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We study the dynamics of spontaneous generation of coherence and photon—spin-qubit entanglement in a
A system with nondegenerate lower levels. The cases of entanglement in frequency only and frequency and
polarization are compared and the reduced density matrix and entanglement entropy are analyzed. We explore in
detail how which-path information manifest when the energy difference between the qubit states is larger than
the linewidth of the excited state suppresses coherence. A framework is provided to describe the dynamics of
spontaneous generation of coherence and (ideal) photodetection in obtaining the postmeasurement qubit density

matrix. A simple model of photodetection with a quantum eraser to suppress which-path information in the
detection measurement is implemented. It is found that such quantum eraser purifies the qubit density matrix
after photodetection; our results are in agreement with those reported in recent experiments.
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I. INTRODUCTION

Quantum entanglement has evolved from being a para-
doxical aspect of quantum mechanics [1] to becoming a
resource for quantum computing and quantum information
[2-4] with potential for technological breakthroughs in these
areas [5-7]. Several recent experiments demonstrated photon
entanglement with single atoms [8—10], atomic ensembles
[11], long-distance entanglement between qubits [12-14],
and tunable ion-photon entanglement in optical cavities
[15,16]. Along with atom-photon entanglement [4,8—10] and
entanglement in cavity quantum electrodynamics [17], recent
proposals suggested electron spin-photon entanglement in
quantum dots as platforms for entanglement between distant
spins [18]. Spin-photon entanglement could be the pathway
towards implementation of quantum networks among distant
nodes [3,13,14]. Remarkable experiments demonstrated the
realization of entanglement between the polarization of a
single optical photon and an electronic spin qubit in nitrogen
vacancy (NV) centers in diamond [19] and more recently the
demonstration of entanglement between a single electron spin
and a photon in a quantum dot has been reported [20-22].
A main paradigm in many of these experiments is that
of spontaneous generation of coherence [23-25] in a type
IT or A system, namely a situation in which spontaneous
emission from a single excited state via a two-channel decay to
degenerate or nondegenerate lower levels results in coherence
between these two states. Spontaneous generation of electron
spin coherence has also been observed from the radiative decay
of charged excitons (trions) in quantum dots [26].

These experimental efforts are paving the way towards the
implementation of atom-photon or spin-photon entanglement
as potential platforms for quantum information and quantum
computing protocols and networks [3,4,27], motivating a
theoretical effort seeking a deeper understanding of these
processes [24,28-30].

Although there have been some recent studies of the
dynamics of spontaneously generated coherence [24,25,30],
many important aspects merit further investigation.
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Our main goal in this article is to provide a more complete
theoretical study of the experimental results reported in
Ref. [19] but that apply more generally to current experiments
on spin-qubit-photon entanglement [20—-22] from spontaneous
generation of coherence, as mentioned above. With this
aim, we focus on the following aspects: (1) to provide
a treatment of the dynamics of spontaneous generation of
coherence, entanglement both in frequency and polarization,
and photodetection within a single framework consistent with
causality [31]; (2) to study the entanglement entropy of
reduced spin-qubit density matrices after tracing over the
radiation degrees of freedom for photon-qubit entanglement
in both frequency and polarization, of particular interest
when spontaneous emission produces polarized photons which
are measured by projection on different polarization states;
(3) to analyze in detail how which-path information affects
coherence, in particular within the setting of the experiment
in Ref. [19], predicting the time dependence of conditional
probabilities when which-path information is present; (4) to
implement a model for a “quantum eraser” [32,33] within
the framework of photodetection a ld Glauber [34-36] so as
to erase which-path information in the photodetection process.
An important result of this treatment is that “quantum erasing”
“which-path” information leads to the purification of the qubit
state, confirming the experimental results of Refs. [19,20]
and bolstering the arguments on quantum erasing in these
references. We obtain a conditional probability in complete
agreement with the experimental results of Ref. [19].

Our study differs from and complements recent theoretical
treatments of spontaneous generation of coherence [24,30] in
that we analyze both frequency and polarization entanglement,
which-path decoherence, the spin-qubit entanglement entropy
and incorporate a Glauber model of broadband photodetection
[34-36] in a unified manner with the treatment of spontaneous
emission. This treatment directly builds in causality in the
spontaneous emission and photodetection process [31], leads
to detailed understanding of how which-path information af-
fects coherence, and allows to model a quantum eraser [32,33]
consistently within the broadband photodetector model. This
approach is different from that advocated in a recent article
[30], where the photodetector is modeled with a collection of
two-state atoms spread over some distance where the excited
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state features a short lifetime. Furthermore, our study also
differs from those of Refs. [24,30] in that it shows how the
implementation of a quantum eraser leads to the purification
of the qubit density matrix upon photodetection and yields a
result for the conditional probability in complete agreement
with the experimental findings in Ref. [19].

II. DYNAMICS OF ENTANGLEMENT VIA
SPONTANEOUS DECAY

We consider a A system with one excited state |A) and
two Zeeman split nondegenerate lower levels interacting with
the electromagnetic field in the dipole and rotating wave
approximations. The degenerate case can be obtained straight-
forwardly. We refer to the two lower state levels | &= 1) as a spin
qubit. The cases in which there is photon-qubit entanglement
in frequency only and in frequency and polarization are studied
separately and compared.

