,r) (σ,ν = e,m)
through

�σν(r,t) = θ (t)
∑

λ

∫ ∞

0

d�

2π

[
2R

{
�σ

λ (r,�) · �̄
ν∗
λ (r,�)

}
× sin(�t) − 2I

{
�σ

λ (r,�) · �̄
ν∗
λ (r,�)

}
cos(�t)

]
,

(47)

where the symbols R{} and I {} represent the real and
imaginary parts of the enclosed expressions, respectively. The
Heaviside step function on the right-hand side of (47), along
with the time-reversal properties imposed upon �σ

λ , ensures
that the identification made in equating the left-hand side
and right-hand side of (47) is consistent with the requirement
that �σν satisfies the Kramers-Kronig and Onsager relations
as expressed in (22), (23), and (25). In the Fourier domain,
�σν(r,ω) may be separated as in (17), and by taking the
Fourier transform of (47) we may identify �σν

disp(r,ω) and
�σν

diss(r,ω), defined as in (15) and (16), respectively, in terms
of the coupling tensors as

�σν
disp(r,ω) =

∑
λ

P

∫ ∞

0

d�

2π

2� R
{
�σ

λ (r,�) · �̄
ν∗
λ (r,�)

} + 2iωI
{
�σ

λ (r,�) · �̄
ν∗
λ (r,�)

}
�2 − ω2

, (48)

and

�σν
diss(r,ω) = i

2

ω

|ω|
∑

λ

�σ
λ (r,|ω|) · �̄

ν∗
λ (r,|ω|). (49)
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Thus, (43)–(49) demonstrate how the temporally local cou-
pling in (32) is related to the causal response of the medium.

So far we have demonstrated that the Hamiltonian and
accompanying ETCR’s introduced in Sec. II B lead to the
quantum analog of the macroscopic Maxwell equations with
magnetoelectric constitutive relations involving susceptibil-
ity tensors, which obey the Kramers-Kronig and Onsager
relations. In addition, expressions for the nonclassical noise
operators P̂(n) and M̂(n) have been obtained, which fully
determine their commutation relations and time evolution
properties through dependence upon the initial conditions for
the medium operators in the form b̂λ�(r,τ ) e−i�(t−τ ). Thus,
Sec. II constitutes a canonical quantization of macroscopic
electrodynamics in a causal magnetoelectric medium, within
the restrictions placed upon the susceptibility tensors by
their relationship to the coupling tensors in (47)–(49) (see
discussion in Sec. IV).

III. POLARITON OPERATORS

The quantization of Sec. II has provided us with the
dynamical equations for the electromagnetic field operators,
and we are thus in a position to identify their solutions. The
resulting expressions for D̂, B̂, Ê, and Ĥ constitute the main
results of the present work and are derived below in the form of
the mode expansions (61), (62), (87), and (88), with the mode
fields following from solutions to (80). In obtaining these
solutions we employ standard methods of modern quantum
optics, which we now proceed to describe.

In the Heisenberg picture the dynamics of coupled quantum
systems are often simplified by determining the eigenoper-
ators of the full Hamiltonian, which exhibit harmonic time
dependence. When associated with dissipative systems, the
application of this procedure is known as Fano theory [43,44].
In the present context of macroscopic electrodynamics we term
the eigenoperators of Ĥ as the polariton operators, which are
required to satisfy the eigenequation

h̄� Ô�(t) = [Ô�(t),Ĥ ], (50)

whence, with (27), Ô�(t) = Ô�(0) exp(−i�t) follows. How-
ever, (50) tells us nothing about how the spatial degrees
of freedom in the Hilbert space implied by (33) are to be
accounted for in the labeling of the polariton operators.

In the canonical quantization of the vacuum electromag-
netic field the concept of photons arises in connection with
the plane wave modes of the vacuum. These photon modes
are associated with the purely time-dependent eigenoperators
of the vacuum field Hamiltonian Ĥemf, which evolve as
âuk(t) = âuk exp(−iωkt). This allows the electromagnetic
field operators to be written as expansions of the form [45]

D̂(r,t) =
∑
u,k

[âuk(t) Duk(r) + â
†
uk(t) D∗

uk(r)], (51)

B̂(r,t) =
∑
u,k

[âuk(t) Buk(r) + â
†
uk(t) B∗

uk(r)], (52)

where Duk(r) and Buk(r) are the vacuum wave modes with
wave vector k and polarization index u = 1,2. The discrete
sum over k follows from normalization to a finite box with
periodic boundary conditions. In the extension of this approach
to a linear, inhomogeneous, but nondispersive medium (e.g.,

