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Spatial filtering by chirped photonic crystals
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We show, theoretically and experimentally, that chirped photonic crystals (where the longitudinal modulation
period varies along the propagation direction) can provide a substantial spatial (angular) filtering of light beams.
The chirped photonic crystals, in gapless configuration, were recorded in a bulk of glass, where the refraction index
has been periodically modulated using tightly focused femtosecond laser pulses. The spatial filtering performance
has been studied in detail, and the filtering efficiencies up to approximately 50% have been experimentally
demonstrated.
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I. INTRODUCTION

Spatial filtering is broadly used to improve the spatial qual-
ity of light beams. A conventional technique of spatial filtering
uses a confocal system of lenses to form a far field image in
the focal plane, where a diaphragm of appropriate diameter is
positioned in order to remove undesired angular components
of the spatial spectrum [1]. Recently, alternative methods of
spatial filtering have been proposed, based on light propagation
through materials with periodically modulated refractive index
on a wavelength scale—the photonic crystals (PhCs).

The PhCs are well known to exhibit photonic band gaps
in frequency domain, i.e., the frequency ranges at which
light waves cannot propagate [2], therefore they can provide
frequency filtering, i.e., removing the undesired frequency
components of the radiation. In analogy to the frequency band
gaps, the angular band gaps are also possible in PhCs. If
the band gap for a given frequency appears at some angle
to the optical axis, so that the on- and around-axis radiation
modes are allowed to propagate, then the effect can result
in angular low-angle-pass filtering. The spatial filtering in
one-dimensional (1D) PhCs is, however, inefficient in praxis,
as the positions of the angular band gaps are highly sensitive
to the longitudinal modulation period. Instead, the angular
filtering has been considered in 1D periodic structures with
defect [3], which however work for large angles with respect
to direction of index modulation.

The angular positions of angular band gaps is better
controllable in two-dimensional (2D) photonic crystals, where
the refraction index is modulated in longitudinal as well as
in transverse direction. The appearance of the band gaps
require the condition on the longitudinal modulation period
d|| < λ. Such filtering has been proposed in optics [4–7], also
in acoustics, for periodic acoustic media (sonic crystals) [8],
and also is recently demonstrated experimentally in acoustics
[9]. The mechanism of spatial filtering due to the angular
band gaps is illustrated in Figs. 1(a) and 1(b), where the
position of the center of the angular band gap follows from
geometrical considerations, and corresponds to a resonant
interaction between the field harmonic.

Alternatively, the spatial filtering in PhCs without angular
band gaps was recently proposed [10]. In the latter case

particular angular components of the radiation are not reflected
back, but are deflected to the forward direction [see Figs. 1(c)
and 1(d) for illustration]. The gapless filtering is possible for
longitudinal periods of modulation d|| > λ. First experimental
evidences of the gapless spatial filtering have been given in
three-dimensional PhCs [11]. The gapless filtering has been
also proposed to clean the spatial structure of Bose-Einstein
condensates [12].

The fabrication of the gapless spatial filters is more
convenient, as not so small longitudinal periods are required.
On the other hand, the efficiency of filtering is restricted, as
the deflected wave components propagate in forward direction,
and can be scattered back into the modes of initial radiation.
The process is summarized in Fig. 2, where the gapless
filtering depending on the length of nonchirped PhC is shown.
(We postpone the description of numeric as well as experiment
to the following sections.)

Evident is that initially the “dips” in the angular spectrum
(the filtered out angular regions) increase in depth with
increasing crystal length (Fig. 2, n= 8, 14). However, when the
area being filtered is depleted to zero, the reverse process starts,
and the efficiency of the filtering starts decreasing (Fig. 2,
n = 20, 22). Moreover, the filtered out area appears to be
not a smooth dip, but develops an oscillatory shape. This is in
contrast with the spatial filtering based on the band gaps, where
the filtered out radiation propagates in a backward direction,
and cannot be scattered back. As a consequence, the filtered
out angular areas monotonically increase with the propagation
length in PhCs with angular band gaps.