A. Entanglement in frequency only

We first consider the case when the dipole matrix elements
are independent of the polarization of the photon and for
simplicity we only consider one polarization to establish
contact with the results of Ref. [24]. This case leads to qubit-
photon entanglement in frequency only, and generalization to
two polarizations is straightforward. The total Hamiltonian for
the three-level system is given by

H = Hjy + Hg + Hyg, (2.1
where
Hy = EA|AY(Al+ Eo |+ D{(+1| + E_| = 1)(—1];

Hp = Za)kaga,;. (2.2)
k

The interaction Hamiltonian in the interaction picture and in
the rotating wave approximation is given by

Har(®) =3 {geafll +1)(4] /40

k

+1—1)(Al**"] 4+ He.}, (2.3)
where
|k
Qy=Es—Ei; g=—i ﬁD; (2.4)

here V is the volume and D is the dipole matrix element

neglecting polarization degrees of freedom.
Consider that at time ¢ = 0 the initial state is
() = [A) 10,), (2.5)

where |0, ) is the radiation vacuum state, and write in the
interaction picture the time-evolved state as

W (1)1 = Ca(1)|A)|0y)
+ Z N Cr+@® [+ 1) + Ce () [ — 1] (2.6)
k
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The coefficients obey the following equations (in obvious
notation):

Ca(t) = =i (A;0, | Har()| 155 +1) Cp 4 (1)

—i{A; 0, [Har)[13; —1) G (1), (2.7)
Cra(t) = —i{1i £1[Hag(D)]A:0,) Ca(r). (2.8

We solve this system of equations with the initial conditions
Ca(0)=1; C+(0)=0. (2.9)

In the Wigner-Weisskopf approximation [34,37] the coeffi-
cients are given by!

Ca(t) =", (2.10)
[1 _ ei(k—Qi-Hl"/Z)t]
Crx(t) =ig . (2.11)
ot Clk—Qr+iY)
The level width T is given by
r=ry+r1_, (2.12)

where the partial widths ' correspond to the spontaneous
decay channels [A;0,) — [17)| +1);|A) — [13)| — 1), re-
spectively, namely,

Fe=21 Y (AIHaO)1z: £ 8k — Q)
k

203

D-Q
=21 ) lail Sk — Qu) = ——=.
k

(2.13)

In most experimental circumstances, the energy splitting is
much smaller than the optical frequency of the transitions,
namely |24 — Q_| « Q4, in which case it is convenient to
write

Aw
and to leading order in Aw/ 2 it follows that
y~I'_~T/2. (2.15)

In the experiment reported in Ref. [19], it has been verified
that the approximation (2.15) is fulfilled in the setting of that
experiment. In what follows we assume that the relation (2.15)
holds unless otherwise stated.

We write the spin qubit-photon entangled part of the wave
function (in the interaction picture) (2.6) as

L
V2

where the single-photon wave packets are given by

o1 (1) = V2 Cer I loa0) = V2 Ci0I17).
k k

|Wip()) = —=llon@) + 1) + [o2(t))| — 1)), (2.16)

2.17)

"We neglect the contribution from the Lamb shift to the energy level
E,.
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B. Normalization of photon wave packets

The normalization and orthogonality of the single-photon
wave packets is determined by the overlaps

(o,()|op(2)) = ZZ Ci.p(0) Cf,a(t); a,b=12. (2.18)
k
Consider the functions
[1 _ ei(w—Qa-H%)t]
Gulw,t) = (2.19)

[0 —Qu+i5]

in the narrow width limit I’ <« €24. These are sharply localized
near w =~ Q,; straightforward contour integration yields

[1 _ i) e—rz]

I +i(Qy — Qp)

/°° ga(a),t)gg(a),t) do =2n
(2.20)

Combining this result with (2.17) and (2.11) we find consis-
tently with the Wigner-Weisskopf approximation

2,
(012001 2(1)) = F* e

This result, along with the relation between the total and partial
decay widths given by (2.12) yields the normalization of the
|\W,,) state,

221

(W, (D)W, (1)) = [1 — e "],

which is a result of unitary time evolution manifest in the
Weisskopf-Wigner formulation since the total state |\W(¢));
given by (2.6) must obey (W (#)|W(¢)) = 1. Because |0 ») are
single-photon wave packets, it is straightforward to confirm
that the total number of photons is given by

> ala;
k

Taking I'y >~ I'_ >~ I'" /2 under the assumption that Aw <K €2,
consistent with the experimental setup in [19], it follows that
the single-photon wave packets are normalized for I'r >> 1 but
they are not orthogonal; we find

[1 _ e—iAwl e—rt]

A
1+1T‘"

(2.22)

Ny (1) = (W, (1) W,(0) = [1-e ™. (2.23)

(oa2(D)|o1(1)) = ; (2.24)
a result that is in agreement with an observation in Ref. [24]
for 't > 1.

Let us consider the reduced density matrix for the qubit
by tracing over the radiation field, namely (in the interaction
picture)

Plo(t) = Trr| Wy, (1)) (W, (1)) (2.25)
Going back to the Schrodinger picture we find
pro®) = 311 = e MY + D11 + | = 1)(~1]
+ (2 n@t) |+ 1)(=1| +Hc)),  (2.26)
where
n(t) = |n(t)|e? = [ — et (2.27)

(I—e ) (1+i52)
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FIG. 1. Transitions.

