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Quantum orbital angular momentum of elliptically symmetric light
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We present a quantum-mechanical analysis of the orbital angular momentum of a class of recently discovered
elliptically symmetric stable light fields—the so-called Ince-Gauss modes. We study, in a fully quantum
formalism, how the orbital angular momentum of these beams varies with their ellipticity, and we discover
several compelling features, including nonmonotonic behavior, stable beams with real continuous (noninteger)
orbital angular momenta, and orthogonal modes with the same orbital angular momenta. We explore, and explain
in detail, the reasons for this behavior. These features may have applications in quantum key distribution, atom
trapping, and quantum informatics in general—as the ellipticity opens up an alternative way of navigating the
spatial photonic Hilbert space.
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I. INTRODUCTION

The study of the orbital angular momentum (OAM) of
stable light modes is a newly burgeoning field. Since the
seminal paper by Allen et al. [1], research in this field has
accelerated. Interest has been driven by the promise of access to
higher-dimensional Hilbert spaces (especially larger alphabet
quantum key distribution and secure bit commitment [2–4]),
potential probes of heretofore hidden phenomena (even astro-
nomical events [5]), metrology [6], use in micromechanics [7],
and perhaps most importantly the insight that the study of
OAM provides into the fundamental properties of light fields
themselves. Especially illuminating is the investigation of the
quantum aspects of OAM-carrying light modes. Such beams
have even been entangled in their orbital angular momentum
degree of freedom [8–11].

When a light field is in the paraxial regime, the total angular
momentum of the classical electromagnetic field separates
out into the spin and orbital components [12]. A similar
decomposition exists in a fully quantum operator formalism:
Ĵ = L̂ + Ŝ for both vector and scalar fields, where Ĵ, L̂,
and Ŝ represent the total, orbital, and spin angular momenta,
respectively [13,15]. Thus these beams may be said to have
a well-defined OAM. The spin angular momentum (SAM) is
familiar in its manifestation as the polarization of the light
(right circular carrying +h̄ SAM, left circular carrying −h̄).
This has been known since 1909 [16] and was observed
experimentally in 1936 [17]. When an SAM-carrying beam
is absorbed by a particle, the particle is made to spin about an
axis defined by the particle’s own center of mass.

The OAM of a light field is a result of the overall transverse
phase structure of the beam. A particle absorbing OAM is made
to rotate about the central axis of the light beam itself—hence
the term “orbital” (see, for example, Ref. [18]). An individual
photon may carry lh̄ units of OAM, where l may take any
integer value. All results calculated in this paper are per photon.

There are many classes of paraxial beams, each with their
own unique properties. Two of the most familiar are the
Laguerre-Gauss (LG) and the Hermite-Gauss (HG), which
are the natural solutions in circular-cylindrical and Cartesian
coordinates, respectively. In this paper, we study the OAM

properties of a recently discovered class of light fields, called
the Ince-Gauss (IG) beams [19,20]. These beams display
elliptic-cylindrical symmetry. Interestingly, they become LG
modes in the limit of zero-coordinate-system ellipticity, and
HG modes in the limit of infinite ellipticity. They are, in
a sense, fundamental to these other light fields as they are
generalizations existing in a larger mathematical space, the
others being specific cases. Although all three types of beams
exist in the same Hilbert space (and all three in fact span it),
the IG modes are a more intuitive way to navigate through
this space, as the transition between the various stable modes
is controlled by a continuous real parameter which has a
straightforward meaning in terms of the shape of the transverse
beam profile. Generation of IG modes of light is readily
possible with a variety of methods, including with diode lasers
and resonating cavities [21–24], and—most practically—with
spatial light modulators [25], devices which are becoming
increasingly common in optics labs due to their great utility.
In a recent experiment, entanglement was generated between
two IG modes [26].

Especially intriguing are the quantum properties of the
OAM of these light fields, the study of which shall be the
focus of this paper. We will find that the Ince-Gauss modes
of light possess several compelling and unique properties:
They offer some new insights into the nature of the orbital
angular momentum of light and potentially present some new
technological applications.

As we shall explain, the formalism we present is applicable
to the most broad class of Gaussian-elliptical beams, including
modes which are generated intentionally and also elliptic
deviations from the LG and HG modes. This gives our research
relevance for a wide spectrum of experimental endeavors.
Furthermore the quantum formalism we employ is not only
the most correct and fundamental approach but is also far
more computationally efficient than classical methods. The
second quantized approach also allows an interpretation of the
results not available classically: Ince-Gauss beams possess a
fractional amount of OAM per photon (photons being purely
quantum objects without a good classical description).

