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Effect of counter-rotating terms on the spontaneous emission in an anisotropic photonic crystal
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The spontaneous emission of a two-level atom in a anisotropic photonic crystal is investigated without making
use of the rotating wave approximation (RWA). Similar to the RWA case, there exist two characteristic atomic
transition frequencies which separate the radiation field from the localized and propagated fields. Unlike the
RWA calculation, these two characteristic frequencies are shifted due to a full calculation of the energy shifts.
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I. INTRODUCTION

Spontaneous emission is one of the main and fundamental
topics in quantum optics. From the fundamental point of
view, it is a peculiar phenomenon which shows the quantum
nature of the electromagnetic field [1,2]. It leads to many
useful applications and still attracts considerable interests.
There have been many techniques that can be utilized to
modify spontaneous emission. For example, the quantum
interference can lead to spontaneous emission suppression,
spectral narrowing, population trapping, and the phase control
of spontaneous emission [3–7]. The spontaneous emission can
also be enhanced and suppressed by tailoring the density of
the radiation field modes [8].

Although spontaneous emission depends strongly on the
surrounding environment through the density of states and
local strength of the electromagnetic modes [9], it is still a bot-
tleneck limiting the performance of devices in various fields.
A good way to overcome this problem is to turn to photonic
crystal which is a class of materials with composed periodic
dielectric structures. They have remarkable capabilities of
localizing and guiding electromagnetic radiation that can be
used effectively to control spontaneous emission [10–14].
When the atomic transition frequency lies near the photonic
band edge, it leads to the appearance of photon-atom bound
states [15,16]. It was found out that such a state can be a good
means to coherently control spontaneous emission [17] and
spectral splitting [18,19].

Various photonic crystal models have been investigated the-
oretically [13,16,20–24] and experimentally [25–27]. Among
these models is the study of the spontaneous emission of a two-
level atom within a three-dimensional anisotropic photonic
crystal under the rotating-wave approximation (RWA) [13].
The properties of the radiation field, in such a photonic
crystal, depend on the relative position of the atomic transition
frequency and the band edge of the photonic crystal. It is
shown that there exist two characteristic atomic transition
frequencies. Here one can see three different and distinct
regions: (a) above these two frequencies, the emission is
purely a propagating wave, (b) a localized field below them,
(c) while it is a purely diffusion field between the two
frequencies. Clearly, there is no coexistence of localized and
propagating fields. This remark is quite different when it
comes to the one-dimensional photonic crystals as they have a

different density of states [15,16]. For an anisotropic band gap
structure, the density of state is proportional to (ωk − ωc)1/2.
In contrast, it is proportional to (ωk − ωc)−1/2 for an isotropic
band gap structure and leads to a singularity at the band
edge.

In the present paper, we not only study the usual sponta-
neous emission of a two level atom that is embedded in a three-
dimensional anisotropic photonic crystal but also consider the
full counter-rotating terms. The behavior of the emission is
similar to the RWA case, i.e., the localized and propagating
fields are also separated by two characteristic atomic transition
frequencies. However, these two characteristic frequencies are
shifted due to the full Lamb shift which is obtained without
making use of the RWA. The paper is organized as follows. In
Sec. II, we introduce the model and calculate the spontaneous
emission of a two level atom in an anisotropic photonic crystal
including the counter-rotating terms in the Hamiltonian. In
Sec. III, we first discuss the properties of the fields and compare
the results with those of just the RWA. Finally we present some
concluding remarks in Sec. IV.