[13]), the forms of (51) and (52) are preserved with the plane
wave solutions being replaced with the electromagnetic modes
of the structured medium. Such a description is particularly
appropriate in the context of guided-wave optics and photon-
ics, where the spatial modes of wave-guiding structures and
optical cavities form the natural language for the dynamics
of the system. For this purpose it is desirable to maintain the
modal approach when extending the quantum treatment of
the electromagnetic field to Kramers-Kronig media, as is done
here. We therefore introduce modal polariton operators in order
to build a description of the electromagnetic field operators D̂
and B̂ analogous to (51) and (52). The polariton operators are
labeled by the indices n and �, the nature of which follows
from consideration of the Hilbert space implied by the form
of (33): the index � is continuous, while the precise nature of
the index n, which represents the spatial degrees of freedom,
is determined by the geometry of the system along with the
boundary conditions imposed: ultimately we shall find that n

labels spatial electromagnetic field distributions corresponding
to the polariton modes in analogy with the labels (u,k) for the
photon modes. For convenience, as in the vacuum mode case,
we assume normalization within a finite box with periodic
boundary conditions and therefore treat n as a discrete index;
the generalization of this prescription to multiple or continuous
indices is straightforward and may be made later as required.

A. Transverse and longitudinal response polaritons

From the outset we partition the modal polaritons into two
classes: transverse response polaritons (TPs) and longitudinal
response polaritons (LPs), leading to the Hamiltonian form

Ĥ =
∑

n

∫ ∞

0

d�

2π
h̄� ĉ

†
�n(t) ĉ�n(t)

+
∑

λ

∑
n

∫ ∞

0

d�

2π
h̄� ŝ

†
λ�n(t) ŝλ�n(t), (53)

where ĉ�n(t) and ŝλ�n(t) correspond to the TP and LP oper-
ators, respectively. The TP operators represent the collective
field-medium excitations and form a single class. The LPs
represent excitations of the medium, which do not couple to
the transverse electromagnetic field and therefore constitute
at most N subclasses for each subsystem of the medium. By
assumption, the polariton operators satisfy the equations

h̄� ĉ�n(t) = [ĉ�n(t),Ĥ ], (54)

h̄� ŝλ�n(t) = [ŝλ�n(t),Ĥ ], (55)

which imply ĉ�n(t) = ĉ�n e−i�t and ŝλ�n(t) = ŝλ�n e−i�t . We
also impose the ETCRs

[ĉ�n,ĉ
†
�′n′] = 2πδnn′δ(� − �′), (56)

[ŝλ�n,ŝ
†
λ′�′n′ ] = 2πδλλ′δnn′δ(� − �′), (57)

[ĉ�n,ŝ
†
λ�′n′ ] = 0. (58)

The last of these ETCRs establishes the formal separation
of the two classes of polariton operators, the classification
of which follows from the definition of the LP modes as
those associated with configurations of the medium which
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do not interact with the transverse D̂ and B̂ fields through the interaction Hamiltonian. This may be expressed in the
form of the condition [

ŝλ�n,Ĥ
(λ)
int

] = 0, (59)

where

Ĥ
(λ)
int = −h̄

1
2

∫
dV D̂(r,t) ·

∫ ∞

0

d�

2π

[
�e

λ(r,�) · b̂λ�(r,t) + �e∗
λ (r,�) · b̂†

λ�(r,t)
]

−h̄
1
2

∫
dV B̂(r,t) ·

∫ ∞

0

d�

2π

[
�m

λ (r,�) · b̂λ�(r,t) + �m∗
λ (r,�) · b̂†

λ�(r,t)
]
. (60)

The partitioning of the polaritons into TPs and LPs combined with the transversality of the electromagnetic field operators now
allows us to derive a number of useful results.