In the long time limit 't 3> 1 the coherence is suppressed
by the factor 1/4/1 + Aw?/'? reflecting the suppression of
coherence by which-path information. If I' > Aw the spectral
width of the radiation, determined by the lifetime of the
excited state, suppresses which-path information by blurring
the energy resolution of the decay channels of the emitted
photons and coherence is maintained. In the opposite limit,
Aw > T, the energy difference between the lower lying states
is resolved and which-path information is available in the
emission spectrum, thereby suppressing coherence. This is
manifest in the overlap of the photon wave packets (2.24)
in terms of the product of the Lorentzian line shapes for the
individual channels.

The main reason for studying the reduced density matrix in
the case of frequency entanglement only is that, as is discussed
in detail in Sec. III photodetection that filters horizontally (H)
or vertically (V) polarized photons projects the density matrix
onto a reduced density matrix precisely of the form (2.26) that
contains which-path information.

C. Entanglement in frequency and polarization

In the experimental situations considered in Refs. [§-10]
for atom-photon entanglement and in Ref. [19] for electron
spin-photon entanglement in NV centers, there are angular mo-
mentum selection rules in spontaneous decay and the photons
emitted are right-handed (for |A) — | — 1)) or left-handed (for
|A) — |+ 1)) circularly polarized as depicted in Fig. 1. In this
case the spin-qubit and the spontaneously emitted photons are
entangled in both polarization and frequency. Including the
polarization of the emitted photons leads to several important
modifications of the results obtained in the previous case;
therefore, we restore the polarization, momentum, and spatial
dependence of the dipole matrix elements. Although we focus
the discussion on the experimental setup of Ref. [19] with NV
centers, the results will be more general.

In this case the total Hamiltonian for the three-level A
system interacting with the electromagnetic field is given by
(2.1) with H, given in Eq. (2.2), but now

Hp= Y wal ag (2.28)

kA=+
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and the interaction Hamiltonian in the interaction picture and
in the rotating wave approximation is given by

Har() =) {gpGoyal |+ 1)(A] ¢

k
+gr_(Fo)al | —1)(A]4 4 Hel,
(2.29)

where Q4+ = E4 — E4, and

2 k=L i
8t +(X0) = =iy 57 D - € £ €7

here v is the volume, f)i are the dipole matrix elements
(£1]d|A), respectively, E,;; are the left- and right-handed
polarization vectors, respectively, and X, is the position of
the NV center.

Consider that at time r = O the initial state is

[W(0) = [A) 10,),

(2.30)

(2.31)

where |0,,) is the radiation vacuum state, and following the
notation of the previous section we write the time-evolved
state in the interaction picture as

[W(1); = Ca(t)|A)0,)
+ ) G O )+ 1)+ Cp ()17 = D]
k

(2.32)

The coefficients obey the following equations (in obvious
notation):

Ca(t) = —i{A;0,|Har()|1; 3 —1) C; ()
—i(A;0, [HarO|1p _;+1) C; (1), (2.33)

C,;’i(t) = —i(l; o3 £1HAr®)|A;0,) Car). (2.34)

Just as in the previous section we solve this system of equations
with the initial conditions C4(0) =1;C; (0) =0, in the
Wigner-Weisskopf approximation the coefficients are given
by?

Calty =€ 7", (2.35)
. L[ — ek Qa2
Ci (1) = igg (x0) s+ D) (2.36)
The level width I is given by
r=ry+r., (2.37)

where the partial widths T'j,T'_
spontaneous decay channels [A;0,) — [1; )| —
1 ;,_)| + 1), respectively, namely,

Fo=21 Y (A HagO)[1; i +1)2 80k — Q)
k

correspond to the
1):;1A) —

=27 Y lgp G0l 8k — ), (2.38)
k

2 Again we neglect the contribution from the Lamb shift to the energy
level E4.
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Fo=27 ) [(AIHARO) 105 +DP 8k — 20)
k

=21 Y |g;_(Fo)l* 8k — Q). (2.39)

k

Just as in the previous case of unpolarized photons, it follows
that T'y o |D4|*> Q3 but the proportionality constants now
depend on the angular average of the polarization vectors.

Now the second term of the wave function (2.32) describes
an entangled state of circularly polarized photons and the spin
states of the NV center; following the literature [8-10,19] we
write this second term (in the interaction picture) as

1
W () = —=[lo-®)) [ + 1) + |o.(0)) | = D],

2.40
7 (2.40)

where

loe () =2 ) Cr (0117 5) (2.41)
K

describe orthogonal circularly polarized single-photon wave
packets.

Unlike the results in Ref. [24], we do not take the limit
't > 1; in the experimental setting of Ref. [19] the lifetime
of the excited state is 1/I" & 12 ns but the measurements are
performed during a time interval ~10-20 ns.

