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Experimental data with digital masks and a theoretical analysis are presented for an imaging scheme that
we call time-correspondence differential ghost imaging (TCDGI). It is shown that by conditional averaging
of the information from the reference detector but with the negative signals inverted, the quality of the
reconstructed images is in general superior to all other ghost imaging (GI) methods to date. The advantages of both
differential GI and time-correspondence GI are combined, plus less data manipulation and shorter computation
time are required to obtain equivalent quality images under the same conditions. This TCDGI method offers
a general approach applicable to all GI techniques, especially when objects with continuous gray tones are
involved.

DOI: 10.1103/PhysRevA.87.033813 PACS number(s): 42.30.Va, 42.50.Ar, 42.50.St

Since the first “ghost” image was observed with entangled
photon pairs generated by spontaneous parametric down-
conversion [1], ghost imaging (GI) has become a focus of great
attention as well as contention. In this technique, two spatially
correlated beams are used to reconstruct the object image. The
object beam passes through the object and its total intensity is
collected by a “bucket” detector with no spatial resolution;
a reference beam that does not interact with the object is
measured by a pixel array detector. Various radiation sources
may be employed, including quantum optical, pseudothermal
[2], and true thermal light [3], while lensless configurations
[4] and even systems using a computer-generated thermal
field with a single bucket detector [5,6] have been demon-
strated, stirring up a fundamental debate on whether GI is
an intrinsically quantum phenomenon or whether it can be
interpreted by classical optics [7–9]. This notwithstanding,
GI displays great potential because it allows imaging of the
object in harsh environments, e.g., in a scattering medium [10]
or turbulent atmosphere [11–13], where standard imaging
methods fail. Computational GI may also be used in optical
encryption [14], as well as in ghost holography, where both
intensity and phase information may be retrieved [15]. The
disadvantage is that very long measurement times are needed,
while the visibility and signal-to-noise ratio (SNR) are low,
especially with thermal light, which are serious drawbacks
for practical applications. Although compressed sensing [16]
can be used to reduce the number of measurements required
for image reconstruction, or, equivalently, greatly improve
the image quality for the same number of exposures in
GI, the corresponding data processing time is also greatly
increased.

Recently, another method called differential ghost imaging
(DGI) [17] was demonstrated, which can dramatically enhance
the SNR of conventional GI, but again with a huge amount of
measurement data and more complex computation. Recently,
Luo and co-workers [18,19] reported a technique that they
called correspondence imaging (CI), in which a positive
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or negative image is retrieved by conditional averaging of
the reference signals; that is, only those reference data that
correspond to positive or negative intensity fluctuations of
the bucket signal are selected for simple averaging, without
the need to multiply by the bucket detector intensity itself.
Compared with conventional GI for the same number of
exposures, the processing time is greatly reduced since,
computationally, addition is faster than multiplication, while
fewer frames are required to reconstruct the images. Moreover,
the SNR of the negative image of CI is always better than that
in conventional GI, but for the positive images it depends on
the partition weighting [19].

In this paper we present another approach that we call
time-correspondence differential ghost imaging (TCDGI), in
which the advantages of DGI and CI are combined. Classical
explanations of the phenomena are presented and we show
that the image reconstructed by TCDGI can be as good as or
even better than that of DGI, but with less data manipulation
required and shorter computation times. This feature is a
definite advantage and represents a step forward towards real
practical applications.

The experimental setup, shown in Fig. 1, is a lensless GI
system. A linearly polarized 632.8-nm He-Ne laser beam is
projected onto a ground-glass disk rotating at 3 rad/min to
produce a field of randomly varying speckles, which have an
average diameter of δ0 � 20 μm. This pseudothermal light is
divided by a 50:50 beam splitter (BS) into two spatially corre-
lated object and reference beams; the former emerges from the
object with an intensity distribution of IB(xB) to be collected
by the bucket detector DB , while the latter arrives at the refer-
ence detector DR with a distribution of IR(xR), where x is the
transverse spatial coordinate and the suffixes B and R represent
bucket and reference detectors, respectively. Both beams are
collected by identical charge-coupled device (CCD) cameras
(Imaging Source DMK 31BU03), of pixel size 4.65 μm, which
are synchronously triggered by a pulse generator. The area of
the beams at the object and reference detector planes, which
are at the same distance zB = zR = 215 mm from the source,
is Abeam � 0.55 mm2 and contains Nspeckle = Abeam/Acoh �
1400 speckles, where we have taken the coherence area to be
Acoh ∼ δ2

0.
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FIG. 1. (Color online) Schematic diagram of the experimental
setup.

