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Two trapped particles interacting by a finite-range two-body potential in two spatial dimensions
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We examine the problem of two particles confined in an isotropic harmonic trap, which interact via a finite-range
Gaussian-shaped potential in two spatial dimensions. We derive an approximative transcendental equation for the
energy and study the resulting spectrum as a function of the interparticle interaction strength. Both the attractive
and repulsive systems are analyzed. We study the impact of the potential’s range on the ground-state energy.
We also explicitly verify by a variational treatment that in the zero-range limit the positive δ potential in two
dimensions only reproduces the noninteracting results, if the Hilbert space in not truncated, and demonstrate
that an extremely large Hilbert space is required to approach the ground state when one is to tackle the limit
of zero-range interaction numerically. Finally, we establish and discuss the connection between our finite-range
treatment and regularized zero-range results from the literature. The present results indicate that a finite-range
interparticle potential is numerically amenable for treating the statics and the nonequilibrium dynamics of
interacting many-particle systems (bosons) in two dimensions.
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I. INTRODUCTION

In recent years there has been an increasing interest in
two-dimensional (2D) quantum systems. The condensed-
matter community has long been investigating 2D quantum
effects, for example, in relation to superfluid films [1,2], high-
temperature superconductivity [3–5], and low-dimensional
materials, such as graphene [6,7] and quantum dots, see,
e.g., [8]. The rapid progress in atomic trapping and cooling
now also allows one to study quantum systems with reduced
dimensionality in the context of ultracold trapped gases [9].
Degenerate quasi-2D Bose and Fermi gases have already been
produced in highly anisotropic “pancake” traps [10–15]. This
opens up the unique possibility to investigate the rich palette
of 2D quantum effects and phases in a highly controlled
environment.

In dilute systems, such as the ultracold trapped gases,
interactions are usually described by a two-particle zero-
range effective potential. This approach has been particularly
fruitful in one dimension, where the δ function interaction
is well behaved and there is a simple relation between
the scattering length and the interaction parameter. In two
and three dimensions, however, the δ function is not a
self-adjoint operator [16,17], which gives rise to various
anomalies [16,18–22]. In particular, there is no scattering from
a positive 2D δ function and, for a negative one, the bound-state
energy diverges. Several approaches to overcome the arising
problems and to model zero-range interactions in 2D have
been proposed in the literature: self-adjoint extensions [23,24],
renormalization techniques [18–20], regularization of the δ

potential [17,25,26], modified boundary conditions [27,28],
and a coupled-channel model [29].

The analytically tractable problem of two harmonically
trapped particles interacting via a zero-range potential in 2D
has previously been addressed using a regularized δ function
[17,26] and Bethe-Peierls boundary conditions [28]. These
works have obtained and studied the spectrum of the particles
with zero-range interaction as a function of the 2D scattering
length [17,28]. In the limit of zero-range interaction, it has been

shown that the results are universal, i.e., the spectrum is inde-
pendent of the details of short-range potential; see [26]. Re-
cently in [30], finite-range corrections to the Busch model [17]
in 2D using a Green’s function approach have been derived.

In the present work we are interested in the physics of a
truly finite-range potential, and examine the problem of two
harmonically trapped particles in 2D interacting via a finite-
range two-body potential modeled by a Gaussian function. We
derive an approximative, yet accurate, transcendental equation
for the energy, and present the resulting spectrum. In particular,
we study the energy levels for both positive and negative
interaction and explore the role of the range of the potential
on the ground-state energy. Furthermore, we demonstrate that
an extremely large Hilbert space is required to approach the
ground state when one is to tackle the limit of zero-range
interaction numerically. Last but not least, we establish and
discuss the connection between our finite-range results and
previous zero-range works.

We recall that, in one dimension, the use of the common
δ-function interaction is well established and easy to handle.
Unfortunately, in 2D as mentioned above, the 2D δ interaction
cannot be used analogously to its one-dimensional counterpart.
Whereas a regularized 2D contact potential is analytically
tractable, it is harder to work with numerically. Furthermore,
for more than two particles, analytical treatments quickly be-
come inaccessible, leaving one only with a numerical recourse.
For the numerical many-body simulations one usually prefers
and it is often only practical to use smooth, finite-range, model
interaction potentials.