Borrowing the results from the previous section, we now
find

|

2
(o (Dlo(1) = —=[1 = ey (or(lo_(1)) =0,

(2.42)

where the orthogonality of |0+ (¢)) is a consequence of the fact
that they describe one-photon wave packets with orthogonal
polarizations. This result, along with the relation between the
total and partial decay widths given by (2.37) again yields the
normalization of the [W,,) state,

(‘Ijs'p(t)llpxp(t)) =[1- ein],

which is a result of unitary time evolution and similarly

(2.43)

Ny()) = (W) | Y @l ag, | W) =1 —e™].
k=%
(2.44)

Just as in the previous section the one-photon wave packets
|o1) have unit normalization when I't >»> 1 and 'y =T_ =
I'/2, which is justified when the Zeeman splitting 2, — Q_ <
Q,,Q_ and describes the experimental setup of Ref. [19]. The
reduced density matrix for the spin-qubit can be obtained by
tracing over the radiation field just as in the previous section
(2.25) and (2.26). However, in this case, the orthogonality
of the circularly polarized wave packets leads to vanishing
coherence and a diagonal density matrix that describes a
statistical mixture given by

pfp(t) = Tr|qjsp(t)> ("Ijsp(t)|

= 11 —e I+ D(+1]+ | — I)(=1]). (245)
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D. Entanglement entropy

As we have seen above, spontaneous generation of coher-
ence leads to very different reduced density matrices depend-
ing on whether photon-qubit entanglement is in frequency and
polarization or frequency only. This difference is highlighted
by comparing the von Neumann entanglement entropy in both
cases.

Frequency entanglement only. In this case the total reduced
density matrix is

p(t) = e " AY(A] + pro(D),

where p,(t) is given by (2.26), which can be diagonalized
with the eigenvectors and eigenvalues

(2.46)

~ 1 . .
1) = _( + 1 _}_efl(ﬁ(t) e*tAa)t -1 )’
1) 7 |+ 1) |—1)
) (2.47)
() = 5[1 —e M+ In)]1,
B = =+ 1) — 0 e 1y
ﬁ 9
) (2.48)
ho(t) = 11 =€ 111 = I,
where n(t) = |n(t)|e'*? is given by (2.27), leading to
p(t) = e ANAI+ 1 OT{T] + 2202 (2. (2.49)
The entanglement entropy follows directly,
Sro(t) = Cte ™™ — 0 (1) In A (1) — Aa(t) Inha(r).  (2.50)

ForI't > 1,

I 1+ |0
S70(00) = =311+ ol Tn [%}

1 I — 1ol
—E[l—qu 111[—2 } (2.51)

with
1

o] = ——.
J1+45%

As Aw/T" — 0 the entanglement entropy vanishes as the
asymptotic state is the pure state |1) = %( |[+) + |—)) in the
opposite limit Aw/T" > 1; where which-path information
suppresses coherence it follows that S ;,(00) = In(2), describ-
ing an equal probability statistical mixture.

Entanglement in frequency and polarization. In this case
the total reduced density matrix is simply

p@) = e TAYAl+ 311 — e "I+ D1+ = 1)(=1))
(2.53)

(2.52)

as a consequence of the orthogonality of the right and left
circular polarized photon wave packets. In this case the
entanglement entropy is

1— —I't
Sip)=Tte™™ —[1 —e]n [Te] (2.54)

with the asymptotic value

S;p(00) = In(2). (2.55)
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FIG. 2. (Color online) Entanglement entropy for the case of
entanglement in frequency only S,(¢) and frequency and polarization
Sep(t) for Aw =2m x 122 MHz; ' =1/12ns, Ty =T_ =T/2.

The entanglement entropies in both cases are displayed in
Fig. 2 for the parameters of the experiment in Ref. [19], Aw =
2 x 122 MHz; I' = 1/12 ns.

Analytically, it can be seen that

Syp(t) 2 Syo(t), (2.56)

a relation that is confirmed numerically and confirms the
qualitative expectation that the entanglement entropy should
be larger in the case of entanglement in both frequency and
polarization.

The results above were obtained under the assumption
that 'y = '_ = I'/2. If the partial widths to the two non-
degenerate levels are different the generalized form of the
entanglement entropy in this case of entanglement in frequency
and polarization is given by

r r
Spp(t) =Tre™ " — ?*(1 —e¢™)In [?*(1 — e—”)]

— %(1 — e ™In [%‘(1 - eF’):|, (2.57)

where ' =1, +T'_.

III. PHOTODETECTION

We consider a model for a broadband photodetector
described by an atom localized at position ¥4 interacting with
the radiation field in the dipole approximation a ld Glauber
[34-36]. The Hamiltonian is given by Hp + Hppg, where the
detector Hamiltonian Hp describes a zero-energy ground state
and a collection of excited states which eventually will be taken
as a continuum

Hp = lg)(g"1+ D _viled)ed]s v=0, 3.1
J

and Hpg is the interaction Hamiltonian that describes a
dipolar coupling to the radiation field with a filter that selects
H or V linear polarization states of the radiation field. In the
rotating wave approximation and in the interaction picture it is
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given by
Hpr(t) = Z [67] . Eﬁ,+)()?d;t)|ef>(gd| e +Hel;

! (3.2)
P=H;V,

where d ; are the dipole matrix elements and

. K. oo
EPGin =) i\ spérapet e (33)
i

The combined process of spontaneous emission frorP the
NV center |A) considered to be localized at Xy =0 and
photodetection by a broadband photodetector localized at Xz
is now described by the fotal Hamiltonian

H;ot = Hy+ Hgr + Har + Hp + Hpg, (3.4)

where the first three terms are given by (2.1)—(2.3).