In the next section, we briefly review the field of elliptical
beams as a whole, with specific emphasis on those elements

033806-11050-2947/2013/87(3)/033806(9) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.87.033806


PLICK, KRENN, FICKLER, RAMELOW, AND ZEILINGER PHYSICAL REVIEW A 87, 033806 (2013)

which are essential for the study of the orbital angular
momentum of these modes. In Sec. III, we recall those parts
of the established literature we require, and then we proceed
to the derivations and discussions which compose the main
conclusions of this paper. We conclude in Sec. IV with a brief
overview and prospectus.

II. THE INCE-GAUSS MODES

For the convenience of the reader, we present here a brief
overview of the derivation of the Ince-Gauss modes. Further
and more detailed information on the classical properties of
these fields may be found in Ref. [20]. Much of this section
can be bypassed by those who have a strong familiarity with
the field.

The paraxial wave equation (PWE) describes light modes
for which the small-angle approximation is valid. The version
for scalar fields is written as(

∇2
T + 2ik

∂

∂z

)
�(�r) = 0, (1)

where k is the wave number, ∇2
T is the transverse Laplacian,

and �(�r) is the scalar field as a function of position. It is
worthwhile to note that since we have chosen to look at scalar
fields, we are restricting ourselves to a subset of the possible
stable light modes. Vector beams (where polarization need
not be constant) can exist as well and they have interesting
properties; see, for example, Ref. [27]. It should be pointed
out that there is a long-known equivalency between the PWE
and nonrelativistic quantum mechanics with one space variable
(here z) taking the place of time and the wave number taking the
place of Planck’s constant in the time-dependent Schrödinger
equation [28,29]. This means that all results derived can be
applied equally well to matter waves, i.e., time-dependent
solutions of the Schrödinger equation for a single particle.
Even though this equivalency is neither new or novel, it is
worth mentioning briefly. We wish to find the solution to the
PWE equation in the elliptic coordinate system. We can assume
there is a solution of the form

IG(�r) = E(ξ )N (η)eiZ(z)ψG(�r). (2)

These are the trial Ince-Gauss solutions to the PWE, where �r is
a general position vector. The elliptic coordinates ξ , η, and z are
related to Cartesian coordinates by x = f (z) cosh ξ cos η, y =
f (z) sinh ξ sin η, and z = z. The function f (z) is the semifocal
separation at position z. It is given by f (z) = f (0)w(z)/w(0),
where w(z) is the beam width as a function of z, given by

w(z) = w(0)

√
1 + 4z2

k2w2(0)
. (3)

The point z = 0 is defined as the point where the beam
waist is at a minimum. The function ψG is the fundamental
Gaussian beam. It is given by

ψG(�r) = w(0)

w(z)
exp

[ −r2

w2(z)
+ i

kr2

2R(z)

]

×
[

− iarctan

(
2z

kw2(0)

)]
, (4)

where r is the radial circular-cylindrical coordinate and
is related to the elliptic-cylindrical coordinates by r =
f (z)

√
cosh2 ξ cos2 η + sinh2 ξ sin2 η. The function R(z) is

the radius of curvature of the phase front, and is given by
R(z) = z + k2w4(0)/4z.

Inserting Eq. (2) into Eq. (1) results in three separate
differential equations for E(ζ ), N (η), and Z(z):

d2E

dξ 2
− ε sinh(2ξ )

dE

dξ
− [a − pε cosh(2ξ )]E = 0, (5)

d2N

dη2
− ε sin(2η)

dN

dη
+ [a − pε cos(2η)]N = 0, (6)

−
(

4z2 + k2w4(0)

2kw2(0)

)
dZ

dz
= p, (7)

where a and p are separation constants. The variable ε

represents the ellipticity of the coordinate system and is
defined as ε = 2f 2(0)/w2(0). Equation (6) is known as the
Ince equation. It can be transformed into Eq. (5) by making
the substitution η → iξ . The Ince equation was studied by
Edward Lindsay Ince in 1923, who produced the eponymous
solutions [30]. Equation (7) merely adds an additional phase.
From now on we shall take z = 0 for the sake of clarity.
The solutions to these differential equations are known as the
Ince-Gauss beams [19,20]. They are given by

IGe
pm(�r,ε) = CCpm(iξ,ε)Cpm(η,ε)exp

[ −r2

w2(0)

]
,

(8)

IGo
pm(�r,ε) = SSpm(iξ,ε)Spm(η,ε)exp

[ −r2

w2(0)

]
,

where e and o label the even and odd modes, respectively; C
and S are normalization constants. The functions Cpm and Spm

are the even and odd Ince polynomials, which are found by
first assuming they are of the form

C2K,2n(η,ε) =
n∑

r=0

Ar (ε) cos(2rη), (9)

C2K+1,2n+1(η,ε) =
n∑

r=0

Ar (ε) cos[(2r + 1)η], (10)