Since the polariton operators are the eigenoperators of the full Hamiltonian we may write D̂, B̂, and b̂ as expansions of the form

D̂(r,t) =
∑

n

∫ ∞

0

d�

2π
[ĉ�n(t) D�n(r) + ĉ

†
�n(t) D∗

�n(r)], (61)

B̂(r,t) =
∑

n

∫ ∞

0

d�

2π
[ĉ�n(t) B�n(r) + ĉ

†
�n(t) B∗

�n(r)], (62)

b̂λ�(r,t) =
∑

n

∫ ∞

0

d�

2π

′
[ĉ�′n(t) αλn(r,�′,�) + ĉ

†
�′n(t) β∗

λn(r,�′,�)] +
∑

n

ŝλ�n(t) ρλn(r,�), (63)

where D�n(r), B�n(r), αλn(r,�′,�), βλn(r,�′,�), and ρλn(r,�) are vector field coefficients.
To obtain the inverse transformations corresponding to (61)–(63) we construct nominal expansions of the polariton operators

in terms of the subsystem operators D̂, B̂, and b̂. Using these expansions to evaluate the ETCRs between the subsystem and
polariton operators (e.g., [D̂(r),ĉ�n]) and comparing the results with the same ETCRs evaluated using (61)–(63), we obtain

ĉ�n(t) = 1

h̄�

∫
dV

(
ETP∗

�n (r) · D̂(r,t) + HTP∗
�n (r) · B̂(r,t)

)
+

∑
λ

∫
dV

∫ ∞

0

d�

2π

′
[α∗

λn(r,�,�′) · b̂λ�′(r,t) − β∗
λn(r,�,�′) · b̂†

λ�′(r,t)], (64)

ŝλ�n(t) =
∫

dV ρ∗
λn(r,�) · b̂λ�(r,t), (65)

where, due to the ETCR (29), the vector coefficients ETP
�n(r)

and HTP
�n(r) are related to D�n(r) and B�n(r) through

−i�D�n(r) = c ∇ × HTP
�n(r),

(66)
−i�B�n(r) = −c ∇ × ETP

�n(r).

We will eventually solve for the coefficients D�n(r) and
B�n(r). Thus (66) only defines the transverse parts of ETP

�n(r)
and HTP

�n(r), with the longitudinal parts being unconstrained.
Convenient choices for ETP

�n(r) and HTP
�n(r) are made in (78)

and (79) below so that they correspond to the coefficients of
the TP operators in the polariton expansions of Ê and Ĥ.

Using the expansions (61)–(65), the conditions (58) and
(59) defining the partitioning of the TPs and LPs may be
expressed as requirements upon the expansion coefficients.
Substituting (61)–(63) in (32) we may reexpress the definition
(59) of the LPs as∫

dV ρ∗
λn′(r,�′) · [

�̄
e∗
λ (r,�′) · D�n(r)

+ �̄
m∗
λ (r,�′) · B�n(r)

] = 0, (67)

for all λ, n,n′, and �,�′. Likewise, by substituting (64) and
(65) into the condition (58) and evaluating the commutator we

may reexpress the formal separation of the TPs and the LPs as

∫
dV ρ∗

λn′(r,�′) · αλn(r,�,�′) = 0, (68)

for all λ, n,n′ and �,�′. Use of (65) in (57) implies

∫
dV ρ∗

λn(r,�) · ρλn′ (r,�) = δnn′ . (69)

Inserting the expansions (61)–(63) into the dynamical
equation for the medium operators (41) and evaluating the
ETCR with ĉ

†
�n and ĉ�n we obtain

(�′ − �)αλn(r,�,�′)

= h̄− 1
2
[
�̄

e∗
λ (r,�′) · D�n(r) + �̄

m∗
λ (r,�′) · B�n(r)

]
, (70)

(�′ + �)βλn(r,�,�′)

= h̄− 1
2
[
�̄

e
λ(r,�′) · D�n(r) + �̄

m
λ (r,�′) · B�n(r)

]
. (71)

Following the approach of Fano [43] as extended by Bhat and
Sipe [13] we may use (67) and (68) to obtain the solutions to
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(70) and (71) as

αλn(r,�,�′)

= h̄− 1
2

[
P

1

�′ − �
+ Z�n δ(�′ − �)

]
× [

�̄
e∗
λ (r,�′) · D�n(r) + �̄

m∗
λ (r,�′) · B�n(r)

]
, (72)

βλn(r,�,�′) = h̄− 1
2

1

�′ + �

[
�̄

e
λ(r,�′) · D�n(r)

+ �̄
m
λ (r,�′) · B�n(r)

]
. (73)

The complex scalar Z�n parametrizes the resonant interaction
between the electromagnetic field and the medium as a whole
and is therefore independent of λ. It represents a generalized
contribution from the pole at � = �′ originally introduced
by Dirac [46]. We find that Z�n, which is undetermined at
this point, emerges as the eigenvalue associated with solutions
of a generalized Hermitian eigenvalue problem. No pole is
considered in obtaining (73) since � and �′ are positive.