In Ref. [31], the Lee-Suzuki transformation is used to
compute ground- and excited-state energies of up to 20
harmonically trapped bosons interacting by a Gaussian-shaped
interaction in 2D. In our work we focus on the two-boson
problem and explicitly show that a Gaussian-shaped two-
body potential and its zero-range pseudopotential give similar
results for both repulsive and attractive interactions except for
the lowest eigenstate of the latter potential. For repulsive in-
teraction the zero-range pseudopotential leads to an additional
dimer bound state which is not connected to the unperturbed
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FIG. 1. Ground-state energy (in the center of mass frame) of
two particles in a harmonic trap interacting via a (nonregularized)
δ potential in 2D as a function of the size of the Hilbert space. The
results are obtained by numerically solving Eq. (11) with λ0 = 1,
l = 1 and different N . Notice the logarithmic scale on the x axis. All
quantities are dimensionless.

system when the interaction is switched off. Thus we can work
with a Gaussian-shaped interaction in 2D, since this bound
state is energetically strongly separated and will be difficult
to reach in dynamics in general. In this context, the purpose
of the present study is to lay down an analytical ground and
computational rationale (see, e.g., Fig. 1 and related discussion
below) to using a Gaussian-shaped interaction in modeling the
statics, see for example [31], as well as the nonequilibrium
dynamics of many trapped interacting bosons in 2D. There is
much interest in the statics and the nonequilibrium dynamics
of 2D Bose systems; see, e.g., [32,33]. We mention that, in one
dimension, the usage of a finite-range interparticle interaction
of a Gaussian shape has been shown to be justified and led to
ample results on the statics and the nonequilibrium dynamics
of a few trapped interacting bosons [34–42].

The article is organized as follows. In Sec. II we derive the
general secular equation for the energy of two trapped particles
interacting via the Gaussian-shaped two-body potential in 2D.
In Sec. III, by utilizing a variational treatment, we briefly
discuss the limit of a positive nonregularized δ potential and
show that the energy spectrum of the noninteracting system is
altered only as a consequence of truncating the Hilbert space.
In Sec. IV A we present an efficient high-performance approx-
imation for the finite-range interaction, and derive an equation
for the energy of the two particles. Then, in Sec. IV B, we study
the resulting energy spectrum and, in Sec. V, compare our
finite-range findings to zero-range results from the literature.
Finally, in Sec. VI, we summarize our results. Supplemental
derivations and numerics are deferred to the Appendixes.

II. EIGENVALUE EQUATION

We consider two particles in an isotropic harmonic trap,
which are interacting via a normalized two-body Gaussian-
shaped potential. The Hamiltonian of the system is

H =
2∑

i=1

(
− h̄2

2m
∇2

i + 1

2
mω2r̄2

i

)
+ λ0V (r̄1 − r̄2), (1)

V (r̄1 − r̄2) = 1

πs2
e
− (r̄1−r̄2)2

s2 . (2)

Here ∇ is the 2D Nabla operator and r̄ = (x,y). The problem
can be separated into a noninteracting center of mass and an
interacting relative part. With the standard definitions of a
reduced mass, μ = m/2, and a total mass, M = 2m, as well
as center-of-mass and relative coordinates R̄ = 1

2 (r̄1 + r̄2) and
r̄ = r̄1 − r̄2, the Hamiltonian can be rewritten as H = Hc.m. +
Hrel with

Hc.m. = − h̄2

2M
∇2

R + 1

2
Mω2R2, (3)

Hrel = − h̄2

2μ
∇2

r + 1

2
μω2r2 + λ0V (r). (4)

Here Hc.m. is the Hamiltonian of the 2D quantum harmonic
oscillator whose solutions are well known. From now on we
concentrate on the relative part, which we further write as
Hrel = H0 + λ0V (r), where H0 reads

H0 = − h̄2

2μ
∇2

r + 1

2
μω2r2. (5)