Insight into the combined processes and the intermediate
states that contribute is gleaned in second order in the pertur-
bative expansion with the full interaction Hamiltonian in the
interaction picture (and in the rotating wave approximation),

Hi(t) = Har(t) + Hpr(2), (3.5)

where Har(t); Hpr(t) are given by (2.29) with X =0 and
(3.2), respectively. Consider that the initial state is (in obvious
notation)

|W(0)) = |A;0,;8%); (3.6)

in the interaction picture the resulting time-dependent state in
second order becomes

|W(1)) = [1 —i / Hi(t)dt + (—i)*
0

« / / Hl(ll)Hl(lz)dfldfz-i-"':||‘I"(0))-
0 0
3.7)

To first order only H 4 g contributes and describes the perturba-
tive spontaneous decay of the excited state | A) of the NV center
into the Zeeman split states |17 ,; —1) and |15 _;+1). Inserting
a complete set of eigenstates of Hy = Hs + Hp + Hp it is
straightforward to see that in the second-order contribution
the first term Hj(t;) describes the spontaneous emission
of the circularly polarized photons while the second term
Hj(t)) describes the absorption of these photons and the
photoexcitation of the detector (along with a second-order
contribution from H 4 that yields the original state back). The
photodetection probability at time ¢ is given by [34-36]

Pp(t) = Try Z le4)ed|p(1), (3.8)
J
where the density matrix
p(1) = [V (@) (W ()], (3.9

and the trace in (3.8) is over the detector excited states.

Our goal is to describe these processes nonperturbatively
with a Wigner-Weisskopf description that incorporates both
processes at once. Guided by this perturbative analysis, we
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propose the following form of the time-dependent state in the
interaction picture:

W) = [Wa0)) 189) + [Wps(1) 10,), (3.10)

where
[Wa(2)) = Ca(r)|A)]0,)
+ Z[C,;,+(t) Mz M+ 1)+ Cp @) |1z ) — 1]
k

@3.11)

and

|Wps(0)) = Z[Dj,—(t)l — 1)+ D, )+ 1)]]ef), (3.12)
j

with the initial conditions

Ca®)=1; Cr(0=0; D;+(0)=0. (3.13)

We highlight that |Wpg(f)) describes an entangled state
between the spins and the detector.

The explicit solution for the coefficients with the initial
conditions (3.13) is provided in the Appendix.

The coefficients D; .(t) [see Eq. (A7)] determine the
photodetection probability and display the causal nature of
the propagation [31]: The detection time ¢, has to be larger
than t; = x,;/c, namely the time it takes the front of the
photon pulse to travel from the NV center to the position
of the photodetector. In the experimental setup of Ref. [19] the
photon travels along a ~2-m-long fiber to the photodetector,
therefore t; >~ 7 ns.

The photodetection probability is obtained as in (3.8), and
obviously only the state |Wp4(2)) contributes. The result is a
projected reduced density matrix for the spin-qubit subpace
| & 1), namely,

P (1) = Tra Y [ef){ef [ @ns) (Wps ()]
J

=Y UDj P+ D(+1] + |Dj ()| = 1)(—1]
J

+(Dj,+(t)D;f’_(t)| + 1){(—=1| +H.c.)], (3.14)

where the coefficients D; 4 (¢) are given in the Appendix
by (A7). We now introduce the density of states of the
photodetector D(w): For any arbitrary function of the detector
frequencies F(v;)

o Fop = / ” D(w)F(w)dw;
j >

D(w) = Y _ k7|80 — v)). (3.15)
J

With the result for D; 4(¢) given in the Appendix (A7), we
introduce

P ( t) F:F [1 _ ei(w*Qiﬁ'l’%)(tftd)]
w;t) =,/ —
* Vor  [o-Qi+il]

in terms of which the projected reduced density matrix
at the photodetection time tp in the interaction picture

(3.16)
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becomes

P9 tp) = / D(){| Fi(@: tp)*| + 1) (+1]| + | F_(w: tp)|?

X | = (=11 4+ 8" Fy(w; tp) F*(w; tp)] + 1) (1]
+H.c.}dw®(tp — tz). (3.17)

In the narrow width limit ' <« Q4 the functions Fi(w;1t)
feature sharp peaks at w = Q4 = Q2+ Aw/2; again we
assume that Aw <« €2 and consequently that 'y >~ I'_ >~ T"/2.
We also assume a broadband detector whose spectral density
is insensitive to the spectral width of the emitted photon I and
the energy difference between the | = 1) states Aw, namely
D(21) ~ D(R). In particular, the correlation function for the
broadband photodetector [34,35] is given by

Gpt—1t)= Z |c7j|2e"”‘f(t7’/)
j

o / D(w) ") dw ~ 27 D(Q) 8t — ).
(3.18)

We can now extract D(w) =~ D(£2) outside the integrals, and
using the result (2.20) we find

o0
/ Fol 1) FL (@3 tp)do
—00
m [1 _ e*iAah(fD*td) e*F(ID*fd)]

A, ’
r 1+i5

(3.19)
AWINES Qa - Qb;a,b =+, —.