In the experiment, both cameras captured 1.4 × 105 frames
with an exposure time of 10−4 s. A square region in each detec-
tor array, symmetric relative to the BS, of size 160 × 160 pixels
was selected, corresponding to the size of the object, which
was a (virtual) digital mask. Two different masks of the same
size were used, one with strong black-and-white contrast and
the other with warm gray tones; their intensity transmission
functions T1(x) and T2(x) are shown in Figs. 2(a) and 5(a),
respectively. To obtain the bucket signal SB , we multiply the
matrix of the mask with the corresponding intensity values
recorded by DB , pixel by pixel, and then sum over all the
intensities in the chosen region. As in CI [19], logical filtering
is used to divide the reference signals IR(xR) into subsets that
satisfy specific conditions and the image is then reconstructed
by averaging over each subset separately, but here for TCDGI,
the condition depends on the fluctuation of the differential
signals.

Our theory adopts a classical formalism in which the shot
noise is neglected and we simply set IB (xB) = αIR(xR), where
the factor α exists because of the imbalance of the beam splitter
and detectors. In conventional GI, the image in terms of T (xR)
is obtained by the second-order correlation function of the
intensity fluctuations of two detectors [2,20]

δG
(2)
GI (xR) = 〈δSBδIR(xR)〉 � C0T (xR), (1)

where C0 = Acoh〈IR(xR)〉〈IB(xB)〉 is a constant, T (xB) de-
notes the intensity transmission function of the object, and
the bucket signal of the object arm is defined as SB =∫

IB(xB)T (xB)d2xB , δSB = SB − 〈SB〉, and δIR(xR) =
IR(xR) − 〈IR(xR)〉.

To implement DGI [17], which can dramatically enhance
the SNR, we need to define the integrated reference detector
signal SR = ∫

IR(xR)d2xR . The differential bucket signal can
be written in an operative form as S� = SB − 〈SB 〉

〈SR〉SR and the
quantity measured is

δG
(2)
16 (xR) = 〈δS�δIR(xR)〉 � C0δT (xR), (2)

in which the fluctuating part is δT (xR) = T (xR) − T and T

can be expressed as 〈SB〉/α〈SR〉.
In the CI experiment [19], all the reference frames are

divided into two subsets according to the sign of δSB :

{IR(xR)|δSB > 0}, {IR(xR)|δSB < 0}. (3)

From each of the subsets, the image is then reconstructed
merely by simple averaging. We can obtain both positive and
negative images from calculation of the conditional averages
〈IR(xR)〉+ and 〈IR(xR)〉−, respectively, which can be written
as

〈IR(xR)〉± ≡ 〈IR(xR)〉 + 〈δIR(xR)〉±
� 〈IR(xR)〉 + 〈δIR(xR)(1 ± δSB/|δSB |)〉
� 〈IR(xR)〉 ± 〈δIR(xR)δSB〉/〈|δSB |〉
� 〈IR(xR)〉 ± C0T (xR)/〈|δSB |〉. (4)

Here we have assumed that the positive and negative frames
are approximately equal in number and 〈A/B〉 � 〈A〉/〈B〉, as
in Ref. [21].

We now divide the reference CCD signals into two subsets
according to the sign of δS� = S� − 〈S�〉 = S�,

{IR(xR)|δS� > 0}, {IR(xR)|δS� < 0}. (5)

From Eqs. (2) and (4) we can thus obtain

〈IR(xR)〉diff
± � 〈IR(xR)〉 ± C0δT (xR)/〈|δS�|〉, (6)

where 〈· · ·〉diff
+ and 〈· · ·〉diff

− denote the averages of the positive
and negative subsets and correspond to the positive and
negative images of TCDGI determined by the sign of δS�.
In addition, it can be seen from Eqs. (4) and (6) that if we
normalize the average of the conditional reference intensity
after deducting the average of the reference signals, the images
that we reconstruct by CI and TCDGI are almost the same as
those in conventional GI and DGI. However, an even better
way to reconstruct the image is to average all the normalized
information from the reference detector but with the negative
signals inverted:

〈IR(xR)〉diff
+ − 〈IR(xR)〉diff

− = 2C0δT (xR)

〈|δS�|〉 , (7)

where the image is retrieved by only averaging the reference
data. Compared with DGI, the multiplication process is
replaced by a logical filter process followed by simple addition,
thus computing time is saved. Furthermore, TCDGI has a
higher SNR than that of straightforward CI, which means
that, with the same amount of data, TCDGI gives a better
image.