We start by constructing a solution � of the time-independent
Schrödinger equation from the eigenstates of H0. We take
only eigenstates with zero angular momentum, which we
denote ϕk(r). The respective energies are εk = (2k + 1)h̄ω.
We note that all states with nonzero angular momentum
vanish at the origin and, therefore, should not be significantly
perturbed by the Gaussian potential if its width is sufficiently
small. After substituting the expansion � = ∑∞

i=0 ckϕk into
the Schrödinger equation Hrel� = E�, and after projecting
onto a state ϕk′(r), we arrive at the secular equation:

ck′(εk′ − E) + λ0

∞∑
k=0

ck

∫
ϕ∗

k′(r)V (r)ϕk(r)dr̄ = 0. (6)

The integration is taken over the whole 2D plane with dr̄ =
2πr dr . To proceed further we need to evaluate the matrix
elements appearing in the above sum. As we show in Appendix
A, this can be done analytically. The result of the calculation
is

Ik′,k(s) =
∫

ϕ∗
k′(r)V (r)ϕk(r)dr̄

= 1

πl2

(
1(

s
l

)2 + 1

)k′+k+1

2F 1

(
− k′, − k; 1,

(
s

l

)4)
.

(7)

Here, 2F 1 is the Gauss hypergeometric function [43] and

l =
√

h̄
μω

is the harmonic-oscillator length.

III. SOLUTION FOR CONTACT POTENTIAL

Before proceeding to the results for a finite-range inter-
action, let us first examine the limit s → 0, in which case
the normalized Gaussian-shaped potential defined in Eq. (2)
goes into a δ function. For s = 0 Eq. (7) takes on the form
Ik′,k(0) = 1

πl2 and the matrix elements are independent of the
indices k′ and k. In this limit Eq. (6) reduces to

ck′(εk′ − E) + λ0

∞∑
k=0

1

πl2
ck = 0. (8)
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The sum appearing in the above equation runs over all indices
k. After rearranging the expansion coefficients, we obtain

ck′ = −λ0C

εk′ − E
, (9)

where C is a parameter which can depend on the energy E,
but is the same for all k′. By substituting the above expression
for the coefficients ck back into Eq. (8) and multiplying by
πl2/λ0, we arrive at

h̄ωπl2

λ0
+

∞∑
k=0

1

2k + 1 − E/h̄ω
= 0. (10)

The sum in the above equation is a general harmonic series
and is divergent [44]. The anomaly associated with a contact
potential in 2D stems from this diverging sum in the current
treatment. To obtain a meaningful expression we first truncate
the sum at finite N and then examine the behavior for N → ∞:

h̄ωπl2

λ0
+

N∑
k=0

1

2k + 1 − E/h̄ω
= 0. (11)

From the above equation we can determine the energy
spectrum of the two trapped particles interacting via a δ

potential in 2D for a given truncation N .
Let us consider the solution of Eq. (11) closest to one of the

poles appearing in the equation, say, the pole specified by k =
k′. We may write E/h̄ω = 2k′ + 1 + 	k′. This immediately
leads to

1

	k′ = h̄ωπl2

λ0
+

N∑
k �=k′

1

2k + 1 − E/h̄ω
. (12)

For large N the sum on the right-hand side (RHS) grows
logarithmically with N for any value of E �= 2k + 1 (k �=
k′), and hence 	k′ approaches zero as ∼1/ ln N . Thus, by
increasing N , we can make the energy levels arbitrarily close
to the eigenvalues of the respective noninteracting system.
These considerations explicitly show that in 2D the positive
(nonregularized) δ potential modifies the spectrum of two
trapped particles only as a consequence of restricting the
Hilbert space. We point out that the noninteracting values
are approached logarithmically because the series in Eq. (11)
diverges logarithmically. We illustrate this in Fig. 1, where
we plot the energy of the lowest state obtained from Eq. (11)
for increasing N . We stress that the above considerations are
rigorous and Eq. (11) can be viewed as a variational ansatz
(see Appendix B).

IV. FINITE-RANGE POTENTIAL

A. Efficient high-performance approximation

In order to obtain an (approximative) equation for the
energy of the two particles in the finite-range case, s > 0,
we proceed analogously to the treatment above and make an
ansatz for the expansion coefficients ck′ . To this end we use
an ansatz similar, but not identical, to the one obtained in
the Brillouin-Wigner perturbation theory (see discussion in
Appendix C),

ck = −λ0I0,k(s)

εk − E
C, (13)

and obtain an equation for E by substituting this expression
into Eq. (6). Since we have I0,k(0) = 1

πl2 = const, this ansatz
ensures that for s → 0 we exactly recover the δ potential
limit of Eq. (9), which was discussed in the previous section.
We stress that the current approximation in not variational,
in contrast to the case s = 0. However, we establish the
high accuracy of the treatment by comparing to full direct
diagonalization and zero-range results (see Appendix D and
Sec. V).