Going back to the Schrodinger picture at time 7p and taking
'y =T'_ =T/2 the final result for the projected reduced
density matrix is given by

_ D) e
po(tp) = T[l —e 10|+ 1)(+1[+]| = 1){-1]
+8 I+ (=1l n(r) + Hel; t=1p—14,
(3.20)

where 71(7) is given by (2.27) with t = tp — #,.

Comparing the prefactor of this expression with the total
photon number (2.44) it is clear that the prefactor is just
describing the number of photons detected at the retarded time
tp — ty and allows the identification of D(£2) with the detection
efficiency. In the experimental setup in [19] this efficiency is
«1, thus justifying the neglect of the photon emission from
the decay of the excited states of the detector. The coherence
term has a simple interpretation: Photodetection by filtering
the linear polarizations H or V projects the spin-qubit-photon
entangled state at a time 7p into a state similar to that studied
in Sec. IT A effectively disentangling the polarization from the
spin degree of freedom leaving frequency entanglement only.
For I't > 1 the coherence is suppressed by the same factor as
in the previous case (2.26), reflecting which-path information.

This result is fully compatible with Glauber’s theory
of photodetection with an “ideal” broadband photodetector
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[34-36], where the detection probability is given by

Pp(tp) =« / D<ai<t>|EH(x*d,t>E<+>(fd,t>|oi(t>> dt
0

= l;i[l — e Mo, (3.21)

where k,k’ are constants [34] and we used Eq. (A5). Similarly,
the interference terms are given by

Pi(tp) = k f D<a+<t)|EH(x*dJ)E(“(fd,r)wf(r» dt
0

_ K/ /—F+F7 [1 _ e—iAa)r e—Fr]

—— sPo).
r [1+i42]

(3.22)

These are precisely the terms in the reduced density matrix
(3.20).

After projection of the photon state into H or V po-
larization, spin-qubit-photon entanglement is displayed by
projecting on any state of the form

|M) =%[|+1>+e“"|—1>].

This is implemented with the reduced density matrix (3.20) by
obtaining the conditional probability

(3.23)

Pyu,v(tp) = Trpp(tp)IM)(M]. (3.24)

The nonvanishing coherence in (3.20) in the basis | £ 1) leads
to oscillatory behavior of Py q,v(¢p) as a function of ¢p. For
the state (3.23) with ¢ = 0 and an H projection we find for
T=tp—t; >0

Pyp(t) _ 1 iAwtp .
D@ 2[1 e "][1 + Re(e n(@Nl;
(3.25)
T=1p— 1.

Figure 3 displays the probability (3.25) as a function of
T = tp — t, for the experimental values reported in Ref. [19]:
Aw =21 x 122 MHz; 1/T = 12 ns;t; = 7 ns.

P(1)

T (ns)

FIG. 3. The probability (3.25) for t; =7ns, Aw =27 x
122 MHz; 1/T" = 12 ns.
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This figure reveals the effect of which-path suppression of

the coherence: The asymptotic behavior of the probability is
Pyp(t > 1/T) 1 r .

D) >3 |:1 + Ao sin[Aw(t + td)]]. (3.26)
Measurementin the H or V basis results in a postmeasurement
density matrix that features coherence in the qubit basis | £ 1)
suppressed by which-path information. This coherence was
not manifest in the premeasurement density matrix because
of the orthogonality of the circularly polarized photon wave
packets.

The reduced density matrix (3.20) is similar to (2.26),
normalizing so that pp(t) = pp(r)/Trpp() it can be diag-
onalized in a new basis that differs from (2.47) and (2.48) by
the phases multiplying | — 1) and with eigenvalues

ex(t) = 3[1 £ n(0)]l,

respectively, leading to the post-photodetection von Neumann
entropy of entanglement

(3.27)

Sp(t) = =Ttpp(t) In pp(r)

= —€ei(1)lne(t) —e_(r)Ine_(r). (3.28)

This postmeasurement entanglement entropy is given by
Sro(00) in Eq. (2.51) asymptotically for I't > 1.

A. Implementing a quantum eraser

The factor 1/(1 +iAw/T) in the results (3.20), (3.22),
(2.27) reflects which-path information because it suppresses
coherence when Aw > I'. It is noteworthy that this sup-
pression remains in the final expressions even in an “ideal”
broadband photodetector a /d Glauber, which is insensitive to
the photon frequency and with a photodetection correlation
function o §(¢ — t’), as discussed above.

In the experiment in Ref. [19] Aw = 27 x 122 MHz; T" =~
1/12 ns, so that Aw/T" 9.2 and there is a strong sup-
pression of coherence because of which-path information
1/y/1+ Aw?/ T2 ~0.11. In this experiment photodetection
is carried out with a photodetector with time resolution
6t >~ 300 ps <« 1/Aw to implement a quantum eraser [32,33]
to “erase” which-path information by introducing an energy
uncertainty ~1/8t > Aw.

A simple model for such photodetector can be implemented
by modifying the interaction Hamiltonian between the detector
and the radiation field Hpg (3.1) introducing a “shutter
function” 3(t) with explicit time dependence, namely,

Hpr(t) =Y [d; - V(G 0)|ed)g?] ™" + H.c.] $(0);

! (3.29)
P=H;V,

where the only restrictions on the shutter function $(¢) are

~1 tp—96t<t<tp,

$() = 3.30
@ 0 otherwise, ( )

with the shutter interval ¢ such that
'St <« Awédt < 1. (3.31)
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This function effectively describes a shutter with a time
resolution 67 and amounts to “slicing” or time binning the
photon wave function upon detection.