Next we discuss a more general scheme in which the
selection condition is modified to

{IR(xR)|δS� > k}, {IR(xR)|δS� < −k}, (8)

where k is an intensity threshold satisfying 0 � k �
max{|δS�|}. The averages of the reference signals that satisfy
the threshold conditions are

〈IR(xR)〉diff
±k± = 1

β

〈
IR(xR)

(
1 ± δSB ∓ k

|δSB ∓ k|
)〉

,

where β = Nk+/N0+ , with N0+ and Nk+ being the number
of frames satisfying δS� > 0 and δS� > k, respectively. The
expressions 〈· · ·〉diff

+k+ and 〈· · ·〉diff
−k− denote the averages of the

subsets selected by the above two threshold conditions and
±k± means plus or minus the real number greater than +k

(or less than −k). Thus a positive image can be obtained by
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIG. 2. Top row: (a) digital mask 1, (b) DGI image, (c) GI image,
and (d) CI positive minus negative image 〈IR〉+ − 〈IR〉−, all from
140 000 frames. Middle row: (e) positive TCDGI image 〈IR〉diff

+ , (f)
negative TCDGI image 〈IR〉diff

− , (g) positive TCDGI image minus
reference signal average 〈δIR〉diff

+ , and (h) negative TCDGI image
minus reference signal average 〈δIR〉diff

− , all from 69 600 frames.
Bottom row: TCDGI images obtained by 〈IR〉diff

k+ − 〈IR〉diff
−k− with

different thresholds. The numbers of frames averaged are (i) k3,
6000 × 2; (j) k2, 21 000 × 2; (k) k1, 31 500 × 2; and (l) k0 = 0,
69 600 × 2.

subtracting these two averages:

〈IR(xR)〉diff
k+ − 〈IR(xR)〉diff

−k− � C0δT
′(xR), (9)

where δT ′(xR) = δT (xR)/β〈|δS� − k|〉. In correlation imag-
ing the main time-consuming operation is the processing of all
the big matrices of the reference frames, which is unavoidable
even in DGI. In our TCDGI method, computation time is saved
not just because we only use part of the matrices, but especially
because we only need to add these matrices and then perform
one minus operation, rather than having to multiply all of
the differential bucket intensity signals one by one with the
matching reference CCD matrix and then take the average, as
in the DGI protocol. Although the same original number of
exposures must be taken and sorted, the sorting process can
be regarded as almost instantaneous. For complex grayscale
objects, which we shall study below, much more imaging
data is required, thus the advantage of less processing and
computing time is even more pertinent.

We now present the experimental demonstrations of the
above methods. In the first experiment, we used a digital
mask, which is a widely used standard in imaging processing
[see Fig. 2(a)]. To compare the quality of the images obtained
by different methods with the same standard, the grayscale
of every image is normalized within the interval [0,1]. This
is achieved by subtracting the minimum element value from
each matrix element of the image and then dividing the new
matrix by the maximum element value. Figures 2(b) and 2(c)

show the images retrieved after averaging over 140 000 frames
by DGI and GI, respectively (gray bars are provided for
comparison on the right side of each row). In Fig. 2(d) we
divide the reference frames into positive and negative subsets
in accordance with the sign of δSB in Eq. (3) as in CI and
then obtain the image by subtracting the negative average
from the positive, 〈IR〉+ − 〈IR〉−. Positive and negative images
obtained by TCDGI, where instead of using δSB the sign
of δS� is used to divide the reference signals, are shown
in Figs. 2(e) and 2(f), respectively; here 69 600 frames were
taken. Both positive and negative images are much better than
in GI, although there are still blurred striations due to the
rotation of the ground glass plate, which reflect the nonconstant
background 〈IR(xR)〉 in Eq. (4). If the number of frames is
large enough, this term will tend to a constant and the quality
will improve. However, we can eliminate the background noise
without increasing the number of measurements by directly
subtracting the total average of the reference signals to obtain
〈δIR〉diff

+ and 〈δIR〉diff
− . As we can see from Figs. 2(g) and 2(h),

the background has been almost completely eliminated and
both positive and negative images are much better and clearer
than in previous methods.

From Eq. (9) we can see that, in TCDGI, even if only part of
the reference signal is chosen according to various threshold
values, we can still retrieve relatively high quality images.
Note that there is a one-to-one correspondence between the
intensity threshold k and the number of selected frames; the
latter decreases as k increases. The TCDGI images in the
bottom row of Fig. 2 are reconstructed from different threshold
values and frame numbers, again obtained by subtracting the
negative image from the positive [see Eq. (9)]. Figures 2(i)–2(l)
are images retrieved for k3 > k2 > k1 > k0 = 0 from 6000,
21 000, 31 500, and 69 600 frames, respectively, from each
δS� > ki and δS� < −ki (i = 0,1,2,3) section. Although
Fig. 2(i) does not appear to have such good contrast as in
Fig. 2(l), it was reconstructed from only 6000 × 2 frames
as compared with 69 600 × 2. In contrast, the first smallest
black square in the top left-hand corner of the mask is quite
visible in Fig. 2(i) but almost indiscernible in Fig. 2(l). In
all cases, subtracting the negative frames always gives a
greatly improved image, with much of the background noise
removed.