By substituting (13) into Eq. (6) and rearranging terms, we
obtain

h̄ω

λ0
I0,k′ +

∞∑
k=0

I0,k(s)Ik′,k(s)

εk/h̄ω − E/h̄ω
= 0. (14)

For each index value k′ the above expression gives an equation
for E. By setting k′ = 0 the matrix elements Ik′,k(s) take on
the form I0,k = 1

πl2 ( 1
( s

l
)2+1 )k+1 and the equation for E becomes

h̄ω

λ0
I0,0 +

∞∑
k=0

I 2
0,k(s)

εk/h̄ω − E/h̄ω
= 0. (15)

The series
∑∞

k=0
I 2

0,k

εk/h̄ω−E/h̄ω
can be expressed in terms of the

Lerch transcendent function 
(z,s,α) [45]
∞∑

k=0

I0,kIk,0

εk/h̄ω − Em/h̄ω

= 1

(πl2)2

∞∑
k=0

1

2k + 1 − E/h̄ω

(
1(

s
l

)2 + 1

)2(k+1)

=



(
1

[1+(s/ l)2]2 ,1,
1−E/h̄ω

2

)
2π2l4[1 + (s/ l)2]2

. (16)

The final equation for the energy of the two trapped particles
in the center-of-mass frame reads

−



(
1

[1+(s/ l)2]2 ,1,
1−E/h̄ω

2

)
2πl2[1 + (s/ l)2]

= h̄ω

λ0
. (17)

Equation (17) is the main analytical result of the paper. It
allows one to obtain the energy spectrum of two trapped
particles interacting via a Gaussian-shaped potential in 2D
for given parameters λ0, s, and l.

B. Energy spectrum

In this section we present the energy spectrum (in the
center-of-mass frame) of two trapped particles interacting via a
Gaussian-shaped potential in 2D, which results from Eq. (17).
From now on we fix the harmonic-oscillator length to l = 1.
We first set s/ l = 0.1 and explore the dependence of the energy
levels on the parameter λ0. The energies of the first three
states versus λ0 are plotted in Fig. 2. For λ0 > 0 the energies
are always above the respective noninteracting values and the
system is repulsive. As expected, at λ0 → 0 we recover the
noninteracting values E/h̄ω = 2k + 1, which correspond to
the poles of the left-hand side (LHS) of Eq. (17). For λ0 < 0
the particles are interacting attractively and the ground-state
energy quickly diverges to −∞ for λ0 → −∞.

The Gaussian-shaped two-body potential also allows us to
study the role of the range, s, of the interaction. In Fig. 3 we
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FIG. 2. Energies of the first three states (in the center-of-mass
frame) of two trapped particles in 2D interacting via a Gaussian-
shaped potential versus the interaction strength λ0. The dashed-dotted
lines show the energies of the respective noninteracting system. Here
l = 1 and s/ l = 0.1. All quantities are dimensionless.

show the dependence of the ground-state energy on s for three
different values of the parameter λ0. For repulsive interactions,
i.e., λ0 > 0, we find that with decreasing s the ground-state
energy logarithmically approaches the noninteracting value
h̄ω. This is in agreement with our discussion of the 2D δ

potential in Sec. III. We note that this behavior is also in
agreement with the formal result in [46], where it is proven that
in two and more dimensions the solutions of the Schrödinger
equation are not affected by positive potentials with vanishing
support. For attractive interactions (λ0 < 0) the dependence on
s is more pronounced and we observe that in the limit s → 0
the energy of the ground state diverges to −∞ for any negative
λ0. This result is also consistent with previous studies, where
it was observed that the attractive (nonregularized) δ potential
yields a bound state with an infinitely negative energy. This
is, in fact, the starting point for renormalization treatments
[20,47].