II. MODEL AND CALCULATION

We consider a two-level atom coupled to the radiation
field in an anisotropic photonic crystal. The excited and
ground energy levels of the atom are labeled as |1〉 and |0〉,
respectively. The band edge frequency ωc of the photonic
crystal is chosen to be near the atomic transition frequency
ω1. Without making the rotating wave approximation, the full
Hamiltonian of the system is

Ĥ = h̄ω1|1〉〈1| +
∑

k

h̄ωkb
†
kbk

+ h̄
∑

k

gk(b†k + bk)(|0〉〈1| + |1〉〈0|) , (1)

where bk is the annihilation operator of the radiation mode
k with frequency ωk . The atom-field coupling constant
gk = (ω1d1/h̄)

√
h̄/2ε0ωkV0ek · ud . Here d1 and ud are the

magnitude and the unit vector of the atomic dipole moment,
V0 is the quantization volume, and ek is the polarization unit
vector. In order to take into account the counter-rotating terms,
we make a unitary transformation U = eiS on the Hamiltonian,
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and keep all of the terms to the second order of gk . Here

S =
∑

k

−igk

ωk + ω1
(b†k − bk)(|0〉〈1| + |1〉〈0|). (2)

The transformed Hamiltonian takes the form [28,29]

Ĥ = h̄
(
ω1 + �ω

(1)
ndy

)|1〉〈1| + �ω
(0)
ndy|0〉〈0| +

∑
k

h̄ωkb
†
kbk

+ h̄
∑

k

Vk(b†k|0〉〈1| + bk|1〉〈0|) , (3)

where the nondynamic energy shifts are

�ω
(1)
ndy =

∑
k

g2
k

ωk

ω1(ω1 − ωk)

(ωk + ω1)2
, (4a)

�ω
(0)
ndy =

∑
k

g2
k

ωk

ω1(ω1 + ωk)

(ωk + ω1)2
, (4b)

and

Vk = 2ω1gk

ωk + ω1
. (5)

Here we have removed the self-energy of the free electron due
to the vacuum fluctuations in the nondynamic shifts.

The dispersion relation in an anisotropic photonic crystal
is modified by the periodic dielectric structure. An anisotropic
band gap structure is formed on the surface of the the first
Brillouin zone of the reciprocal lattice space. The band edge is
associated with several symmetry-related points ki

0. Near each
ki

0, the dispersion relation can be approximated as

ωk = ωc + A
∣∣k − ki

0

∣∣2
. (6)

The atom is assumed to be initially in the excited state |1〉
and the radiation field is in the vacuum state. The state vector

of the system at an arbitrary time t is

|ψ(t)〉 = A(t)e−i(ω1+�ω
(1)
ndy)t |1,{0}〉

+
∑

k

Bk(t)e−i(ωk+�ω
(0)
ndy)t |0,{1k}〉. (7)

From the Schrödinger equation, we obtain the following
differential equations for the amplitudes A(t) and Bk(t):

∂

∂t
A(t) = −

∑
k

Vke
−i(ωk−ω′

1)tBk(t), (8a)

∂

∂t
Bk(t) = Vke

i(ωk−ω′
1)tA(t). (8b)

Here ω′
1 = ω1 + �ω

(1)
ndy − �ω

(0)
ndy is the shifted atomic transi-

tion frequency.
After making the Laplace transform, we obtain the Laplace

transform Ã(p) for the amplitude A(t),

Ã(p) = (p + �)−1 , (9)
with

� =
∑

k

V 2
k

p + i(ωk − ω′
1)

= (ω1d1)2

16π3ε0h̄

∫
dk

1

ωk[p + i(ωk − ω′
1)]

(
2ω1

ω1 + ωk

)2

×
[

1 − (k · ud )2

k2

]
. (10)

Here we convert the mode sum over the transverse plane
wave into integral, i.e.,

∑
k → [V/(2π )3]

∫
dk. Due to the

anisotropy, the integration over k has to be carried out around
the direction of each kj

0. The angle between the atom dipole
vector and the kj

0 is θj . In addition, we can extend the
integration over k to infinity since the frequencies far away
form the band edge do not contribute significantly. Detailed
calculation is given in Appendix A. We then have

� = −iβ3/22ω2
1[

√
ωc + 2

√
ω1 + ωc + √−ip − (ω′

1 − ωc)]√
ω1 + ωc(

√
ωc + √

ω1 + ωc)2[
√

ωc + √−ip − (ω′
1 − ωc)][

√
ω1 + ωc + √−ip − (ω′

1 − ωc)]2
, (11)

with β3/2 = [(ω1d1)2/8πε0h̄A3/2]
∑

j sin2 θj . Note here that, in order to ensure the integral in the above equation to be meaningful,

the phase angle of
√−ip − (ω′

1 − ωc) has been defined within (−π/2,π/2).
The amplitude A(t) is given by the inverse Laplace transform,

A(t) = 1

2πi

∫ σ+i∞

σ−i∞
A(p)eptdp = 1

2πi

∫ σ+i∞

σ−i∞

ept

p + �
dp, (12)

where the real number σ is chosen so that all the singularities of the function A(s) lies to the left of the line s = σ in the Bromwich
integral.