In order to achieve efficient angular filtering the reverse
scattering process is to be suppressed, i.e., the interaction
between harmonics is to be allowed for a limited propagation
distance, and interrupted at the distance before the reverse
process starts. For the parameters of Fig. 2, the optimum
length providing maximum dip of filtered out components is
approximately 14 periods. However, at the optimal distance
the filtering dip is of a limited width. Another possibility
to increase the efficiency is the use of chirped structures
[10], where the longitudinal period varies along the photonic
structure. As the filtering angle depends on the longitudinal
period of the PhC, the angle sweeps along the chirped
structure. As the result one can obtain simultaneously: (1) the
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FIG. 1. (Color online) Illustration of spatial filtering in a 2D PhC,
in spatial Fourier domain (kx , ky) in configuration with (a), (b) and
without (c), (d) the angular band gaps. Filtering occurs when the
waves in the dark triangle zones get into resonant scattering condition
with modulation with wave vectors �q = (qx,qz) (blue arrows). Thick
red arrows show the direction of filtered out angular components.
The spatial spectrum (far field) of the initial beam, consisting of the
central (regular) part, and of the wings (the part to be removed), is
shown by bright and dark triangles.

angular range of filtered out components can be increased, i.e.,
determined by the sweep of the instantaneous filtering angle
along the full length of the crystal; and (2) the reverse scattering
process can be suppressed, as the efficient interaction length of
the angular components is limited by the velocity of the sweep.

The article is devoted to the experimental demonstration
of the above described idea, and to the quantitative analysis of
the efficiency of the angular filtering in the presence of chirp.
Next, in Sec. II we describe the fabrication and measurement
of the chirped PhC samples. In following, in Sec. III we
describe a numerical scheme allowing us to efficiently
calculate the light propagation through the structure. The
experimental results and numerical calculations are compared
and summarized in Sec. IV, followed by discussions in Sec. V
and conclusions in Sec. VI.

II. CHIRPED PHOTONIC CRYSTALS

A. Fabrication

The PhCs were fabricated in standard microscope soda-lime
glass (Carl Roth, nref = 1.52) by a point-by-point modification
of refractive index by a tightly focused femtosecond laser
beam. This method is widely used for inscription of various
micro-optical and photonic components in glass, such as
waveguides [13,14], Bragg gratings [15], as well as vortex
generators [16]. The simplified schematic of the fabrication
setup is depicted in Fig. 3(a). Due to high intensity of focused
light, the refractive index at the region of the focal point
is locally modified, thus translation of the sample results in
a desired profile of modulation of refractive index in three
dimensions. The change of refractive index and its spatial
confinement depends on applied laser power. We used 300 fs
pulse duration Yb:KGW laser providing 1030 nm wavelength
radiation. The best results (the strongest refraction index
modification) were obtained using 50 kHz repetition rate and
70 mW average power (before the objective, ∼13% of the
power after passing it) 2.5 mm/s scanning speed, and 63 ×
1.4 NA objective. This corresponds to 0.2 μJ energy per
pulse 134 and 14 TW/cm2 peak light intensity calculating
as in [17] and assuming that voxel width is ∼500 nm for 1 μm
transverse period. Further increase of irradiation power did not

FIG. 2. (Color online) Angular profiles of filtered radiation depending on the length of the nonchirped PhCs (in terms of number of periods
n). (a) Numerical and (b) experimental results. Details are provided in the main text.
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FIG. 3. (Color online) Fabrication setup and procedure (a). A
sample of soda-lime glass is moved with respect to the tightly focused
femtosecond pulse laser beam resulting in point-by-point refractive
index modification in the bulk of the glass. (b) The optical microscopy
image view and (c) the magnified image of the fabricated structure.

provide any significant increase in refractive index contrast, but
introduced scattering defects, caused by distortion and thermal
damage of affected regions.