A similar procedure of “chopping” the wave function in
short time intervals has also been advocated as a quantum
eraser in Ref. [24]. In Ref. [30] a phenomenological damping
term is added to the right-hand side of the equivalent of
Eq. (A4) in this reference, with the argument that such damping
term describes the coupling of the (single) excited state of
the detector atom to some reservoir. A quantum eraser is
implemented in this approach by taking the damping con-
stant y > Aw. While this phenomenological approach seems
sensible, we consider instead the model of the photodetector
with the shutter function $(¢) introduced above implemented
within an ideal broadband photodetector as follows.

The solution for the coefficients D; 1 (tp) are now given by

C-Z)' ip R . .
Dj+(tp) = _’}/_ji' / (0, 1ESY (G 0)los (1)) (1) €' d,
0
(3.32)

and the reduced density matrix elements in (3.14) become

> D ultp) D} (tp)
J

] p p
=3 / dt / dt'S(t) S(t") oy ()| E) (g, 1) P (xy 1)
0 0
x |a(1)) / D(w)e' ™ dwya,b =+, —, (3.33)

where we have used that |o4(¢)) are one-photon wave packets
and only the vacuum contributes to the intermediate state in
the correlation function of the electric field. The last term
in (3.33) is the photodetector correlation function [34,35],
which for a broadband photodetector is given by Eq. (3.18),
leading to

> D u(tp) D}, (tp)
J

=27 @ / " ar$0) (opIES iy, NESY (X, 1)0a(1))
0

~ 9y DY )2 )7
~ 2 T(Gb(lo)lEp (x4,tp)Ep (x4,tp)log(tp)) 6t,

(3.34)
where we have used the condition (3.31) so that the integrand is
constant in the interval ¢t — 8t < t < tp and vanishes outside

it. Using the result (A5) we obtain the reduced density matrix
in the Schrodinger picture,

D(Q
pp(tp) = % (I'st) e "7 O(7)

X {1+ D(+1 + | = 1) (=1

+82(1+ 1) (—1] 2% + H.c.)}. (3.35)

Remarkably, this density matrix describes a pure state, namely,

po(tp) = N(@)(e' | + 1) + 87 -1 — 1))

X (e (1] 4 87 e (—1)),  (3.36)
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Y
10)

FIG. 4. Coherent transfer of the state |M(¢)) to the ground state
|0); see Ref. [19].

with the normalization

D(Q)

N@) = — (T81) e '"O(r); t=1p—1t4. (3.37)

It is noteworthy that the quantum eraser has purified the post-
measurement reduced density matrix. This analysis confirms
the experimental results in Refs. [19,20] and bolsters the
arguments presented in Ref. [20].

In the experiment in Ref. [19] after detection the spin-qubit
evolves freely in time from #p until a time ¢ so that

pp(t) = N(@)( D[4+ 1) + 87 /2077 — 1))

x (67i9+(17r)<+1| + 8f eiig_(tir)(—lD, (338)

at which time two microwave pulses resonant with the levels
|£) are turned on and transfer coherently the state
| . .
IM(@0) = —=(@® ]+ 1) + e = 1), (339)
V2
with a fixed phase ¢ to the ground state |0), as depicted in
Fig. 4.
Now we find the total (joint) probability

Pyynv(t) = Trlpp @) M(#)) (M ()]
= A%[l +cosa(r)]; a(r) = Awt + ¢.
(3.40)

This result agrees with the joint probability quoted and
experimentally confirmed in Ref. [19] up to the overall
normalization factor and the retardation in the detection time
T =1p—14.

IV. SUMMARY AND CONCLUSIONS

In this article we have studied the dynamics of frequency
and polarization entanglement between photons and a spin
qubit from spontaneous decay in a typical A system with
nondegenerate lower levels. We addressed in detail how
which-path information affects coherence, obtained the en-
tanglement entropy for the reduced spin-qubit with frequency
and polarization entanglement and provided a unified descrip-
tion of the process of spontaneous emission and broadband
photodetection that is fully causal and makes it possible to
include a quantum eraser in a consistent manner.

The main results are the following. Beginning with the
case in which photon—spin-qubit entanglement does not

PHYSICAL REVIEW A 87, 033815 (2013)

involve polarization but only frequency, the reduced qubit
density matrix obtained from tracing out the radiation bath
features oscillatory coherence terms (in the qubit basis)
that are suppressed by which-path information by a factor
1/y/1+ Aw?/ T2, where Aw is the Zeeman splitting between
the lower spin states and I' is the linewidth of the excited
state. In the case in which the spin degree of freedom
is entangled with circularly polarized photons, the reduced
density matrix is a statistical mixture as a consequence of
the orthogonality of the polarization of the photon states.
We obtain the entanglement von Neumann entropy in both
cases and analyze their long-time asymptotic behavior. In
the case in which the spontaneous decay rate is the same
to the two lower levels, we find that Sy¢,(t) = Sy,(¢), where
Srp(t) (Syo(t)) is the entanglement entropy for frequency
and polarization (frequency only). Focusing on broadband
photodetection in the case of frequency and polarization
entanglement, we find that with an ideal photodetector that
filters photons with horizontal (H) or vertical (V) directions
the post measurement density matrix describes a mixed state
with nonvanishing coherences in the qubit basis. Despite the
broadband nature of the photodetector described by correla-
tion function od(fr — t’), the coherences display oscillatory
behavior suppressed by which-path information just as the
premeasurement density matrix in the case of frequency
entanglement.