Following the residue theorem, we have

A(t) =
∑

j

ex
(1)
j t

F ′(x(1)
j

) +
∑

j

ex
(2)
j t

G′(x(2)
j

) + 1

2πi

∫ ω′
1ci+0

ω′
1ci−∞

ext

x − iβ3/22ω2
1[

√
ωc+2

√
ω1+ωc−i

√
x+(ω′

1−ωc)]
√

ω1+ωc(
√

ωc+√
ω1+ωc)2[

√
ωc−i

√
ix+(ω′

1−ωc)][
√

ω1+ωc−i
√

ix+(ω′
1−ωc)]2

dx

− 1

2πi

∫ ω′
1ci+0

ω′
1ci−∞

ext

x − iβ3/22ω2
1[

√
ωc+2

√
ω1+ωc+

√
−ix−(ω′

1−ωc)]
√

ω1+ωc(
√

ωc+√
ω1+ωc)2[

√
ωc+

√
−ix−(ω′

1−ωc)][
√

ω1+ωc+
√

−ix−(ω′
1−ωc)]2

dx. (13)
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The details of the calculation are given in Appendix B, where
the functions F (x) and G(x) are defined in Eqs. (B2) and (B4),
where x

(1)
j are the root of the equation F (x) = 0 in the region

[Re(x) > 0 or Im(x) > ω′
ic] as shown in Fig. 4(a), and x

(2)
j are

the root of equation G(x) = 0 in the region [Im(x) < ω′
ic and

Re(x) < 0] as shown in Fig. 4(b).
With the solved atomic amplitudes, the emitted field E(r,t)

can be calculated as

E(r,t) = ω1d1

16π3ε0
E0(r,t)

∫ ∫ ∫
e−i(ωqt−qr)

×
[∫ t

0
A(t)ei(ωq−ω1)t ′dt ′

]
dq, (14)

where E0(r,t) = ∑
i e

iki
0r[u1 − ki

0(ki
0u1)/(ki

0)2].

III. RESULTS

A. Emitted field

As expected from Eq. (13), the dynamical properties of
the emitted field is strongly related to roots x

(1)
j and x

(2)
j .

We can find from Eqs. (B2) and (B4) that the properties of
these roots depend on the relative positions of the upper level of
the atom and the band edge. Numerical studies reveal that there
exists two characteristic frequencies of the relative positions
�1 and �2 (�1 < �2). In region I (ω1 < �1), only one purely
imaginary root x(1) exists for F (x) = 0 in the contoured area
as shown in Fig. 4(a), while there is no root x(2) for G(x) = 0
in the contoured area as shown in Fig. 4(b). In region II
(�1 � ω1 � �2), there is no root for both x(1) and x(2) in
the defined contoured areas. In region III (ω1 > �2), there is
no root for x(1), while one and only one complex root with a
negative real part exists for x(2). The properties of the roots are
the same as in the case when RWA is made. Therefore, upon
substituting Eq. (13) into Eq. (14) and following the discussion
in Ref. [13], we can write the radiation field as the sum of three
parts:

E(r,t) = El(r,t) + Ep(r,t) + Ed (r,t). (15)

Here El(r,t) comes from the purely imaginary root for
x(1). Thus it is a localized field which exists only when
ω1 < �1. The complex root with a negative real part for
x(2) results in a propagating field as denoted by Ep(r,t).
It exists only if ω1 > �2. Clearly, the localized field and
propagating field can not coexist. The diffusion field Ed (r,t)
comes from the third and fourth terms in Eq. (13). Note that
although the behavior of the radiation field is the same as
the case when RWA is assumed, the positions of the two
characteristic frequencies �1 and �2 are different. Therefore,
the regions of the localized, diffusion, and propagating fields
are shifted, as shown in Fig. 1, which will be explained
later.