S2K,2n(η,ε) =
n∑

r=1

Br (ε) sin(2rη), (11)

S2K+1,2n+1(η,ε) =
n∑

r=0

Br (ε) sin[(2r + 1)η], (12)

where K may take any value from 0 to n [except for Eq. (11),
which may take any value between 1 and n]. Substituting
these expansions into Eq. (6) results in a series of recurrence
relations for the weighting constants Ar and Br , which can
be expressed as the kernel of the characteristic equation of
some matrix M , defined via those recurrence relations. The
separation constant, a, then takes the role of the eigenvalues.
For each of the m values of am (where the m’s label the
values a may take in ascending order), there is an associated
eigenvector of M which defines the specific values of the
weighting constants.

So, after the choice of p and m (which are restricted to
having the same parity—that is, both even or both odd—and
m � p), the associated eigenvalue problem may be solved,
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giving a specific Ince polynomial for use in the Ince-Gauss
equation. The restriction on the parity comes about as a matter
of convention, ensuring that the number of possible m’s—for
a given choice of the parity of the full polynomial and the
value of p—matches the dimension of M . The mode numbers
p and m are known as the order and degree, respectively. The
degree of the beam is equivalent to the number of hyperbolic
nodal lines (zeros in the transverse field). The order and degree
together give the number of elliptic nodal lines according
to the relation (p − m)/2 + δ, where δ is 1 for odd modes
and 0 for even modes. In the limit of zero ellipticity, the
IG modes become the even and odd LG beams [with an
azimuthal dependence of cos lφ for even and sin lφ for odd,
as opposed to the typical exp(ilφ) dependence] with l = m

and n = (p − m)/2, where l is the topological charge of the
central vortex and n is the radial number. A vortex is a point
in the transverse phase profile of a beam about which the
phase pattern cycles from 0 to 2π a number of times equal
to the “charge” of that vortex. At the center of the vortex is
an undefined point in the phase profile of the light beam,
associated with a zero in the intensity pattern—called an
optical singularity. Laguerre-Gauss modes with an exp(ilφ)
azimuthal dependence contain a central vortex. In the limit
of infinite ellipticity, the IG modes become HG beams with
nx = m and ny = p − m for even parity of the IG mode and
nx = m − 1 and ny = p − m + 1 for the odd modes. The root
of these conversion equations is that the modes involved must
all have the same Gouy phase in order to be stable, otherwise
the overlap integrals are zero [19,20].

The IG beams are also known to be stable resonating modes.
For a more detailed analysis of the classical properties of the
IG beams, the interested reader is directed to Ref. [20].

III. PROPERTIES OF THE INCE-GAUSS BEAMS

The ellipticity of the beam, specifically its relationship to
the OAM, will be the primary focus of this paper. Thus it is
worthwhile to briefly look at how the ellipticity affects the
beam. The specifics of how the beams change as the ellipticity
is varied is a function of the chosen mode numbers. However,
generally speaking, as ε is increased, the transverse intensity
profile elongates along the horizontal axis. Meanwhile for
helical modes (those modes of the form IGe

pm ± iIGo
pm and

which carry OAM; we will discuss this further shortly), the
central vortex splits into a number of vortices equal to m,
and as ε is increased further, new vortices may be created in
the outer rings of the pattern. Interestingly, for these modes
the vortices are all associated with a topological charge of
1. The extremal, on-axis, vortices exist at the focal points of
the elliptic coordinate system defined by ε. See Fig. 1 for a
visualization of the even, odd, and helical Ince-Gauss modes
for various ellipticities and p = 5, m = 3.

While all three types of modes (even, odd, helical) have
intensity zeros, only the helical modes have phase vortices.
It is also interesting to investigate the properties of the phase
profile of the IG modes as they propagate through space. In
Fig. 2, we depict the equal phase surfaces, φ = 0, as a helical
Ince-Gauss (HIG) mode travels in the z direction. The mode we
depict—HIG22, with ε = 2—contains two phase singularities
which remain at the same coordinate position while the equal
phase lines “swirl” around them. We also show the full phase
profile for nine different points along the propagation length.
Classically, the orbital angular momentum can be seen as a
result of the local phase gradient. From Fig. 2 it is easy to
see how the complex phase profile of HIG beams gives rise