B. Geometry

The PhCs were designed to have 100 layers of parallel,
equally spaced rods with a 1 μm transverse period. Every
second layer was shifted by half of the transverse period
with respect to the previous one, thus two layers result in
one longitudinal period. For chirped crystals the longitudinal
period dz is linearly incremented by �d for every new period
dz,j = dz,B + j�d, where j counts the periods i = 1,. . .,n. The
adimensional chirp parameter is defined by C = �d/dz, where
dz = (dz,Begin + dz,End)/2 is the average distance between
layers. We chose dz to be 6 μm and kept it constant in
different samples, whereas the chirp parameter C was varied
from sample to sample. Such fixed dz corresponds to central
filtering angle ≈± 4 deg.

C. Measurement

For measurements of filtering performance we illuminated
the samples by continuous 633 nm wavelength HeNe laser
beam focused into PhC samples with 10 × 0.3 NA objective
(Fig. 4). Focusing provides a large angular range of the
radiation illuminating the PhC. By measuring the angular
intensity profile at the output of the PhC we determine which
components are filtered out. To register the output a CCD
camera was placed 3 cm behind the sample on a rotational
stage, whose rotation axis is fixed at the focal point of the

FIG. 4. (Color online) Experimental measurement scheme (a):
The HeNe laser beam is focused into PhC. Part of the angular
components is deflected to the diffraction maxima and the rest passes
through. A CCD camera placed on the rotational stage measures the
angular intensity profiles. (b) A part of CCD camera image of the
beam behind the PhC (far field image).

objective. Intensity profiles were recorded at different camera
positions and combined, and far-field distribution was recorded
and analyzed.

III. NUMERICAL METHOD

We use a simplified version of the transfer matrix method,
where we consider only the forward propagating wave com-
ponents. A similar technique was used to calculate the field
evolution in resonators filled by PhCs [18]. The transverse
periodicity in lateral x direction imposes the transversal mod-
ulation of the field, therefore the field (at every longitudinal
position z) can be Fourier expanded:

A(x,z) = eikxx[a0(z) + a−1(z)e−iqxx + a+1(z)eiqxx

+ a−2(z)e−2iqxx + a+2(z)e2iqxx + · · ·]. (1)

The amplitudes of Fourier coefficients of the field expansion
[equivalently the amplitudes of angular components with
transverse wave numbers (kx + mqx)] constitute a column
vector:

�A(z) = (. . . ,a−2,a−1,a0,a+1,a+2, . . .)
T . (2)

Next we list consecutive field transformations along one full
longitudinal period of the modulation of photonic structure.

A. Scattering by one layer

The periodical modulation in transverse direction couples
the angular components of the field vector (2). In particular,
the harmonic modulation couples only the neighboring field
harmonics. We introduce phenomenological coupling coeffi-
cient s, which can be linked to microscopic parameters of the
modulation of refraction index. The scattering matrix is

Ŝ = exp

⎛
⎜⎜⎜⎝

0 is 0 0 0
is 0 is 0 0
0 is 0 is 0
0 0 is 0 is

0 0 0 is 0

⎞
⎟⎟⎟⎠ . (3)
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For a more simple presentation we consider the scattering
truncated to five harmonic components.

B. Free propagation

The free propagation between the scattering layers is
considered by the paraxial propagation equation:

∂zA(x,z) = i

2k0

∂2

∂x2
A(x,z). (4)

Substitution of expansion (1) into (4) yields the equation
system:

dzam(z) = − i

2k0
(mqx + kx)2am(z). (5)

The integration of (5) over half of a longitudinal period results
in diagonal field transformation matrix:

P̂ = e−iLk2
x/2 · Diag

(
e−iL(kx−2qx )2

,e−iL(kx−qx )2
,e−iLk2

x ,

e−iL(kx+qx )2
,e−iL(kx+2qx )2)

. (6)

Here L = dz/(2k0) is the normalized longitudinal period.