B. Population in the upper level

The evolution of the population in the excited state is

P (t) = |A(t)|2. (16)

FIG. 1. (Color online) The squared amplitude (in arbitrary units)
of the localized mode and the propagating mode as function of
detuning of resonant frequency from photonic band edge ω1c with
ωc = 200β. The top figure corresponds to the case with RWA. The
bottom figure corresponds to the case without making RWA. The
three ranges I, II, and III correspond to the localized modes, diffusion
modes, and propagating modes, respectively.

As discussed in Ref. [13], the propagating and localized fields
cannot coexist in the anisotropic crystal. The diffusion field
is negligibly small when propagating or localized field exists.
Therefore, there is no interference and the population in the
upper level has no quasi-oscillation. If the emission is localized
field, it dresses the atoms to form a dressed state and leads to a
fractionalized steady-state population in the upper level. If only
the diffusion field exists, the upper level decays in the manner
of a power law. However, if we have only the propagating
field, the upper-level population decays exponentially. If we
take into account the effect of the counter-rotating terms,
the regions of the localized, diffusion, and propagating
fields are shifted with respect to the detuning ω1c, see
Fig. 1.

We, therefore, expect a different behavior for the population
in the upper level. When ω1c = 0.041 436β, the detuning lies
in region I in Fig. 1(a), while it lies in region II in Fig. 1(b). So
if we include the counter-rotating terms in the Hamiltonian,
only the diffusion field exists, while RWA predicts a localized
field. Consequently, the population in the upper level goes
to a constant under RWA, while the non-RWA term leads
to a power law decay, see Fig. 2(a). When ω1c = 0.055β, the
detuning lies in region I in Fig. 1(a), while it lies in region III in
Fig. 1(b). Therefore, the emission is localized if we make RWA,
while non-RWA terms predict a propagating field. Therefore
the population shows different behaviors: nondecaying under
RWA and exponentially decaying if RWA is not made, see
Fig. 2(b). When ω1c = 0.070 72β, the detuning lies in region
II in Fig. 1(a), while it lies in region III in Fig. 1(b). We expect
a diffusion field under RWA and a propagating field without
RWA. Correspondingly, the population in the upper level
decays polynomially under RWA and exponentially without
RWA, see Fig. 2(c).

When time goes to infinity the population in the up-
per level can survive only if the emission is a localized
field. The steady-state atomic population can be obtained
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FIG. 2. (Color online) The time evolution of the upper-level pop-
ulation with ωc = 200β. (a) ω1c = 0.041 436β, (b) ω1c = 0.055β,
and (c) ω1c = 0.070 72β, respectively.

as

Psteady =
∣∣∣∣ 1

F ′(x(1))

∣∣∣∣
2

. (17)

We expect, from Fig. 1, that there is a shift of the steady-state
population with respect to the detuning ω1c if we consider the
effect of the counter-rotating terms, see Fig. 3.

C. Lamb shift

From the dispersion relation Eq. (6), the density of the field
modes is 0 for ωk < ωc. So a naive guess could be ω1 = ωc

which is a characteristic point for the behavior of the emission
field. If ω1 < ωc, the field should be localized. When ω1 > ωc,
the localized field disappears.

However, the strong interaction between the atom and the
field shifts the atomic energy levels. When RWA is made,
the interaction Hamiltonian is H RWA

I = h̄
∑

k gk(b†k|0〉〈1| +
bk|1〉〈0|). The second-order perturbation energy shift is

�ERWA =
∑

k

∣∣〈0,{1k}|H RWA
I |1,{0}〉∣∣2

h̄(ω1 − ωk)

=
∑

k

h̄g2
k

ω1 − ωk

. (18)

FIG. 3. (Color online) The steady-state atomic population in the
upper level with respect to the detuning with ωc = 200β.

