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Coherent control of the refractive index using optical bistability
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Refractive index and absorption experienced by a probe field propagating through a three-level atomic medium
can be effectively manipulated by the bistable behavior of a control field. The probe field couples the lower
transition of the atom in a ladder configuration and experiences normal or anomalous dispersion depending on
the control field being in the upper or lower bistable state, respectively. We also obtain nonlinear dynamical
instability in the form of periodic self-pulsing as the lower bistable branch becomes unstable, quite unlike earlier
demonstrations of an unstable regime in the upper branch. Consequently, the susceptibility experienced by the
probe field varies periodically in time as dictated by the control field self-pulsing.
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I. INTRODUCTION

Interaction of light with matter in the linear regime is
completely determined by the refractive index and absorption
of the material. In the past two decades these few ubiquitous
quantities have been engineered coherently in a wide variety of
ways, resulting in exciting phenomena such as slow light [1],
superluminal light [2], making a resonant absorbing medium
transparent with electromagnetically induced transparency
(EIT) [3], achieving giant enhancement in the refractive
index [4], coherently controllable metamaterials [5], and many
such developments that have transformed the practice of
present day optics. Recently, coherent control of the refractive
index and spatially varying refractive index accompanied by
negligible absorption have also been proposed [6,7]. The
control of optical bistability (OB) using coherent interactions
supplementing the bistable field has been in vogue for a few
years now [8,9]. Recently, we have also predicted the existence
of a negative hysteresis bistable response in a three-level atom
experiencing double feedback along two adjacent transitions
[10], and a host of nonlinear dynamical behavior such as
self-pulsing and chaos [11]. Nonlinear dynamics in driven OB
systems involving a three-level � system in the EIT regime
has been studied earlier [12,13]. In this paper, we present
another mechanism that allows an effective manipulation
of the refractive index using OB, varying from anomalous
to normal as well as time-dependent periodic susceptibility
(absorption and refractive index). This is achieved through
the cooperative effect at an adjacent transition exhibiting OB.
However, our system does not rely on the EIT effect for the
control mechanism.

The refractive index governs the frequency-dependent
phase delay experienced by the electromagnetic field in the
medium, whereas the absorption coefficient its extinction.
The Kramers-Kronig relation based on causality relates the
spectral dependence of the refractive index to the associated
absorption, therefore it is impossible to vary exclusively
only the refractive index or the absorption without affecting
the other. The manipulation of the refractive index and
absorption through control field OB could be used to control
the propagation of the probe field through the medium.
We demonstrate that for the bistable field in the ON state
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(a large intracavity field associated with the upper branch of
the S-shaped OB response [14]) the probe field experiences
normal dispersion accompanied with negligible absorption.
In contrast, the bistable field in the OFF state (a weak
intracavity field associated with the lower cooperative branch)
leads to anomalous dispersion and the associated absorption.
In optical communication, apart from being a switch [15],
OB can also provide an excellent handle to either delay the
probe pulse through normal dispersion or advance it through
anomalous dispersion. Furthermore, we propose a scheme of
realizing periodically varying susceptibility for the probe field
by creating control field instability in the lower branch of OB.
This instability occurs for a single-mode OB field at intensities
much lower than those required to saturate the atom. The
creation of instability assisted by atomic coherence leads to
nonlinear dynamical effects, such as self-pulsing whose period
and amplitude can be tuned to obtain a range of time scales for
the susceptibility.

Earlier studies of instability in OB systems range from
the Ikeda instability [16] in two-level OB systems [17] to
three-level driven OB systems [9,18]. We believe that the
regime of instability reported here is intrinsically different
from these earlier reports. The self-pulsing in the upper branch
reported earlier arises due to a competition between the two
time scales, one associated with the slow population transfer
through optical pumping and the other involving fast variation
of the optical nonlinearities, as explained in Refs. [9,17]. In
our system the self-pulsing occurs at low input intensities,
sometimes even lower than intensities associated with the
bistable thresholds. Moreover, unlike earlier studies it does
not require finite atom-field detuning or cavity detuning [19],
and occurs without coupling to multiple modes of the cavity.