A quantum eraser is implemented within the Glauber
model of broadband photodetection by including a shutter
function that effectively time bins photodetection with a
time resolution 8¢ so that 't <« Awét < 1, thereby intro-
ducing enough energy uncertainty to average out frequency
information. We find that photodetection with this quantum
eraser purifies the postmeasurement reduced density matrix
to a pure state. The resulting joint probability for H or V
photodetection with projection onto a a superposition of qubit
states |M (1)) = \/Lz(em*’l + 1) + €'%1el?| — 1)) is given by
(3.40) and agrees with the experimental results found in
Ref. [19].

Several aspects of the results obtained in this article suggest
possible experimental avenues. (1) The dependence on the
delay time t; = x,/c, with x; the position of the photodetector,
suggests the possibility of using several photodetectors in coin-
cidence, for example, to study interference effects or Hanbury-
Brown-Twiss correlations or as a complementary variable to
explore coherence as a function of this delay distance. (2)
Rather than implementing a quantum eraser with time-binned
photodetection, continuous photodetection should instead
produce a joint probability given by (3.25) which displays
steps in the coherent oscillations [see Fig. 3]. (3) Instead of a
quantum eraser with time resolution §t < 1/Aw one could
consider a “quantum blurrer” with a varying shutter time
resolution. This serves as a window to admit more which-path
information, thereby suppressing the coherence in a controlled
manner.

The experimental relevance of the questions studied
in this article merits further study, perhaps including al-
ternative methods such as those of quantum open sys-
tems in terms of a master equation [38,39] or “quantum
jumps” followed by density matrix resetting as advocated in
Ref. [40].
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Entanglement and quantum correlations are becoming
very important in many timely aspects of particle physics:
in neutrino oscillations [41,42] and in CP and T vio-
lation [43,44]. Recently, the entanglement of neutral B-
meson pairs produced from the (spontaneous) decay of
a Y(4S) resonance has been exploited experimentally to
unambiguously show time-reversal violation [45,46] by tag-
ging individual members of the correlated pairs. There-
fore, the interest in the dynamics of entanglement, the
emergence of spontaneous coherence, and quantum corre-
lations is transcending disciplines and clearly merits deeper
understanding.
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APPENDIX: SOLUTIONS FOR THE COEFFICIENTS
IN EQS. (3.11) AND (3.12)

The equations of motion for the coefficients in Egs. (3.11)
and (3.12) are obtained from the Schrodinger equation in the
interaction picture d|\W(¢)) /dt = —i H;(t)|W(t)) projecting on
the corresponding states.

These simplify substantially from the following properties:
H 4 is the identity in the detector space {|e;l), lg9)} and Hpg
is the identity in the N'V-center basis {|A),| &= 1)}.

The equations of motion for the coefficients C; , (¢) feature
contributions of the form '

(1z:F1: 8" | Hpr| F 1:%:0,) D +(1)

arising from the term Zj 6?7 . E(’)()'Ed,t)|gd)(e?| in Hpg(1).
Such term describes the de-excitation of the photodetector by
spontaneous emission from an excited state |¢?) in which the
NV-center states | £ 1) are passive; this term is of higher order
in dipolar couplings and under the assumption of very small
detection efficiency as is the case experimentally (see below)
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it will be neglected,’ leading to the final form of the equations
of motion

iCa(t) = (A0, | Har()I1; 3 —1) C; ()

+ (A0, [ HagO] 1z s +1) Gz (1), (A)
iCr (1) = {1z s +1Hag(DIA;0,) Ca(),  (A2)
iCp_(0) = {1z 43 —1[Hag(D]A:0,) Ca(),  (A3)

-

Dj () = —i% 0,1 ES G t)low()) €', (Ad)
where the states LUJF(t)) are given by (2.41) with (2.36)
evaluated at ¥o = 0. The solutions to Egs. (A1), (A2), and
(A3) are the same as (2.35) and (2.36). Upon inserting
these solutions in the matrix element (A4), we obtain in the
Wigner-Weisskopf approximation

. j 2(+) = e
—zﬁ Oy ESP Fgot)o5 (1)) €t
=K ;_igqf:’ el Vild pi (V=) —1a) e—%(f—ld) Ot — 1y);
JT
(A5)
Xd
tg = —,
C

where the constants «; are proportional to d;/x; with pro-
portionality coefficients that result from angular and contour
integration* and

P 1 for
-
i F1 for

P=H,

P=V. (A6)

From this result we obtain

F:t . [1 _ ei(V/fQiJrl'%)(f*[d)]
Djo(t) = ikj | =—8L ™t Ot — tg).
() = ik 56T o e ¢

(AT)

31t necessary, this contribution can be obtained from the unitarity
condition (W(#)|W(¢)) = 1.
4For details, see [34].
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