V. COMPARISON WITH ZERO-RANGE RESULTS

The energy spectrum of two harmonically trapped particles
with a zero-range interaction in 2D has previously been
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FIG. 3. Energy of the ground state (in the center-of-mass frame)
of two trapped particles in 2D interacting via a Gaussian-shaped
potential versus the width of the interaction, s, for different choices
of λ0/h̄ω. See legend inside the graph. Notice the logarithmic scale
on the x axis. All quantities are dimensionless.

obtained in the literature using a regularized δ potential [17],
general scattering arguments [26], and modified boundary
conditions [28]. In all three works, the authors derive a
transcendental equation for the energy, which can be written
in the form

ψ̃

(
1 − E/h̄ω

2

)
= ln

(
l2

2a2
2D

)
+ A. (18)

Here ψ̃(x) denotes the digamma function, a2D is the 2D
scattering length, and l is the harmonic-oscillator length.
The interaction strength is controlled through an interaction
parameter defined as ln( l2

2a2
2D

)−1 [17,26]. The constant factor
A, which is slightly different within the works [17,26,28],
depends on the exact form for the effective range expansion
that the respective authors use (see the discussion at the end
of [26]) and has no consequence on the following analysis.

In order to relate our finite-range result for the energy of
two trapped interacting particles to the zero-range treatments,
we employ a Taylor expansion of the LHS of Eq. (17) around
s = 0 [48],

−



(
1

[1+(s/ l)2]2 ,1,
1−E/h̄ω

2

)
2πl2[1 + (s/ l)2]

≈ 1

2πl2

[
ψ̃

(
1 − E/h̄ω

2

)
+ ln

(
2s2

l2

)
+ γ

]
+ O[s].

(19)

Here γ ≈ 0.577(2) is the Euler-Mascheroni constant and ψ̃(x)
is again the digamma function. By neglecting terms of order
O[s] and after rearranging, we can rewrite Eq. (17) for s ≈ 0
as

ψ̃

(
1 − E/h̄ω

2

)
= 2πl2

λ0/h̄ω
+ Ã(s), (20)

with Ã(s) = − ln( 2s2

l2 ) − γ . Evidently, the above equation for
the energy has the same form as the literature result in
(18), and by an appropriate choice of λ0 and s our ansatz
reproduces the zero-range spectrum. By comparing the RHS
of Eqs. (20) and (18), we immediately see that (for weak
interactions) the interaction parameter is equal to λ0/h̄ω

2πl2 in our
finite-range analysis [49]. Thus the interaction parameter in
2D is proportional to the factor λ0 in front of the two-body
potential [see Eq. (1)].

The Taylor expansion in (19) leads to two significant
differences between the zero-range spectrum and the finite-
range spectrum already presented in Fig. 2. First, when
the interaction is repulsive, i.e., λ0 > 0, Eq. (20) yields an
additional deeply bound state which is not present in the
original finite-range spectrum (see also [50] for the case of
hard spheres in three dimensions, where also a redundant state
appears in the zero-range pseudopotential approximation).
This state appears due to the different asymptotic behavior of
both sides of (19) in the limit E/h̄ω → −∞. While the LHS
of (19) converges to 0, the expanded RHS diverges to +∞; see
Fig. 4. This also leads to a second difference. The finite-range
result yields a bound state with an energy approaching −∞
for λ0 → −∞, while the zero-range equation yields a finite
value which corresponds to the zero crossing appearing for
negative E/h̄ω in Fig. 2. This demonstrates that the short-range
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FIG. 4. Plot of the LHS (thick line) and the RHS (dashed line)
of Eq. (19) versus E/h̄ω for l = 1 and s/ l = 0.1. For E/h̄ω > −1
the two curves are practically indistinguishable. The vertical dashed-
dotted lines show the poles of both sides of Eq. (19). Notice the
logarithmic scale on the x axis. See text for discussion. All quantities
are dimensionless.

2D Gaussian-shaped interaction potential and the zero-range
potential approximate each other well except for the ground
state.