Thus, the expressions (72) and (73) have reduced the
unknown quantities associated with the expansions (61)–(63)
to just the vector fields ρλn(r,�), D�n(r), and B�n(r), and
the scalar Z�n. The procedure for determining ρλn(r,�) was
given by Bhat and Sipe for a dielectric medium [13]. Although

we consider a more general coupling here, similar principles
apply and solutions for ρλn(r,�) may be obtained from
consideration of (67) and (69), along with the transversality
of D�n(r) and B�n(r) (which is derived below). However, we
do not consider this solution procedure explicitly here as only
the transverse electromagnetic field operators correspond to
optically measurable variables, and any coupling between the
electromagnetic field and an atomic system, for instance, is
mediated by the same. We therefore restrict our attention to
the TP operators and the explicit construction of D�n(r) and
B�n(r), as these alone contribute to D̂ and B̂ through (61) and
(62).

B. TP mode fields

The vector fields D�n(r) and B�n(r) are of particular
importance as they play the role of TP mode fields. From
(61) and (62) it may be observed that, since the time evolution
and commutation properties of the TP operators are known,
determination of the TP mode fields constitutes a complete
description of the electromagnetic field operators D̂ and B̂.

To determine the TP mode fields we insert (61)–(63) into
(34) and (35) and evaluate the ETCR of both sides with ĉ

†
�n to

yield

−i� D�n(r) = c ∇ × B�n(r) − c ∇ × h̄
1
2

∑
λ

∫ ∞

0

d�

2π

′ [
�m

λ (r,�′) · αλn(r,�,�′) +�m∗
λ (r,�′) · βλn(r,�,�′)

]
, (74)

−i� B�n(r) = −c ∇ × D�n(r) + c ∇ × h̄
1
2

∑
λ

∫ ∞

0

d�

2π

′ [
�e

λ(r,�′) · αλn(r,�,�′) +�e∗
λ (r,�′) · βλn(r,�,�′)

]
. (75)

Substituting Eqs. (72) and (73) into Eqs. (74) and (75), and recalling the definitions in (17), (48), and (49), then leads to the TP
mode field equations

−i� D�n(r) = c ∇ × {[
1 − �mm

disp(r,�)
] · B�n(r)− �̄

em∗
disp (r,�) · D�n(r)

} − c
Z�n

iπ
∇ × [

�mm
diss(r,�) · B�n(r) − �̄

em∗
diss (r,�) · D�n(r)

]
,

(76)

−i� B�n(r) = −c ∇ × {[
1 − �ee

disp(r,�)
] · D�n(r) − �em

disp(r,�) · B�n(r)
}+ c

Z�n

iπ
∇× [

�ee
diss(r,�) · D�n(r) + �em

diss(r,�) · B�n(r)
]
.

(77)

If we set Z�n = iπ these equations correspond to the classical,
source-free Maxwell curl equations in the frequency domain,
with the associated complex frequency solutions. However,
this is inconsistent with unitary evolution. Instead we seek
complex solutions for Z�n, which determine an augmented
medium response, thus ensuring the reality of the polariton
frequency �. From a related perspective, it is shown below
in Sec. III C that the deviation of Z�n from a value of iπ

determines the contribution of the corresponding polariton
mode to the noise polarization and magnetization.

A consequence of (76) and (77) are the conditions ∇ ·
D�n(r) = ∇ · B�n(r) = 0, from which (40) follows. Thus,
construction of the field operators D̂ and B̂ according to (61)
and (62) ensures their transversality, and the condition (40)
need no longer be enforced explicitly as an initial condition.

Comparing (66) with (76) and (77) we are free to identify

ETP
�n(r) = [

1 − �ee
disp(r,�)

] · D�n(r) − �em
disp(r,�) · B�n(r)

− c
Z�n

iπ

[
�ee

diss(r,�) · D�n(r)

+�em
diss(r,�) · B�n(r)

]
, (78)

HTP
�n(r) = [

1 − �mm
disp(r,�)

] · B�n(r) − �me
disp(r,�) · D�n(r)

− c
Z�n

iπ

[
�mm

diss(r,�) · B�n(r)

+�me
diss(r,�) · D�n(r)

]
. (79)

Arbitrary additional terms corresponding to longitudinal fields
may be added to the right-hand sides of (78) and (79) without
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effect upon (64) and (66); here such terms are set to zero
without loss of generality.