C. Lateral shift of the grating

Every second scattering layer is laterally shifted by half of
the transverse period. We account for this lateral shift using the
following trick. We fix the reference frame with the position of
the first grating. Then, for the calculation of the scattering from
the laterally shifted grating, we change the reference frame by
applying the field transformation operator:

M̂ = Diag(e−2imxqx ,e−imxqx ,1,e+imxqx ,e+2imxqx ). (7)

In the following, after calculation the scattering by the
second scattering layer [by using (3) in the new reference
frame], we restore the original reference frame, by applying
M̂−1.

D. Full period

The field transformation along the full longitudinal period
is calculated by applying consecutively (from right to left) all
the operators presented above:

T̂i = P̂ M̂−1ŜM̂P̂ Ŝ. (8)

For the chirped crystal the parameters of one period transfer
matrix depend on the lattice parameters in the concrete period.
The full transmission matrix is a matrix product of (8):
T̂ = ∏

i T̂i . The transmission of the central component is given
by the central element T0,0 of the full transmission matrix T̂ .
The scattering into sidebands harmonics is described by the
corresponding off-diagonal column elements of the matrix,
e.g., by elements T−1,0 and T+1,0 for scattering into first
diffraction components.

The coupling coefficient s depends on the modulation
amplitude of the refractive index, which is of order of �n ∼
10−3, the precise value of which is, however, unknown. We
determined the value of s by calibrating the experimental
data with numerical calculation results for light propagation
through unchirped crystal (see Fig. 2). For our samples the s

has been estimated s ≈ 0.05, which means that approximately
s2 = 0.25% of radiation diffracts in every layer. We note
that this calibration allowed us to estimate the variation
of refraction index of the sample, which comes out to be
approximately �n ≈ 3 × 10−3 for our samples fabricated with
optimum parameters.

IV. SUMMARY OF THE RESULTS

The main results of the study are summarized in Fig. 5,
which evidences the constructive role of the chirp for spatial
filtering performance. The angular range as well as the energy
of filtered-out radiation increases with increasing chirp as
expected. The experimental results correspond qualitatively

FIG. 5. (Color online) Angular transmission profiles for varying chirp parameter C for PhC sample with n = 50 periods. (a) Numerical
and (b) experimental results. Transverse wave number kx is normalized to transverse wave number of refractive index modulation qx in (a).
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well to the numerical calculation results. Some discrepancy
between the experimental measurements and numerical results
appears, especially for large values of the chirp, which is
due to imperfections of fabrication of the samples. Overall,
although the measured efficiency of the filtering increases
with increasing chirp parameter, the increase is, however,
slower than that following from numerical calculations. Our
interpretation is that for larger chirp parameters the filtered
areas become more broad and “shallow” (for a fixed length
of the sample) and generally they “collect” more noise due
to the imperfections of the structure. We note, however, that
the detailed analysis of the randomness of structure requires
separate analysis, and is beyond the scope of the present
study.

Next we calculate quantitative data of the filtering perfor-
mance. We define filtering performance by

F =
∫ |�I (kx)|dkx∫ |I (kx)|dkx

, (9)

which has a meaning of depletion of energy normalized to
the full energy. The integration in (9) is performed over the
Brillouin zone, i.e., on interval kx ∈ [−qx/2, qx/2]. For proper
geometry, when precisely the wings from the angular spectra
are filtered out, the F is a measure of relative narrowing of the
angular spectrum.

Figure 6(a) summarizes the dependence of the filtering per-
formance on the chirp parameter. If the filtering in unchirped

FIG. 6. (Color online) Numerical study of the filtering perfor-
mance: (a) dependences of filtering efficiency on chirp parameter for
several crystals of different length (green plot for n = 30, red for
n = 40, blue for n = 50); (b) Dependences of filtering efficiency on
number of periods with different chirp parameters (black plot for C =
0.0%; green for C = 0.1%, red for C = 0.2%, blue for C = 0.3%,
violet for C = 0.4%).