When ω1 = ωc = 200β, and substitute for ωk from the
dispersion relation in Eq. (6), we obtain this shift �ERWA =
−0.0707h̄β. This shift pushes down the actual transition
frequency by an amount of 0.0707β (see Appendix C
for detailed calculations). Therefore, the field is still lo-
calized even if the atomic transition frequency lies above
the band edge of the photonic crystal until ω1c exceeds
0.0707β.

However, this energy shift obtained under RWA is not the
whole Lamb shift, because it does not include the shift from
the counter-rotating terms. When the counter-rotating terms
are included in the Hamiltonian, the transformed Hamiltonian
contains nondynamic energy shifts. In addition, the interaction
constant is rescaled and the interaction Hamiltonian is HI =
h̄

∑
k Vk(b†k|0〉〈1| + bk|1〉〈0|). In this case, the total Lamb shift

is given by Refs. [29,31]

�ELamb = �Endy + �Edyn

= h̄
(
�ω

(1)
ndy − �ω

(0)
ndy

) +
∑

k

|〈0,{1k}|HI |1,{0}〉|2
h̄(ω1 − ωk)

=
∑

k

2h̄g2
kω1

ω2
1 − ω2

k

. (19)

The shift is �ELamb = −0.0414h̄β. The frequency difference
between the atomic transition and the gap edge ω1c ≈
0.0414β, which coincides with Fig. 1(b), is a characteris-
tic frequency for the behavior of the emission field. The
Lamb shift due to strong virtual atom-photon interaction
results in a peculiar fact that the radiation filed is still
localized when the atomic frequency is above the band
edge of the photonic crystal until the amount of 0.0414β.
In the region 0.0414β < ω1c < 0.0707β, the emission is a
propagating mode, which would be a localized mode under
RWA.

IV. CONCLUSION

In conclusion, we have studied the spontaneous emission
of a two-level atom in an anisotropic photonic crystal without
making RWA. Similar to the RWA case, there exists two char-
acteristic transition frequencies. Below the two frequencies,
the localized field exists while a propagating field shows
up above the two frequencies. The localized radiation field
exists even if the atomic transition frequency is above the
band edge of the photonic crystal. And the localized field
cannot coexist with the propagating field. In comparison
with the RWA case, the two characteristic frequencies are
shifted.
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APPENDIX A: CALCULATION OF �

It follows from Eq. (10) that

� =
∑

k

V 2
k

p + i(ωk − ω′
1)

= (ω1d1)2

16π3ε0h̄

∑
j

∫
j

dk
(

2ω1

ω1 + ωk

)2

× 1

ωk

[
1 − (k · ud )2

k2

]
1

p − i(ω′
1 − ωk)

. (A1)

If the density of a state is broadband, such as in vacuum,
the Weisskopf-Wigner approximation is valid and one can use
the first-order pole contribution of p to calculate the above
integration. However, the density of the electromagnetic modes
of the photonic crystal changes rapidly in the vicinity of the
band edge, hence, the Weisskopf-Wigner perturbation theory
is inadequate. We have to perform an exact integration in

(a) (b)

FIG. 4. (Color online) (a) The integration contour of Eq. (B1).
(b) The integration contour of Eq. (B3).

Eq. (A1). Therefore we substitute the dispersion relation as
described in Eq. (6) in Eq. (A1):

� = (ω1d1)2

16π3ε0h̄

∑
j

(sin θj )2
∫

j

dk
(

2ω1

ω1 + ωc + A
∣∣k − ki

0

∣∣2

)2 1

ωc + A
∣∣k − ki

0

∣∣2

1

p + iA
∣∣k − ki

0

∣∣2 + i(ωc − ω′
1)