The pair of equations (76) and (77) may be recast in the
form of a single, generalized Hermitian eigenvalue problem
for each value of � in the domain (0,∞); viz.,

∇ ×
{

i

[
1 − �ee

disp(r,�) −�em
disp(r,�)

−�̄
em∗
disp (r,�) 1 − �mm

disp(r,�)

] [
D�n(r)
B�n(r)

]}

+ �

c

[
D�n(r)
B�n(r)

]
= Z�n

π
∇

×
{[

�ee
diss(r,�) �em

diss(r,�)

−�̄
em∗
diss (r,�) �mm

diss(r,�)

] [
D�n(r)
B�n(r)

]}
, (80)

where

∇× =
[

0 −∇×
∇× 0

]
, (∇×)ij = εikj

∂

∂rk

. (81)

Mode field solutions and their corresponding, generally com-
plex, eigenvalues Z�n are labeled by the index n. To obtain
the normalization condition for the solutions to (80), and thus
the TP mode fields, we substitute the expansion (64) into the
ETCR (56), which we then evaluate using the expressions for
the expansion coefficients (72), (73), (78), and (79), with the
result

[ĉ�n(t),ĉ†�′n′(t)]

= −i2πδ(� − �′)
Z∗

�n′Z�n + π2

2h̄π2

×
∫

dV

{
[D∗

�n′ (r)B∗
�n′(r)]

×
[

�ee
diss(r,�) �em

diss(r,�)

−�̄
em∗
diss (r,�) �mm

diss(r,�)

] [
D�n(r)
B�n(r)

] }
. (82)

In obtaining (82) we have exploited the identity [43]

P
1

�′ − �
P

1

�′′ − �
+ P

1

� − �′ P
1

�′′ − �′

+P
1

� − �′′ P
1

�′ − �′′

= π2δ(� − �′) δ

(
1

2
(� + �′) − �′′

)
. (83)

Comparison of (82) with the right-hand side of (56) then
implies

−i
�

2

( |Z�n|2
π2

+ 1

)
×

∫
dV

{
[D∗

�n(r)B∗
�n′ (r)]

×
[

�ee
diss(r,�) �em

diss(r,�)

−�̄
em∗
diss (r,�) �mm

diss(r,�)

] [
D�n(r)
B�n(r)

]}
= h̄� δnn′ .

(84)

The procedure for constructing the D̂ and B̂ operators is then
as follows. For each value of � > 0 we solve (80) with
appropriate boundary conditions to obtain a discrete set of
mode fields D�n(r) and B�n(r), normalized according to (84),
with eigenvalues Z�n. Combined with the properties of the TP
operators, these solutions then provide a complete description
of the transverse electromagnetic field operators D̂ and B̂
through (61) and (62). This description relies only upon the

macroscopic susceptibility tensors and is therefore free of the
ambiguities associated with the coupling tensors �σ

λ (r,�).

C. Other field operators

In the modal polariton picture the TP mode fields may be
employed to obtain explicit expressions for the noise operators.
Specifically, by substituting (72) and (73) into (63), we may
use the result to rewrite (37) and (38). Comparison with (43)
and (44) in the Fourier domain then yields

P̂(n)(r,ω) =
∑

n

(
Zωn

iπ
− 1

) [
�ee

diss(r,ω) · Dωn(r)

+�em
diss(r,ω) · Bωn(r)

]
ĉωn

+ h̄
1
2

∑
λ

∑
n

�e
λ(r,ω) · ρλn(r,ω) ŝλωn, (85)

M̂(n)(r,ω) =
∑

n

(
Zωn

iπ
− 1

) [
�me

diss(r,ω) · Dωn(r)

+�mm
diss(r,ω) · Bωn(r)

]
ĉωn

+ h̄
1
2

∑
λ

∑
n

�m
λ (r,ω) · ρλn(r,ω) ŝλωn. (86)

As alluded to in Sec. III B, these expressions clearly demon-
strate how the deviation of the eigenvalue Z�n from iπ

determines the contribution of each TP mode to the noise
operators. We note that those parts of the noise polarization
and magnetization operators associated with the TP operators
only depend upon the macroscopic susceptibility tensors.