FIG. 1. (Color online) A visualization of the transverse intensity profiles of the even, odd, and helical Ince-Gauss modes for various
ellipticities and p = 5, m = 3. Notable is the vortex splitting and creation in the helical modes as the ellipticity increases. In the ε = 0 limit,
for the helical mode, we arrive at a LG mode, and in the ε = ∞ the IG modes become the helical hermite Gauss modes. For an excellent
visualization of intensity profiles side-by-side with their phase profiles, see, for example, Ref. [20].
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FIG. 2. (Color online) The left-hand side depicts a helical Ince-Gauss mode’s surfaces of constant phase (φ = 0) as it propagates through
space. The mode shown is HIG22, with ε = 2. The right-hand side depicts the transverse phase profiles at 12 different points along the
propagation length. The second through sixth of these positions are also contained within the phase-surface picture. In the second and last
pictures, red arrows mark the positions of the topological-charge-carrying phase singularities. These points remain stationary with respect to
the foci of the elliptic coordinate system, although the coordinate system itself expands as the beam propagates, in the same manner as the
fundamental Gaussian. The equal-phase lines are seen to “swirl” about the two phase singularities.

to interesting OAM features. In the following section, we will
begin the quantum analysis.

The Ince-Gauss equations, like the Laguerre-Gauss equa-
tions, span the space of solutions to the PWE. As such, any
solution to the PWE may be decomposed into the Ince-Gauss
basis. Here the ellipticity is also significant since each value it
may take defines a full Hilbert space. For IG beams with the
same mode numbers, the sets of orthogonal vectors which span
these spaces may be transformed into each other by rotations
through the Hilbert space defined by the choice of ellipticity.
The Ince-Gauss equations also have the familiar and useful
property that they are orthonormal,∫

2D
dS IGσ∗

pmIGσ ′
p′m′ = δσσ ′δpp′δmm′ , (13)

where σ labels the parity and the integration takes place over
the two-dimensional transverse plane. Note that IG beams with
different ellipticities are typically not orthogonal, however
there are some instances in which they are.

Since the Laguerre-Gauss modes also span the space of
the solutions to the PWE, it is possible to decompose the
Ince-Gauss modes into this more familiar basis. Doing so
is advantageous as the quantum orbital angular momentum
(OAM) properties of the Laguerre-Gauss modes are well
known. The decomposition is given in Refs. [19,20] as

IGσ
pm =

∑
n, l

Dσ
nlLGσ

nl, (14)

where the Dnl’s give the weights of the Laguerre-Gauss
expansion. The required terms are given by the restriction that
p = 2n + l (again, a requirement that comes about because
the modes involved must all have the same Gouy phase to be
stable), meaning that which LG beams are needed depends only

on the mode number, whereas the weights, D, are dependent
on the ellipticity. The parity of the Laguerre-Gauss modes
must match the parity of the Ince-Gauss beam. The weights
come from the overlap integrals between the IG and LG modes
(which are zero if the Gouy phases differ) and are given by

Dσ
nl = D(−1)n+l+(p+m)/2

×
√

(1 + δ0l)(n + l)!n!F(l+δσo)/2, (15)

where F(l+δσo)/2 is the [(l + δσo)/2]nd Fourier coefficient of the
Ince polynomial [that is, the Ar ’s and Br ’s of Eqs. (9)–(12)]
associated with the beam, which is strongly ε-dependent.
The normalization constant D is found by requiring that∑

n, l D
2
nl = 1. To give a simple example, for IGe

22 we have
the decomposition

IGe
22 = 1√

2
√

1 + ε2 − √
1 + ε2

× [
εLGe

02 + (1 −
√

1 − ε2)LGe
10

]
. (16)

For higher mode numbers, the decompositions quickly
become too large to report for general ellipticity. The important
point to make here is that the equations are analytic.

IV. QUANTUM ORBITAL ANGULAR MOMENTUM
OF INCE-GAUSS BEAMS

In this section, we draw upon some previously derived
formalism from the field of the orbital angular momentum of
light to develop a general method for analytically calculating
the OAM of an Ince-Gauss photon with general mode numbers
and ellipticity. The formalism is fully quantum.

The quantum theory of photons in Laguerre-Gauss modes
is known [13]. The creation operator for a photon in a
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Laguerre-Gauss Fock state may be written as

â
†
snl(k0) =

∫
d2 �q LGnl(�q)â†

s (�q,k0), (17)

where s labels the polarization mode (which may take values of
+1 or −1), �q is the transverse momentum vector, (LGnl)4(�q)
is the Fourier transform of the Lageurre-Gauss mode as a
function of �q, and k0 is the wave number of the forward-
propagating plane wave. The annihilation operator is similarly
defined, and they have the standard commutation relationship

[âsnl(k0),â†
s ′n′l′(k

′
0)] = δss ′δnn′δll′δ(k0 − k′

0). (18)

Since the Laguerre-Gauss modes span the space of the
solutions to the PWE, any paraxial one-photon state may be
written as

|ψ〉 =
∑
s,n,l

∫ ∞

0
dk0Csnl(k0)â†

snl(k0)|0〉. (19)

The function Csnl(k0) weighs the various modes and needs
to be normalized. We can write the result of the creation
operator acting on the vacuum as |L±

nl〉 ≡ â
†
nl(k0)|0〉, where

the plus and minus indicate the sign of l; as a subscript in a
state vector, we will always write l as positive. This represents
a Laguerre-Gauss mode in a single-photon number state.