To provide a quantitative comparison of the image
quality obtained by various methods, we define the SNR

0 2 4 6 8 10 12 14

x 10
4

0

0.8

1.6

2.4

3.2

4

S
N

R

Number of Frames

 

 

DGI
TCDGI
GI

FIG. 3. (Color online) The SNR vs number of reference frames.
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FIG. 4. (Color online) The SNRs of DGI and TCDGI of different
thresholds against the number of frames.

[22,23] as

(signal)

(noise)
=

∑M,N
i,j=1[T0(i,j ) − T 0]2

∑M,N
i,j=1[T (i,j ) − T0(i,j )]2

, (10)

where T0(i,j ) and T (i,j ) are the transmission matrices of the
object mask of size M × N and the retrieved image, respec-
tively, and T 0 = (MN )−1 ∑M,N

i,j=1 T0(i,j ). Generally speaking,
we would expect the SNR to improve with the number of
reference frames averaged over. The SNRs corresponding to
k3, k2, and k1 in Figs. 2(i), 2(j), and 2(k) are 2.12, 3.21, and
3.24, respectively. However, for a fair comparison, we should
calculate the SNR for the same k value. In Fig. 3 we plot the
SNR versus the number of exposures for a threshold value of
k = 0. We see that the SNRs of DGI (asterisks) and TCDGI
(pluses) are almost the same and both are better than that of GI
(circles), which is in good agreement with the results predicted
by our theory. The highest points measured by DGI, GI, and
TCDGI correspond to the images in Figs. 2(b), 2(c), and 2(l),
respectively.

To demonstrate the advantages of TCDGI, the SNRs for
different thresholds against the number of frames are given
in Fig. 4. It is evident that as the threshold k increases, the
SNR increases faster, but is limited by the number Nk+ of
reference frames available for averaging. As the computational

(a)

(b) (c) (d)

(e) (f) (g)

FIG. 5. (a) Digital mask of Lena. Top row: DGI images from
(b) 140 000, (c) 71 000, and (d) 8000 frames. Bottom row: TCDGI
images from (e) 69 000 × 2, (f) 35 400 × 2, and (g) 3800 × 2 frames
for k = 1, 2, and 3, respectively.

TABLE I. SNR of the images in Fig. 5.

Mask DGI TCDGI

5(a) 5(b) 5(c) 5(d) 5(e) 5(f) 5(g)
∞a 2.10 1.95 0.75 2.43 2.49 1.65

aSNR of the mask is infinite, in accordance with Eq. (10).

time is approximately proportional to the number of frames,
our TCDGI method is able to retrieve an image of better quality
than DGI but with much less data manipulation and computing
time. It is interesting that the SNR curves all exhibit some slight
oscillations, as also observed in Ref. [15]. To our knowledge,
this is partly due to experimental errors and partly because the
information in the CCD matrix frames is actually redundant
for retrieving the object.

So far there are few GI experiments on objects with
continuously changing gray tones due to the immense number
of exposures required. The mask that we used in the second
experiment is the well-known photo of Lena that is widely used
in traditional image processing tests. The images obtained by
different methods are shown in Fig. 5 and their corresponding
SNRs are in Table I. We can see clearly that, for the same
number of frames, the images retrieved by DGI (top row) are
inferior in quality to those retrieved by TCDGI (bottom row).
Moreover, with only 7600 exposures, we can still distinguish
the TCDGI image in Fig. 5(g), while the DGI image from
8000 frames [Fig. 5(d)] is almost drowned in the noise. It is
interesting that the maximum SNR value of 2.49, obtained by
TCDGI (1.95 for DGI), is not given by the highest number
of exposures [69 000 × 2 in Fig. 5(e), which has an SNR
of 2.43] but by 35 400 × 2 exposures [Fig. 5(f)]; the reason
for this, however, is unclear at present and deserves further
analysis.

In conclusion, we have presented an imaging technique
called time-correspondence differential ghost imaging by
which we can retrieve the image of an object through
conditional averaging of the spatial intensity together with
inversion of the negative signals, using only the reference
detector data. This method can dramatically enhance the SNR
compared with conventional GI and CI, especially for objects
with rich gray tones. Moreover, under the same conditions but
with the appropriate choice of threshold values, the retrieved
image can be better than DGI, while being simpler to process
and requiring less data manipulation and computing time. It is
shown that the major contributions to the retrieved image come
from the exposures with the largest intensity fluctuations. We
believe that this technique, which combines the advantages
of CI and DGI, may become a standardized method in real
applications where conventional imaging and GI protocols do
not work well.
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