The remaining electromagnetic field operators Ê and Ĥ may
now be expressed in the form of mode expansions as follows.
Substituting (61), (62), and the inverse Fourier transforms of
(85) and (86) into (43) and (44), we may use (36), (78), and
(79) to write

Ê(r,t) =
∑

n

∫ ∞

0

d�

2π

[
ĉ�n(t) ETP

�n(r) + ĉ
†
�n(t) ET∗

�n(r)
]

+ h̄
1
2

∑
λ

∑
n

∫ ∞

0

d�

2π

[
�e

λ(r,�) · ρλn(r,�) ŝλ�n(t)

+�e∗
λ (r,�) · ρ∗

λn(r,�) ŝ
†
λ�n(t)

]
, (87)

Ĥ(r,t) =
∑

n

∫ ∞

0

d�

2π

[
ĉ�n(t) HTP

�n(r) + ĉ
†
�n(t) HT∗

�n(r)
]

+ h̄
1
2

∑
λ

∑
n

∫ ∞

0

d�

2π

[
�m

λ (r,�) · ρλn(r,�) ŝλ�n(t)

+�m∗
λ (r,�) · ρ∗

λn(r,�) ŝ
†
λ�n(t)

]
. (88)

Thus, in contrast to the transverse field operators D̂ and B̂,
which may be completely described by the TP operators and
their associated mode fields, the field operators Ê and Ĥ
include contributions from the LP operators.

IV. CONCLUDING REMARKS

We have presented a canonical quantization of macro-
scopic electrodynamics in a linear magnetoelectric medium.
The theory supports a wide class of magnetoelectric re-
sponses characterized by the macroscopic susceptibility
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tensors �σν(r,t), for σ,ν = e,m, which are Kramers-Kronig
and Onsager consistent. The resultant electromagnetic field
operators are expressed in a mode expansion representation
and form a natural basis for the study of quantum optics in
wave-guide and cavity geometries involving dispersive and
lossy magnetoelectric media, while also paving the way for the
inclusion of quantum optical nonlinearities in such structures.

In practice, the available measured or modeled quantities
are the susceptibility tensors �σν . Thus (49) may be considered
as a definition of the coupling tensors �σ

λ . However, the set of
�σν encompassed by our model is restricted. Specifically, the
form of (49) implies an interdependency between the various
susceptibility tensors due to the fact that the magnetoelectric
response is constructed from the same coupling tensors as
the dielectric and magnetic terms. Using the same methods
as Horsley [34] it may be shown that for any number of
subsystems N , the following equality is satisfied:∣∣�em

diss ij (r,ω)
∣∣2 �

∣∣�ee
diss ii(r,ω)

∣∣∣∣�mm
diss jj (r,ω)

∣∣. (89)

Thus, all media to which the present quantum theory applies
must exhibit responses that satisfy the condition (89).

As an example of the additional freedoms obtained by
increasing the number of subsystems with which the medium
is modeled, we first consider the case where N = 1. If the
medium is isotropic we have

�ee
diss(r,ω) = iI {�ee(r,ω)}1 = i

2

ω

|ω|�
e
1(r,|ω|) · �̄

e∗
1 (r,|ω|),

(90)

�mm
diss(r,ω) = iI {�mm(r,ω)}1 = i

2

ω

|ω|�
m
1 (r,|ω|) · �̄m∗

1 (r,|ω|),
(91)

where �ee and �mm are scalar functions and 1 is the second
rank tensor with Cartesian components δij . From (90) and (91)
acceptable forms of the coupling tensors are given to within
an arbitrary unitary transformation by

�e
1(r,�) = [2I {�ee(r,�)}] 1

2 1, (92)

�m
1 (r,�) = ±i[2I {�mm(r,�)}] 1

2 1. (93)

The magnetoelectric susceptibilities are then fixed by the
dielectric and magnetic responses as

�em
diss(r,ω) = ± ω

|ω|I {�ee(r,|ω|)} 1
2 I {�mm(r,|ω|)} 1

2 1, (94)

�me
diss(r,ω) = −�em

diss(r,ω). (95)

This condition is relaxed by extending the model to N = 2 for
which we have the general tensor relations

�ee
diss(r,ω) = i

2

ω

|ω|
[
�e

1(r,|ω|) · �̄
e∗
1 (r,|ω|)

+�e
2(r,|ω|) · �̄

e∗
2 (r,|ω|)],

�mm
diss(r,ω) = i

2

ω

|ω|
[
�m

1 (r,|ω|) · �̄
m∗
1 (r,|ω|)