Equating the RHS of Eqs. (20) and (18) allows us to obtain
a connection between the 2D scattering length, a2D, and the
parameters of the Gaussian-shaped potential λ0 and s. Using
A = 2 ln(2) − 2γ from [26], and noticing that the authors use
the definition of the harmonic-oscillator length with the full
mass, we obtain

a2D ≈
√

2s e
− γ

2 − πl2

λ0/h̄ω (21)

for the 2D scattering length of a Gaussian-shaped potential of
width s/ l � 1. We find good quantitative agreement when we
compare the above expression for a2D with numerical values
from [31]. For σ = 2−1/2s = 0.1 and g = λ0 = 1, the relative
difference between our analytical estimate and the numerical
value is about 1%. Even in the regime of σ = 2−1/2s = 1 and
g = λ0 = 10, where the accuracy of our treatment is limited,
the relative difference is only about 8%.

VI. SUMMARY

We analyzed the problem of two harmonically trapped
particles in 2D, which interact via a finite-range Gaussian-
shaped two-body potential. We derived an approximative
transcendental equation for the energy which is demonstrated
to be highly accurate for the ground state. Moreover, our ansatz
works well also for the excited states (see Appendix D). Using
the Gaussian-shaped potential we were able to directly study
the dependence of the ground-state energy on the range of the
interaction. We recall that in the limit of zero-range interaction,
it has been shown that the results are universal, i.e., the spec-
trum is independent of the details of short-range potential [26].
We found that the effect of the short-range interaction on the
ground-state energy vanishes logarithmically with deceasing
of the potential range, s, for all positive interaction strengths.
This study is complemented by a variational treatment which
shows that in the limit of a (nonregularized) δ potential, i.e.,
s → 0, the energy spectrum of the two (repelling) particles
can be made arbitrarily close to the respective noninteracting

one by increasing the size of the Hilbert space. Furthermore,
we demonstrated that an extremely large Hilbert space is
required to approach the ground state when one is to tackle the
limit of zero-range interaction numerically, providing thereby
numerical incentive for using the Gaussian-shaped potential
with a truly finite range as a model of the two-body interaction
in many-particle simulations. Finally, we established and
discussed the connection between our finite-range result and
earlier zero-range treatments reported in the literature.

Our analysis shows that a Gaussian-shaped two-body po-
tential and its zero-range pseudopotential give similar results
for both repulsive and attractive interactions except for the
lowest eigenstate of the latter potential. Here, for repulsion the
zero-range pseudopotential leads to an additional dimer bound
state which is not connected to the unperturbed system when
the interaction is switched off. Consequently, this dimer state
is difficult to reach when the interaction is smoothly switched
on.

Going beyond two particles, as mentioned above, analytical
treatments quickly become inaccessible, leaving one only with
a numerical recourse. The results of the present work support
the applicability of the Gaussian-shaped potential as a model
of the two-body interaction in simulations of the statics (see
[31]) and the nonequilibrium dynamics of trapped interacting
bosons in 2D. Our experience in the nonequilibrium dynamics
of interacting bosons in one dimension—computed by the
multiconfigurational time-dependent Hartree [38–42,51,52]
for bosons [53–59] methods—leaves nothing less than great
expectations for the respective dynamics in 2D.
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APPENDIX A: EVALUATION OF THE MATRIX ELEMENTS

Here we outline the calculation of the matrix elements in
Eq. (7) of the main text. The radial part of the zero angular
momentum eigenfunctions of the 2D harmonic oscillator can
be written in terms of the Laguerre polynomials Lk(x). With

l =
√

h̄
μω

the eigenstates read [60]

ϕk(r) =
√

2l−1e
− r2

2l2 Lk

(
r2

l2

)
. (A1)

We need to evaluate the integral

Ik′,k = 2l−2
∫ ∞

0
e
− r2

2l2 Lk′

(
r2

l2

)
e

−r2

s2

πs2
e
− r2

2l2 Lk

(
r2

l2

)
r dr.

(A2)
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We start by setting � = 1 + l2

s2 and rewriting

Ik′,k = 2l−2

πs2

∫ ∞

0
e
−� r2

l2 Lk′

(
r2

l2

)
Lk

(
r2

l2

)
r dr. (A3)

Now we define a new variable ρ = �
l2 r

2 and obtain

Ik′,k = 1

π�s2

∫ ∞

0
e−ρLk′(�−1ρ)Lk(�−1ρ)dρ. (A4)

To get rid of the �−1 factor in the argument of L(�−1ρ) we use
the known multiplication formula for Laguerre polynomials
[43],

Lk(�x) =
k∑

i=0

(
k

i

)
�i(1 − �)k−iLi(x). (A5)