It is also possible to write observables for the spin and
orbital angular momentum properties of a photon in a paraxial
mode:

L̂z = h̄
∑
s,n,l

l

∫ ∞

0
dk0â

†
snl(k0)âsnl(k0), (20)

Ŝz = h̄
∑
s,n,l

s

∫ ∞

0
dk0â

†
snl(k0)âsnl(k0). (21)

The quantum Laguerre-Gauss Fock states, |L±
nl〉, are the

eigenvectors of the OAM operator L̂z, where l can take any
integer value.

Now, we have the tools necessary to study the quantum
properties of the orbital angular momentum of Ince-Gauss
modes of light, and to begin to derive the main results of this
paper. The first step is to take the helical Ince-Gauss beams—
those that are of the form HIG±

pm = 1/
√

2(IGe
pm ± iIGo

pm) and
carry orbital angular momentum—and decompose them in
terms of the Laguerre-Gauss modes.

Before doing this, we need to write the quantum Laguerre-
Gauss modes in terms of even and odd modes, as opposed to
the helical modes, in which they are typically written∣∣Le

nl

〉 = 1√
2

(|L+
nl〉 + |L−

nl〉), (22)

∣∣Lo
nl

〉 = 1

i
√

2
(|L+

nl〉 − |L−
nl〉). (23)

Using Eq. (20), we can write the action of the orbital angular
momentum operator on these modes as

L̂z

∣∣Le
nl

〉 = l√
2

(|L+
nl〉 − |L−

nl〉) = ih̄l
∣∣Lo

nl

〉
, (24)

L̂z

∣∣Lo
nl

〉 = l

i
√

2
(|L+

nl〉 + |L−
nl〉) = −ih̄l

∣∣Le
nl

〉
. (25)

Now, writing the quantum even (or odd) Ince-Gauss modes
as superpositions of the even (or odd) Laguerre-Gauss modes

in the same manner as the classical decomposition, and
combining them to make the helical modes, we have

|I±
pm〉 = 1√

2

(∑
n,l

De
nl

∣∣Le
nl

〉 ± i
∑
n′,l′

Do
n′l′

∣∣Lo
n′l′

〉)
, (26)

where, due to the direct correspondence between the PWE and
quantum physics, the D’s are the same as from Eqs. (14) and
(15). It should be noted that OAM is always defined relative
to a given axis. We use a decomposition of LG modes with a
central optical vortex, therefore the value we calculate will be
with respect to the central beam axis. It is then straightforward
to calculate the expectation value of the quantum OAM as a
function of these expansion coefficients,

〈L̂z〉 = ±
∑
n,l

h̄lDe
nlD

o
nl. (27)

Note that this equation is not a direct average of the �
modes comprising the LG decomposition. This is due to
the fact that OAM can be understood as arising from the
gradient of the transverse phase structure of the beam. Phase
is a result of taking the argument (the angle of the polar
representation of complex functions) of the beam. Argument is
not a linear function, thus the OAM may not be reconstructed
with weighted averages over the known values of the LG OAM
and other methods must be used, such as the one we present
here. Confusion may arise because computation of the OAM
by averaging is possible for diffraction-free beams in the far
field [14]. To calculate the above coefficients, we must solve
the eigenvalue problem associated with the Ince polynomials.
These problems become rapidly nontrivial for increasing p

and m, especially if we wish to allow general ellipticity. A
MATHEMATICA program was specifically written to perform
this task. For general ellipticities, the equations become far
too large to report here.

The equations, though large, are analytically computable.
A main feature that is immediately apparent is that—unlike
the LG modes—the OAM is not restricted to integer values.

Previously, fractional orbital angular momentum light
beams have been studied, even using a quantum formalism
[31,32]. However, this treatment studies fractional states
created by generalizing the spiral phase patterns, used to create
LG modes, to noninteger phase-step heights. These beams
do not necessarily display the symmetries and resonating
characteristics of stable beams (although a subclass does).
It is interesting to note that this procedure requires an
additional real parameter as well—the angle at which the phase
discontinuity exists—perhaps parametrizing the space in an
analogous way to the ellipticity of the Ince-Gauss beams.