II. SYSTEM DESCRIPTION

We consider a unidirectional optical ring cavity of resonant
frequency ωo and total lengthL. The active medium is confined
within a length L and the transmissivity of the coupling
mirrors is T , as shown in Fig. 1. The active medium consists
of a closed atomic system in the � (ladder) configuration,
and couples to a weak probe (having frequency ωp) and
strong control field (having frequency ωc) along the lower and
upper transitions, respectively. Only the control field circulates
in the cavity and exhibits a cooperative phenomenon as it
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FIG. 1. (Color online) The probe field in red (thick vertical arrow)
interacts with a collection of atoms whose susceptibility is dictated
by the control field in blue (thin arrows) circulating in a cavity. Inset:
The three-level ladder (�) system and the associated fields.

experiences sufficient feedback provided by the cavity. The
normalized cavity detuning with respect to control field is
defined as δc = (ωo − ωc)L/c. For simplicity, we consider the
OB phenomenon in the mean-field limit (i.e., αL → 0, T → 0,
such that C = αL/2T is finite) [14]. This ensures that the
control field experiences weak absorption (α is the absorption
coefficient along the upper transition) in a single traversal
through the cavity and it undergoes many such round trips
in the cavity, leading to a substantial interaction. Moreover,
the field distribution remains spatially uniform throughout the
active medium. Here the probe field is weak and thus couples to
the atom linearly, whereas the atom-control field coupling OB
is considered to all orders. However, we have not undertaken
any such perturbative truncation and the results presented here
were obtained from numerical simulations undertaken along
the lines described in detail in Ref. [11].

We consider only the simplest configuration with regard to
the atom-cavity coupling that captures the essential physics,
where the atoms are homogeneously broadened, exhibiting
radiative decay and they couple to a single mode of the cavity.
The atom-field interaction is described by the density-matrix
equation, Eq. (1), in the semiclassical regime, and the field
dynamics are described by Eq. (2) obtained in the mean-field
limit under a slowly varying envelope approximation, which
captures the cavity feedback of the control field on the atoms
through the cooperative parameter (C):

∂ρ

∂t
= − i

h̄
[Ĥ ,ρ] + L̂ρ, (1)

∂xc

∂t
= κ

[
−

(
1 + i

δc

T

)
xc + yc + 2iCρ12

]
. (2)

The atom-field coupling and the atom-field detunings are
contained in the total Hamiltonian Ĥ = h̄[(
c + 
p)|1〉〈1| +

p|2〉〈2| − (Gc|1〉〈2| + Gp|2〉〈3| + H.c.)] in the dipole ap-
proximation after undertaking the rotating-wave approxima-
tion. The probe field coupling is given by the Rabi frequency
Gp = �d23 · �Ep/h̄ and the detuning is 
p = ω23 − ωp, where

�Ep is the probe field amplitude. Similarly, we define Gc and

c associated with the intracavity control field. The incoherent
processes such as spontaneous emission decays (2γi) from the
state |i〉, as shown in Fig. 1, are contained in the Liouville
operator (L̂). The normalized cavity input and output strength
of the control field are defined as yc = �d12 · �Ein

c /(h̄κ
√

T ) and
xc = �d12 · �Eout

c /(h̄κ
√

T ), respectively. Here �d12 is the dipole
moment associated with the |1〉 ↔ |2〉 transition and �Ein(out)

c

is the amplitude of the input (output) control field. All the
frequency units are normalized with respect to the cavity decay
κ , unless specified otherwise.

III. CONTROL OF SUSCEPTIBILITY

A. Normal and anomalous dispersion

The susceptibility experienced by the probe field can be
obtained under two circumstances, depending on the specific
state of the bistable control field. These bistable states corre-
spond to either the cooperative (lower) branch or the one-atom
(upper) branch of the S-shaped OB response. The refractive
index and absorption are directly proportional to the real and
imaginary parts of ρ23, respectively, and their dependence on
the probe detuning 
p is presented in Fig. 2. Note that the
input control field strength (|yc|) and its detuning (
c) are held
constant as the probe detuning (
p) is varied. For the system
in the lower OB branch (OFF state) the probe field experiences
anomalous dispersion accompanied by an absorption peak
at 
p/κ = 0 [see Fig. 2(a)] with a resonant control field
(
c/κ = 0). For the system in the upper branch (ON state)
the probe field experiences normal dispersion accompanied
with negligible absorption [see Fig. 2(b)]. Thus, depending on
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FIG. 2. (Color online) (a) The refractive index (red solid curve)
and the absorption (blue solid curve) experienced by the probe field
corresponding to the lower branch of OB and similarly (b) shows
the probe susceptibility for the upper branch of OB with 
c/κ = 0.
(c) and (d) indicate the probe susceptibility for the detuned control
field 
c/κ = 2. The stable regions (solid) are separated from the
unstable (green dotted or brown dashed) by the Hopf (H) and Limit
points (LP) indicated with filled circles and open circles, respectively.
The control field input |yc| = 3.0, and the other parameters are C =
200, |Gp|/κ = 0.2, γ1/κ = 0.01, γ2/κ = 1, and δc = 0.