+�m
2 (r,|ω|) · �̄

m∗
2 (r,|ω|)],

�em
diss(r,ω) = i

2

ω

|ω|
[
�e

1(r,|ω|) · �̄
m∗
1 (r,|ω|)

+�e
2(r,|ω|) · �̄

m∗
2 (r,|ω|)]. (96)

However, since all four coupling tensors contribute to all the
susceptibility tensors in (96), properties such as resonances,
which are present in the electric or magnetic susceptibilities,
must also manifest in the magnetoelectric susceptibility. Now
consider N = 3 in the special case where we set �e

2 = �m
1 = 0

to maintain the same number of coupling tensors in the model
as before. Such a prescription yields

�ee
diss(r,ω) = i

2

ω

|ω|
[
�e

1(r,|ω|) · �̄
e∗
1 (r,|ω|)

+�e
3(r,|ω|) · �̄

e∗
3 (r,|ω|)],

�mm
diss(r,ω) = i

2

ω

|ω|
[
�m

2 (r,|ω|) · �̄
m∗
2 (r,|ω|)

+�m
3 (r,|ω|) · �̄

m∗
3 (r,|ω|)],

�em
diss(r,ω) = i

2

ω

|ω|�
e
3(r,|ω|) · �̄

m∗
3 (r,|ω|). (97)

Though the number of coupling tensors are the same as in
the N = 2 case leading to (96), in (97) there are elements of
the electric and magnetic susceptibilities that are constructed
from �e

1 and �m
2 and thus decoupled from the magnetoelectric

susceptibility, which only involves �e
3 and �m

3 . This allows for
the inclusion of purely electric and magnetic effects, which do
not manifest in the magnetoelectric response.

We recall that in all cases the coupling tensors are
defined to within the unitary transformations Uλ introduced
in Sec. II B. Inspection of (49) implies that the ambiguities
associated with such transformations, however, have no effect
upon the macroscopic susceptibilities, which themselves are
independent of Uλ. The noise operators defined in (45) and
(46), and reexpressed in (85) and (85), are likewise unaffected.
More generally, we expect that this independence with respect
to Uλ must apply to any physical result of the theory.

In our quantization procedure we have employed the
electric induction D̂ and the magnetic induction B̂ as the
canonical variables corresponding to the electromagnetic field.
This prescription is equivalent to approaches involving the
vector potential Â and its conjugate momentum �̂, with
D̂ = �̂ and B̂ = ∇ × Â [cf., the ETCR (29)]. In relating the
Ê and Ĥ field operators to D̂ and B̂, the classical definitions
of the polarization and magnetization are carried over into the
quantum domain resulting in (36), and the transversality of D̂
and B̂ is preserved. In this respect we are consistent with the
work of Suttorp [16]. In contrast, Philbin [14] only retains the
driven part of the polarization and magnetization in (36), with
the noise operators separated into additional source terms in
the divergence equations for D̂ and Ĥ; in this case the operator
D̂ is therefore no longer transverse.

ACKNOWLEDGMENTS

This research was supported by the Australian Research
Council Centre of Excellence for Ultrahigh-Bandwidth De-
vices for Optical Systems (Project No. CE110001018). J.E.S.
is supported by the National Science and Engineering Research
Council of Canada (NSERC).

033824-12



CANONICAL QUANTIZATION OF MACROSCOPIC . . . PHYSICAL REVIEW A 87, 033824 (2013)

[1] A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, Phys. Rev. A
84, 023807 (2011).

[2] C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, J. Opt. 14,
063001 (2012).

[3] J. M. Jauch and K. M. Watson, Phys. Rev. 74, 950 (1948).
[4] P. D. Drummond, Phys. Rev. A 42, 6845 (1990).
[5] B. Huttner and S. M. Barnett, Phys. Rev. A 46, 4306 (1992).
[6] J. J. Hopfield, Phys. Rev. 112, 1555 (1958).
[7] M. Lax and D. F. Nelson, Phys. Rev. B 4, 3694 (1971).
[8] D. F. Nelson and B. Chen, Phys. Rev. B 50, 1023 (1994).
[9] R. Matloob, R. Loudon, S. M. Barnett, and J. Jeffers, Phys. Rev.

A 52, 4823 (1995).
[10] T. Gruner and D. G. Welsch, Phys. Rev. A 53, 1818 (1996).
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