PhC structures of increasing length saturates for short crystals
(n = 15 periods), then for chirped crystals the saturation begins
for longer crystals and results in higher filtering performance
values, correspondingly. Figure 6(b) shows the dependence
of filtering on the length of the sample for different chirp
parameters C.

V. DISCUSSIONS

The above theoretical study is performed with the parame-
ters corresponding to fabricated structures: The values of the
coupling were s = 0.05 which correspond to the maximum
achievable coupling for structures imprinted in glass. We
also restricted to realistic length of the PhC, possible to
write without large distortions, which is approximately n =
60 periods. With the increasing length of the structure the
imperfections of fabrication, as well as the losses and scattering
of the structure, increase. However, even with these restrictions
the filtering performance close to approximately 50% has been
experimentally demonstrated.

Looking into perspective, we analyzed the filtering per-
formance of “hypothetical PhCs” with larger refraction index
modulation, i.e., with corresponding larger coupling parame-
ters s than those possible to obtain in reality for PhCs build
in glasses. Examples of calculations for longer and higher
index contrast photonic structures are shown in Fig. 7. Both
calculated cases show that the filtering performance can reach
the values of 80%, and could result in impressive enhancement
of the beam quality by factor of 3.

The filtering performance depending on parameters s, n,
and C is summarized in Fig 8. As follows from Figs. 8(a)
and 8(c) the chirp parameter C has optimum values, which
depends on the coupling parameter s: stronger coupling results
in shorter filtering saturation length, therefore requires larger
chirp for maximum filtering performances. The dependence
of filtering performance on the length of PhC, as follows
from Figs. 8(b) and 8(d), shows the monotonic increase with
eventual saturation.

FIG. 7. (Color online) Numerically obtained field profiles for
spatial filtering in chirped structures with higher number of periods
(a) and for higher refraction index contrast (b). The parameters for
(a): n = 120, s = 0.05, C = 0.24%, dz = 7.44 μm; for (b): s = 0.1,
n = 50, C = 0.53%, dz = 7.2 μm. The dashed line indicates angular
profile of incident beam.
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FIG. 8. (Color online) The filtering efficiency, represented by
isolines and by different colors, depending on sets of parameters.
(a), (c) show dependencies on C and s; (b), (d) show dependencies
on n and s. Parameters: (a) n = 50, (c) n = 120. (b) C = 0.3%, and
(d) C = 1%.

VI. CONCLUSIONS

In conclusion, we have theoretically calculated and exper-
imentally proved the effect of chirping of photonic crystal on
the efficiency of spatial filtering. Our theoretical-numerical

analysis reproduces well the experimental observations and
interprets the observed effect as the spatial filtering in the
gapless configuration.

In spite of relatively weak index modulation (small scatter-
ing by one row) a substantial part of the radiation was shown
to be filtered out. In order to obtain a technologically utile
spatial filter the higher (but moderate) index contrast PhCs
are necessary, which are to be based on new materials and
fabrication technologies. A technologically relevant spatial
filtering, allowing us to improve the beam quality parameter
by the factor of 2–3, requires the refractive index modulation
of order of approximately �n0 = 10−2.

Finally we highlight the advantage of the method of filtering
demonstrated in the present article. The main advantages
(comparing with the conventional pinhole spatial filer) are:
(1) extremely small thickness (hundreds of microns) of the
filter enabling the integration of such a filter into micro-
optical devices or into microresonators of small lasers; (2)
translational invariance of the PhC spatial filter (insensitivity to
the lateral shift of PhC structure) simplifying its utilization; and
(3) possibility to combine (to add) the filtering functionality
to some other, already existing, functionalities (amplification,
nonlinearities) in bulk material, by additional modulation of
refraction index of the (amplifying or nonlinear) material.
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