033821-2



COHERENT CONTROL OF THE REFRACTIVE INDEX . . . PHYSICAL REVIEW A 87, 033821 (2013)

the bistable ON or OFF state, the probe experiences normal
or anomalous dispersion. Note that, with the negative sign
for the probe frequency in the definition of the detuning
(
p = ω23 − ωp), the slope ∂ρ23/∂
p > 0 corresponds to
anomalous dispersion and ∂ρ23/∂
p < 0 corresponds to
normal dispersion. The probe response for finite control field
detuning 
c/κ = 2 is given in Figs. 2(c) and 2(d), wherein
anomalous dispersion continues to occur at 
p ≈ 0 and
normal dispersion to occur at 
p ≈ −
c.

Apart from obtaining the steady-state response of ρ23, we
have undertaken the linear stability analysis [20] where the
eigenvalues of the Jacobian matrix of the system are examined
to identify stable and unstable steady states and are indicated
as red or blue solid curves and green dotted or brown dashed
curves, respectively, throughout the paper. The physically
inaccessible unstable states having eigenvalues with positive
real and zero imaginary parts are shown as brown dashed
curves. The regimes of nonlinear dynamical instability are
indicated as green dotted curves. The steady-state response of
ρ23 corresponding to the upper and middle branch of control
field OB appears as a closed loop [Figs. 2(b) and 2(d)],
where the regions associated with the dashed brown lines are
inaccessible as they correspond to the usual unstable solution
of the S-shaped OB curve. The system prepared in such a state
would switch to the available ON or OFF state depending
on the initial preparation. The spectral response for the lower
branch OB is given in Figs. 2(a) and 2(c). We would like to
point out that corresponding to each point in Fig. 2 (where
a multiple response exists) one can obtain the associated
conventional S-shaped OB response (Fig. 3) as the control
field input strength is varied.

In order to understand the effects of the cavity feedback,
we have compared the probe dispersion and absorption
with the conventional response arising without feedback. In
Figs. 4(a) and 4(b) the dash-dotted curves indicate the probe
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FIG. 3. (Color online) Optical bistable response of the control
field as yc is varied for various detunings. (a) 
c/κ = 0, 
p/κ = 0;
(b) 
c/κ = 0, 
p/κ = 2; (c) 
c/κ = 2, 
p/κ = 0. The nonlinear
dynamical regime is shown as green dotted curve. (d) The limit cycle
continuation from the Hopf point (H) in (b) leads to periodic self-
pulsing. The limit point of cycle (LPC) is indicated in black and
self-pulsing does not occur beyond it. The other parameters are the
same as in Fig. 2.
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FIG. 4. (Color online) The switching of refractive index and
absorption as the probe detuning is varied. (a) and (b) correspond
to normal dispersion and indicate the switching from the ON to OFF
state. (c) and (d) correspond to the OFF state exhibiting anomalous
dispersion (black arrows). The green (light gray in grayscale version)
arrows indicate the probe frequency variation leading to periodic
self-pulsing. The dash-dotted lines correspond to response without
feedback. The parameters are the same as in Fig. 2.

response without feedback for |yc| = |Gc|/κ = 3, which is
the intracavity value for OB in the upper branch, where an
EIT-like profile is observed. The arrows indicate how the
system switches from the upper branch to the lower branch
as the probe detuning 
p is varied. In order to switch the
associated dispersion from the normal to anomalous regime
one needs to access the lower branch. This can be achieved by
adiabatically changing the probe detuning beyond the turning
points [Fig. 4(a)], wherein the system would jump to the lower
OB state exhibiting anomalous dispersion [Fig. 4(c)] as the
probe frequency is brought back into resonance.