It is worthwhile to point out that there exists an even
more general class of solutions to the paraxial wave equation
in elliptic coordinates—the so-called general elliptic beams
described in Ref. [34]. The “standard” Ince-Gauss modes
that are the subject of this work are a special case of these
more general elliptical beams. The more general solutions
may be recovered by taking some parameters assumed to
be real (specifically the ellipticity of the coordinate system
ε and the radial number p) and allowing them to take complex
values—and also not assuming that the second complex beam
parameter is the conjugate of the first complex beam parameter
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(i.e., that the beam waist and radius of curvature are real).
Further details on the transformation are available in the
reference. Fractional OAM exists in other beams as well, such
as helical Hermite-Gauss beams [33] and others.

Our results apply equally well to these most general
elliptical beams. This is due to the fact that the transformation
laws between the complete basis of general elliptical beams
and the complete basis of Laguerre-Gauss beams are the same
as those between the standard Ince-Gauss and the Laguerre-
Gauss—given that the relevant quantity is the overlap integral
between the Ince polynomials and the Laguerre polynomials.
Thus, given the substitution of the relevant quantities, our
formalism extends to these solutions of the paraxial wave
equation.

In the same vein, an important distinction must be made
between the elliptical beams we utilize in this paper and ellipti-
cally shaped modes arising from a general astigmatism [35,36].
Astigmatic modes are based on a fundamental Gaussian that
is itself already elliptical. Higher-order astigmatic beams are
also possible, based on this fundamental mode. The modes
we describe are different due to the fact that they are based
on a circular-symmetric fundamental Gaussian. Since the
astigmatic modes also comprise a complete set of solutions to
the paraxial wave equation, there should exist transformation
laws between them—though we are not aware of whether
or not they have yet been described. Despite the superficial
similarity, astigmatic modes and elliptical modes belong
to different mathematical categories. Astigmatic Ince-Gauss
modes should also be possible, though they are not the subject
of our work. However, we do suggest that their investigation
would be of significant interest.

Though only the LG modes are eigenmodes of the orbital
angular momentum operator, this is by construction. We
conjecture that there is no obstacle in principle to writing an
elliptic OAM operator in a fully second quantized formalism,
which has as its eigenmodes the IG fields. The mathematical
complexity required to do this for general ellipticity, however,
makes this a nontrivial task, and it presents an interesting
avenue for future work. We surmise that such an operator’s
eigenvalues would present as real numbers (not necessarily
integers) when converted to the circular-cylindric coordinate
system, that is, the values we calculate here. Likewise,
the eigenvalues of the traditional (circular-cylindric) OAM
operator would exist as noninteger average values in the
elliptic basis. Independent of coordinate choice would be
the type, number, and distribution of the optical vortices
present in the beam. Thus, further study of the nature of
optical vortices themselves seems to be promising—with
the Ince-Gauss modes arising as a natural test-bed for such
investigations.

Figure 3 shows the orbital angular momentum of four
quantum IG modes, with the same degree number and different
order numbers, as a function of the ellipticity of the beam.

Several interesting features are immediately apparent. First,
it is clear to see the convergence on the LG modes with a
topological charge of 2 as ε → 0, and the divergence into
several different HG modes as ε → ∞. For each beam, a wide
spectrum of OAM values is available continuously for stable
beams. In other words, the OAM of a stable beam may be
tuned by adjusting the ellipticity.

FIG. 3. (Color online) The orbital angular momentum of four
IG modes |I+

pm〉, with the same degree (second mode number: 2)
and different order (first mode number: 2, 4, 6, 8), as a function of
the ellipticity of the beam. Also shown are the transverse intensity
profiles of the associated beams with ε = 2. This graph highlights
the real continuous (noninteger) nature of the OAM as a function of
the ellipticity and the “turning points” of minimum OAM. A more
in-depth discussion of this behavior is contained in the text.

Also of note in Fig. 3 is the fact that the OAM does not
change monotonically as the ellipticity increases. There are
“turning points” of minimum OAM. There is an intriguing
semiclassical treatment of a related class of beams—Mathieu
beams—where a similar phenomenon is studied [14]. Mathieu
beams are generalizations to elliptical coordinates of Bessel
beams (though it should be noted that both can be thought
of as IG beams in the appropriate limit [34]). In Ref. [14],
they also find similar turning points as the ellipticity of the
beam is varied. Note that they appear in proximity to a “critical
value” where new optical vortices begin to appear. This effect is
seen again with “ellipticons,” which are elliptical, self-trapped
beams which can exist in highly nonlinear, nonlocal media.
These objects are also described by the same equations as the
IG beams [37]. A numerical, semiclassical treatment of these
beams reveals turning points as well. It is important to point out
that the method for deriving the OAM of a beam classically
relies on an integration over the entire phase profile of the
beam, a more mathematically intense process than the one
we present here—especially in the case of general ellipticity.
Further research in this direction may shed more light on the
relationship between OAM and optical vortices [38].