= (ω1d1)2

16π3ε0h̄

∑
j

(sin θj )2
∫

j

dq
(

2ω1

ω1 + ωc + Aq2

)2 1

ωc + Aq2

1

p + i(ωc − ω′
1) + iAq2

= (ω1d1)2

4π2ε0h̄

∑
j

(sin θj )2
∫

j

dq

(
2ω1

ω1 + ωc + Aq2

)2
q2

ωc + Aq2

1

p + i(ωc − ω′
1) + iAq2

= −i
(ω1d1)2

4π2ε0h̄A3/2

∑
j

(sin θj )2
∫

j

dx

(
2ω1

ω1 + ωc + x2

)2
x2

ωc + x2

1

−i(p + iωc − iω′
1) + x2

= −iβ3/2 · 2ω2
1[

√
ωc + 2

√
ω1 + ωc + √−ip − (ω′

1 − ωc)]√
ω1 + ωc(

√
ωc + √

ω1 + ωc)2[
√

ωc + √−ip − (ω′
1 − ωc)][

√
ω1 + ωc + √−ip − (ω′

1 − ωc)]2
. (A2)

APPENDIX B: THE INVERSE LAPLACE TRANSFORM

According to Eq. (12), we proceed the inverse Laplace transform as follows. Since
√−ix − (ω′

1 − ωc) is not single valued,
we cut the complex plane along (ω′

1ci,−∞i). We then choose the integration contour as shown in Fig. 4(a). According to the
residue theorem,

A(t) =
∑

j

ex
(1)
j t

F ′(x(1)
j

) − 1

2πi

[ ∫ ω′
1ci+0

ω′
1ci−∞

+
∫ −∞i+0

ω′
1ci+0

]
ext

x + �
dx, (B1)

where

F (x) ≡ x − {
iβ3/22ω2

1[
√

ωc + 2
√

ω1 + ωc +
√

−ix − (ω′
1 − ωc)]

}{√ω1 + ωc(
√

ωc + √
ω1 + ωc)2

× [
√

ωc +
√

−ix − (ω′
1 − ωc)][

√
ω1 + ωc +

√
−ix − (ω′

1 − ωc)]2}−1 , (B2)

F ′(x) = dF

dx
,
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and x
(1)
j is the root of the equation F (x) = 0 in the region as the contour shown in Fig. 4(a). The last term of Eq. (B1)

can be calculated as follows:
1

2πi

∫ −∞i+0

ω′
1ci+0

ext

x + �
dx = 1

2πi

∫ −∞i+0

ω′
1ci+0

ext

x − iβ3/22ω2
1[

√
ωc+2

√
ω1+ωc+

√
−ix−(ω′

1−ωc)]
√

ω1+ωc(
√

ωc+√
ω1+ωc)2[

√
ωc+

√
−ix−(ω′

1−ωc)][
√

ω1+ωc+
√

−ix−(ω′
1−ωc)]2

dx

= 1

2πi

∫ −∞i

ω′
1ci

ext

x − iβ3/22ω2
1[

√
ωc+2

√
ω1+ωc−i

√
ix+(ω′

1−ωc)]
√

ω1+ωc(
√

ωc+√
ω1+ωc)2[

√
ωc−i

√
ix+(ω′

1−ωc)][
√

ω1+ωc−i
√

ix+(ω′
1−ωc)]2

dx

= −
∑

j

ex
(2)
j t

G′(x(2)
j

) − 1

2πi

∫ ω′
1ci+0

ω′
1ci−∞

ext

x − iβ3/22ω2
1[

√
ωc+2

√
ω1+ωc−i

√
x+(ω′

1−ωc)]
√

ω1+ωc(
√

ωc+√
ω1+ωc)2[

√
ωc−i

√
ix+(ω′

1−ωc)][
√

ω1+ωc−i
√

ix+(ω′
1−ωc)]2

dx ,

(B3)

where
G(x) ≡ x − {

iβ3/22ω2
1[

√
ωc + 2

√
ω1 + ωc − i

√
ix + (ω′

1 − ωc)]
}{√ω1 + ωc(

√
ωc + √

ω1 + ωc)2

× [
√

ωc − i

√
ix + (ω′

1 − ωc)][
√

ω1 + ωc − i

√
ix + (ω′

1 − ωc)]2}−1 , (B4)