The above response is consistent with the analytical results
obtained in the perturbative limit of a weak probe field.
The change in the slope of the dispersion is clear from the
expression of the density-matrix element,

ρ23 = iGp[
γ2 + i
p + |Gc|2

γ1+i(
c+
p)

] . (3)

The control field within the cavity dictates the probe response.
For the absorptive OB case (
c/κ = 0), when the system is
in the lower branch, the intracavity field would be weak due
to the large collective absorption of the atoms which results in
a conventional Lorentzian response for the probe field, as the
|Gc|2 term in Eq. (3) is negligible. However, when the system
is in the upper branch, the term |Gc|2 is dominant and the
imaginary part of ρ23 becomes negligible. In the dispersive OB
case (
c/κ = 2), it is apparent that the term |Gc|2 becomes
even more significant at the two-photon resonance, i.e.,

c + 
p = 0. This is clear from Figs. 2(c) and 2(d), wherein
the upper branch response occurs only at the two-photon
resonance, unlike for the system in the lower branch which
continues to peak at the probe resonance 
p ≈ 0. The probe
continues to experience anomalous dispersion at 
p ≈ 0
and normal dispersion at 
p ≈ −
c. The change in sign of

033821-3



H. ASWATH BABU AND HARSHAWARDHAN WANARE PHYSICAL REVIEW A 87, 033821 (2013)

the dispersion profile is clearly seen in the derivative of ρ23

with respect to the detuning 
p, in the vicinity of 
p ≈ 0,
and at 
p ≈ −
c for the associated intracavity control field
strength,

dρ23

d
p

=
Gp

[
1 − |Gc|2

γ1+i(
c+
p)2

]
[
γ2 + i
p + |Gc|2

γ1+i(
c+
p)

]2 . (4)

The complete bistable response arises from cavity feedback
which is not included in the above analytical expression.
In order to systematically include the cavity feedback that
determines |Gc|2 in the above equation, coupling to the
atom through the density-matrix element ρ12 is essential [see
Eq. (2)]. The term ρ12 itself involves a sixth-order polynomial
of the intracavity field strength Gc. The determination of
the intracavity control field is further complicated, as the
OB response itself is dependent on the population excited
by the probe field, hence a complete analytical expression
is quite cumbersome. It should also be noted that the
population is largely confined to the ground state |3〉, with
only about 10−1–10−2 in the excited states when the atom
is in the lower branch of OB. For the atom in the upper
branch, the steady-state populations of states |1〉 and |2〉 are
about 10−4 and 10−6, respectively. Moreover, in the upper
branch the ratio of steady-state populations is related to the
ratio of decay rates ρ11/ρ22 ∝ γ1/γ2. Such a three-level �

system could be realized in 85Rb atomic vapor along the
5S1/2 ↔ 5P3/2 ↔ 5D5/2 transitions with a number density
of ∼1017 atoms/m3 and a spontaneous emission decay
rate ∼107 Hz, in a ring cavity with T ∼ 10−2, and the
resulting cooperative parameter C ∼ 1000. Inhomogeneous
broadening arising from the Doppler effect can be canceled to
first order by choosing the probe and control field beams to be
counterpropagating within the active medium [21]. The input
power levels for the bistable field ∼20 mW across a spot size of
100 μm would be sufficient for switching to the upper branch.
The probe susceptibility and the associated group velocity are
given as

χ = 3Nλ3
p

8π2

(
γ2ρ23

Gp

)
, vg = c

ng

, (5)

where the group index ng = n + ωp(∂n/∂ωp). The relation
between the refractive index (n) and the susceptibility (χ )
is given by n2 = n2

bg + χ , where nbg is the background
refractive index. Taking an atomic number density
N ∼ 6 × 1017 atoms/m3, a spontaneous decay rate γ2 ∼
2 × 107 Hz, the wavelength of the probe laser λp ∼ 780 nm,
and ∂ρ23/∂
p obtained from Figs. 2(a) and 2(b), results in
a group index for both the anomalous and normal dispersion
conditions as ∼−15 × 104 and 4.3 × 104, respectively.