We posit that the initial decrease in the OAM of the beam
(for those beams which exhibit this behavior) is due to the
topological charge-carrying vortices moving apart. As they
do so, the torque each vortex exerts is partially counteracted
by its neighbors, since in the region between any two in-
line vortices the torques work against each other. This effect
is most apparent in Fig. 4. For those modes with a higher
degree (second mode number), the initial drop-off in OAM is
more dramatic since the initial central vortex splits into more
vortices along the semimajor axis of the coordinate system as
the ellipticity increases. See, for example, mode |I+

77〉, which
has a steep drop-off. Conversely, modes with lower degree
experience less drop-off. See, for example, |I+

71〉, which has no
drop-off due to the fact that there is only one on-axis vortex.
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FIG. 4. (Color online) The orbital angular momentum of four
quantum IG modes, with the same order [first number (p): 7] and
different degrees [second number (m): 1, 3, 5, 7], as a function of
the ellipticity of the beam. To the left of the y axis are shown the
transverse intensity profiles of the associated beams with ε = 2. This
graph highlights the fact that the OAM curves of different IG modes
can cross. The middle insets show the transverse intensity profiles of
two beams when they cross (top: |I+

77〉, bottom: |I+
75〉), with arrows

pointing to the crossing point. To the right of the graph is shown the
intensity profiles of two IG modes as they reach the limit of infinite
ellipticity—becoming the same mode under a 90◦ rotation. As this
occurs, both modes converge on the same OAM value.

The subsequent increase in OAM for some modes as the
ellipticity increases further is a result of the creation of off-axis
vortices in the beam as the elipticity increases. The turning
points can be seen when the effect of this process on the OAM
begins to dominate over the effect of the on-axis vortex spread.
For the extremal cases—|I+

77〉 and |I+
71〉—there are no turning

points as one effect or the other is absent.
Figure 4 also highlights more clearly another interesting

property of the OAM of Ince-Gauss modes, namely the fact
that the OAM curves of different IG modes can cross. This
results in orthogonal modes with the same OAM at specific
values of the ellipticity. This is in contrast to the LG modes
where, due to the radial number not affecting the OAM, there
may be an infinite number of modes with the same (integer)
OAM.

The crossings are due to the fact that the two effects,
discussed in the paragraph above, affect different modes to
different extents, allowing the OAM curves to cross. For
example, the |I+

75〉 mode crosses through the |I+
77〉 mode as

the former becomes more affected by off-axis vortex creation,
whereas the latter is not affected by this process at all.

Figure 4 also shows the convergence of two separate IG
modes (here, |I+

77〉 and |I+
71〉) on the same OAM value in the

infinite limit as they become helical HG beams. The reason
for this convergence can be easily demonstrated by examining
the intensity distributions in the infinite limit (also depicted
in Fig. 4). The beams are identical under a 90◦ rotation,
thus the orbital angular momentum (being invariant under
overall rotations) approaches the same value. These types
of beams—hermite-Gauss modes carrying OAM—have been
studied before and dubbed the “helical Hermite-Gauss” modes.
They have many interesting properties; for more information
on them, see Ref. [33]. These two intensity diagrams also again
demonstrate well the two processes (discussed previously)

that affect OAM as ellipticity is varied. The |I+
77〉 mode

only experiences on-axis vortex separation, leading to a
monotonically decreasing OAM and a horizontal line of phase
vortices. In contrast, the |I+

71〉 only experiences off-axis vortex
creation, leading to a monotonically increasing OAM and a
vertical line of phase vortices.

Interestingly, these convergences do not occur in the other
widely studied elliptical beams—the Mathieu-Gauss beams—
as the ellipticity approaches infinity.

V. INTERACTIONS WITH PHYSICAL SYSTEMS

Now, we address the question of how OAM transfers to
systems with which the IG light field interacts. In short,
the answer is as follows: What OAM is detected depends
strongly on what composes the observing system. Consider
the following cases: (a) a large, rigid physical object which
interacts with the entire beam, (b) a free-particle exterior to
the system of vortices, (c) a free particle in close proximity
to one of the vortices, and (d) a device which performs a
projection in the IG basis. An example would be a spatial
light modulator, which is set to transform a specific mode
into a Gaussian mode, which then either does or does not
couple into an optical fiber, depending on whether the mode
matches.

(a) The object would interact with the entire phase profile of
the beam and pick up an angular momentum equivalent to the
expectation value of the OAM per photon. This could also be
seen as the object experiencing a torque from each singularity
proportional to that singularity’s topological charge. Here, it is
easy to see why the OAM initially decreases as the ellipticity
increases. Take, for example, a beam with two vortices: as the
ellipticity increases and the vortices move apart, their torques
work against each other to an increasing degree.