G′(x) = dG

dx
,

and x
(2)
j is the root of the equation G(x) = 0 in the region as the contour shown in Fig. 4(b). Note that in Eq. (B3), we integrate

along the left edge of (ω′
1ci,−∞i) instead of the right edge. Thus,

√−ix − (ω′
1 − ωc) turns to −i

√
ix + (ω′

1 − ωc).
From Eqs. (B1) and (B3), we then have

A(t) =
∑

j

ex
(1)
j t

F ′(x(1)
j

) +
∑

j

ex
(2)
j t

G′(x(2)
j

) + 1

2πi

∫ ω′
1ci+0

ω′
1ci−∞

ext

x − iβ3/22ω2
1[

√
ωc+2

√
ω1+ωc−i

√
x+(ω′

1−ωc)]
√

ω1+ωc(
√

ωc+√
ω1+ωc)2[

√
ωc−i

√
ix+(ω′

1−ωc)][
√

ω1+ωc−i
√

ix+(ω′
1−ωc)]2

dx

− 1

2πi

∫ ω′
1ci+0

ω′
1ci−∞

ext

x − iβ3/22ω2
1[

√
ωc+2

√
ω1+ωc+

√
−ix−(ω′

1−ωc)]
√

ω1+ωc(
√

ωc+√
ω1+ωc)2[

√
ωc+

√
−ix−(ω′

1−ωc)][
√

ω1+ωc+
√

−ix−(ω′
1−ωc)]2

dx . (B5)

APPENDIX C: ENERGY SHIFTS

The total Lamb shift for a level i, composed of the nondynamic energy shift and the dynamic energy shift, is given by Ref. [29]

�Ei
Lamb = �Ei

ndy + �Ei
dyn

=
∑

k

∑
j 
=i

h̄g2
k

ωk

ωji(ωji + ωk)

(ωk + |ωji |)2
+

∑
k

∑
j<i

4ω2
ij

(ωij + ωk)2

h̄g2
k

ωij − ωk

=
∑

k

∑
j 
=i

h̄g2
k

ωk

ωij

ωij − ωk

. (C1)

As for the two-level atom in the photonic crystal, ωk = ωc + A|k − ki
0|2. When ω1 = ωc = 200β, the nondynamic energy

shift is given by

�Endy = h̄
(
�ω

(1)
ndy − �ω

(0)
ndy

) =
∑

k

h̄g2
k

ωk

[−ω1(−ω1 + ωk)

(ωk + ω1)2
− ω1(ω1 + ωk)

(ωk + ω1)2

]
= −

∑
k

2h̄g2
kω1

(ωk + ω1)2

= −h̄(ω1d1)2

16π3ε0h̄

∫
dk

[
1 − (k · ud )2

k2

]
2ω1

ωk(ω1 + ωk)2

= −h̄(ω1d1)2

4π2ε0h̄

∑
j

sin2 θj

∫
dq

2ω1q
2

(ωc + Aq2)(ω1 + ωc + Aq2)2

= −h̄β3/2

π

∫
dx

4ω1x
2

(ωc + x2)(ω1 + ωc + x2)2
= −0.0085h̄β . (C2)

Here x = √
Aq.
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The dynamic shift is given by

�Edyn =
∑

k

4ω2
1

(ω1 + ωk)2

h̄g2
k

ω1 − ωk

= h̄β3/2

π

∫
dx

8ω2
1x

2

(ωc + x2)(ω1 + ωc + x2)2(ω1 − ωc − x2)
= −0.0328h̄β . (C3)

Similarly, the total Lamb shift is

�ELamb =
∑

k

h̄g2
k

ωk

(
ω1

ω1 − ωk

− −ω1

−ω1 − ωk

)
=

∑
k

2g2
kω1

ω2
1 − ω2

k

= h̄β3/2

π

∫
dx

4ω1x
2

(ωc + x2)(ω1 + ωc + x2)(ω1 − ωc − x2)
= −0.0414h̄β . (C4)

If the RWA is made, one cannot get the full Lamb shift. Specifically, there is no nondynamic shift, and the dynamic shift is

�ERWA =
∑

k

h̄g2
k

ω1 − ωk

= β3/2

π

∫
dx

2x2

(ωc + x2)(ω1 − ωc − x2)
. (C5)
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