B. Periodic self-pulsing of refractive index

We now focus our attention to the effects of feedback of the
control field which results in nonlinear dynamical self-pulsing.
The probe response (solid) with the control field OB feedback
digresses from the noncavity case (dash-dotted) for |
p|/κ >

γ2/κ , as seen in Fig. 4. We would like to emphasize that this
difference arises from the feedback and lies at the heart of the

periodic self-pulsing (the green dotted region) that the system
exhibits in the lower branch.

The atomic system is chosen such that the uppermost
state |1〉 is metastable and thus has a longer lifetime in
comparison to the intermediate state |2〉. The stability of the
lower bistable branch depends on the population injection by
the probe field into the bistable transition. Such processes
lead to the creation of instability in the lower bistable branch
for appropriate probe detuning [see Figs. 3(a) and 3(b)]. This
unstable regime is associated with oscillatory dynamics such
as stable periodic self-pulsing [see Fig. 3(d)]. In our parameter
regime, the oscillatory behavior does not necessarily occur
between the lower and upper branches of the bistable response
[19]. We believe that the physical mechanism involved in
our system is intrinsically different from earlier reports of
instability in the upper branch where optical pumping is
invariably involved, which in turn relies on slow processes
such as spontaneous emission [17]. In contrast, our system
involves a competition between the population decay from
the state |2〉 to the ground state |3〉 and nonlinear atom-
field interaction along the |1〉 ↔ |2〉 transition of the control
field experiencing sufficient feedback. Atomic coherence is
essential in obtaining the oscillatory behavior, and inclusion
of larger decoherence of the atomic polarizations (ρ12 or ρ23)
leads to a reduction of the unstable range and its eventual
disappearance. It should be noted that obtaining a bistable
solution and the associated switching between the states is
not essential for obtaining nonlinear dynamical self-pulsing
in the lower branch, however, cavity feedback (cooperative
effect) is mandatory. Furthermore, self-pulsing could occur at
the very onset of the lower cooperative branch, thus requiring
much lower input intensities in contrast to the conventional
single-mode self-pulsing that occurs in the upper branch
[22]. The concerns over power requirements can further be
relaxed by implementing this scheme in photonic crystal-based
microcavities which provide significant field enhancements
[23] accompanied by short cavity round-trip times.

The self-pulsing domain associated with the unstable
solutions are separated from the stable solutions by a Hopf
(supercritical) point, as indicated in Fig 2. The limit cycles
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FIG. 5. (Color online) The time-periodic self-pulsing of the real
and imaginary parts of ρ23 and the power spectral density (inset)
is shown for 
p/κ = 2, |yc| = 3, Gc/κ = 0.2, and all the other
parameters are the same as in Fig. 2.
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that originate from the Hopf points are robust and stable.
The Floquet analysis indicates that the Floquet multipliers are
bound by unity, within this range of detunings, leading to stable
limit cycles [24]. The stable periodic oscillations occur for both
the absorption as well as the refractive index (see Fig. 5). The
observed modulation in the refractive index and the absorption
is of the order of 3% and 7%, respectively. These oscillations
are not necessarily sinusoidal, and one can obtain a variety
of multiply peaked periodic oscillations with varied frequency
content. The self-pulsing time scale is governed by the cavity
decay time κ−1 = L/cT . In our simulations the atomic states
are long lived in comparison to cavity decay times, and in
order to realize this phenomenon, these can be chosen to have
a variety of values satisfying the condition γ1 � γ2 � κ . In
particular, for a microcavity setup we consider γ1/κ ∼ 10−7,
γ2/κ ∼ 10−5, L ∼ 10−6 m, T ∼ 10−2, C ∼ 20, and obtain
similar self-pulsing, wherein κ ∼ 1012 Hz and thus periodic

self-pulsing in the terahertz regime seems possible in this OB
setups, with a constant input field yc.

IV. SUMMARY

In conclusion, we have demonstrated a coherent way
to engineer refractive index (normal to anomalous) and
absorption of a probe field using OB. Such OB in multilevel
systems can be used as optical delay lines for the control of
pulse propagation in integrated optical devices. Furthermore,
we also demonstrate a mechanism to obtain time-dependent
oscillatory susceptibility, with a constant input control field,
operating in the lower cooperative branch of OB. A distinct
possibility of exploiting this scheme to obtain refractive index
modulation in the terahertz regime needs to be tested, as the
conventional slow dynamics associated with optical pumping
is no longer a limiting factor in our scheme.
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