(b) The particle would follow an elliptical orbit around the
system of vortices. This has been demonstrated experimentally
for the similar Mathieu-Gauss beams [39].

(c) The particle would rotate around the nearby vortex,
picking up an OAM per photon (with respect to the position
of the vortex) of approximately the topological charge of the
vortex. There would also be some second-order effects from
other vortices in the beam, which would be small if they were
remote and potentially large if the vortices were near.

(d) Perhaps the most interesting case. If the system
in question sorts photons according to their integer OAM
value, a superposition of OAM values would occur (with
weights defined as in the expansion of the IG modes in
terms of LG polynomials). This may have application to
quantum key distribution—as the ellipticity creates a larger
parameter space—and potentially also to other tasks in quan-
tum communication and quantum information processing.
Projections into the IG basis of noninteger OAM states are also
possible.

It is important to reemphasize that all the results reported
in this manuscript are per photon, in units of h̄.

VI. CONCLUSIONS AND OUTLOOK

The richness of the Ince-Gauss modes of light present
an excellent test-bed for the study of optical vortices and
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their connection to topological charge and the orbital angular
momentum of light. This has potential application to various
fields, including optomechanics, atom trapping, and quantum
informatics. Plus, insights gained from this study will continue
to elucidate the nature of light itself.

In this paper, we first developed a fully quantum mechanical
formalism that describes the orbital angular momentum of
the Ince-Gauss beams of light. We then highlighted several
striking features of the OAM of these light fields as a function
of the ellipticity of the beam. We observe nonmonotonic
behavior, where minima are reached for specific values of the
ellipticity. Also, convergence on the OAM of the LG beams
in the zero limit and of the HG beams in the infinite limit
is observed. Another feature is the crossing of beams with
different p and m numbers at specific values of the OAM
and ellipticity. Perhaps most importantly, we demonstrate the
overall continuous nature of the OAM as the IG beams range
over both integer and noninteger values in a fully quantum
mechanical way for beams whose shapes are stable under
propagation. That is, the OAM of a beam may be “tuned”
continuously using the IG modes, yielding stable modes with
fractional OAM.

It is useful here to briefly consider what use these beams
may have. Given the way in which the vortices separate and
move as the ellipticity increases, there could be application
to more advanced techniques in atomic trapping, building on
an already burgeoning field which thus far has made use of
simpler beam profiles only (see, for example, Ref. [40]).

Also, the ellipticity of the beam may potentially have
use in quantum key distribution as it opens up a continuous
parameter space in which information could potentially be
hidden, increasing the robustness of QKD schemes to potential
attacks. We envision, as a possible QKD protocol, a procedure
in which an ellipticity encoding is transmitted first using a
robust mapping function in a polarization basis. Next, one-half
of a pair of entangled IG photons is transmitted, distributing
the quantum key. If any potential eavesdropper fails to obtain
complete information of the mapping function generating the
ellipticity, when it attempts to eavesdrop on the key it will
have markedly reduced projections onto the basis vectors,
even when the proper measurement basis is chosen. For such a
protocol, entangling IG modes will be important. This was
recently achieved in Ref. [26]. A formal analysis of this
potential scheme could constitute a promising avenue for
future research.

There may also be some application to quantum informatics
in general since the Ince-Gauss light modes exist naturally
as stable superpositions of the LG modes. These open
possibilities all present potential paths for further research.
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[5] F. Tamburini, B. Thidé, G. Molina-Terriza, and G. Anzolin, Nat.
Phys. 7, 195 (2011).

[6] A. K. Jha, G. S. Agarwal, and R. W. Boyd, Phys. Rev. A 83,
053829 (2011).

[7] G. Knoner, S. Parkin, T. A. Nieminen, V. L. Y. Loke, N. R.
Heckenberg, and H. Rubinsztein-Dunlop, Opt. Express 15, 5521
(2007).

[8] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature (London)
412, 313 (2001).

[9] S. P. Walborn, A. N. de Oliveira, R. S. Thebaldi, and C. H.
Monken, Phys. Rev. A 69, 023811 (2004).

[10] J. Leach, B. Jack, J. Romero, M. Ritsch-Marte, R. W. Boyd,
A. K. Jha, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett,
Opt. Exp. 17, 8287 (2009).

[11] R. Fickler, R. Lapkiewicz, W. N. Plick, M. Krenn, C. Schaeff,
S. Ramelow, and A. Zeilinger, Science 338, 640 (2012).

[12] J. D. Jackson, Classical Electrodynamics (Wiley, New York,
1975).

[13] G. F. Calvo, A. Picón, and E. Bagan, Phys. Rev. A 73, 013805
(2006).
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