By substituting the above expression for Lk(�−1ρ) and
Lk′(�−1ρ) into the integral of Eq. (A4), and by making use of
the orthogonality of the Laguerre polynomials with respect to
the weight function e−ρ , we obtain

Ik′,k = 1

π�s2

min{k,k′}∑
i=0

(
k

i

)(
k′

i

)
�−2i(1 − �−1)k+k′−2i . (A6)

We can write the above expression as

Ik′,k = 1

π�s2

(
� − 1

�

)k+k′ min{k,k′}∑
i=0

(
k

i

)(
k′

i

)(
1

(� − 1)2

)i

.

(A7)

In order to express the sum in terms of the Gauss hypergeo-
metric function 2F 1(a,b; c,z), we rewrite the above expression
using the Pochhammer symbols (x)i for the rising factorial
[43],

Ik′,k = 1

π�s2

(
� − 1

�

)k+k′ min{k,k′}∑
i=0

(−k)i(−k′)i
(1)i

(
1

(�−1)2

)i

i!
.

(A8)

We can now directly use the definition of 2F 1(a,b; c,z) [43]
and obtain

Ik′,k = 1

πγ s2

(
� − 1

�

)k+k′

2F 1

(
− k′, − k; 1,

(
1

� − 1

)2)
.

(A9)

Finally, by changing back to the original variables, we arrive
at Eq. (7) of the main text.

APPENDIX B: VARIATIONAL ENERGY

Here we show that the approach in Sec. III for the energy
spectrum of the nonregularized δ potential is essentially a
variational treatment with � = ∑N

i=0 ckϕk and ck = const
εk−E

. For
this purpose, let us consider E just as a parameter which fulfills
Eq. (11) for a given λ0 and fixed finite N . The variational

energy then reads

〈�|Hrel|�〉 =
∫

dr̄

(
N∑

k=0

ckϕ
∗
k

)
Hrel

(
N∑

k′=0

ck′ϕk′

)

=
N∑

k=0

const2

εk − E

[
εk

εk − E
+ λ0

πl2

N∑
k′=0

1

εk′ − E

]

=
N∑

k=0

const2

εk − E

[
εk

εk − E
− 1

]

=
N∑

k=0

E
const2

(εk − E)2
= E. (B1)

We thus see that the variational energy is indeed equal to E. In
the last step we used the normalization condition for the wave
function

∑N
k=0 |ck|2 = 1.

APPENDIX C: ANSATZ FOR ck IN THE
FINITE-RANGE CASE

Here we discuss the ansatz for the expansion coefficients in
Eq. (13). We stress that the approach is general. Let us consider
a Hamilton operator

H = H0 + λ0W (C1)

and assume that the eigenstates and eigenenergies of H0 are
known. We denote them by |φk〉 with H0|φk〉 = εk|φk〉. For an
eigenstate |�〉 = ∑

ck|φk〉 of the full Hamilton operator H

we can write

(H0 + λ0W )|�〉 = E|�〉,
or, equivalently,

(E − H0)|�〉 = λ0W |�〉. (C2)

After projection on an unperturbed state 〈φk|, we express the
above equation in the form

(E − εk)〈φk|�〉 = λ0〈φk|W |�〉. (C3)

From here we obtain a symbolic expression for the expansion
coefficients

ck = 〈φk|�〉 = λ0〈φk|W |�〉
(E − εk)

= −λ0〈φk|W |�〉
(εk − E)

. (C4)

Until now we have not used any approximations. Of course, the
above expression is only an implicit one, because the unknown
state |�〉, which is itself dependent on ck , appears on the RHS.
Our ansatz in Eq. (13) of the main text consists in taking only
a “first-order approximation” for the expansion coefficients,
i.e., we substitute |�〉 = |φ0〉 in (C4) and obtain

ck = −λ0〈φk|W |φ0〉
(εk − E)

. (C5)

Of course, we can also substitute |�〉 = |φk′ 〉, k′ �= 0 into
Eq. (C5) and obtain similar expressions which might be more
efficient when studying excited states.
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TABLE I. Numerical values of EDD−E

EDD
for the ground state

and several excited states with λ0 = 1.0 and four different
choices of s and l = 1. EDD is the value obtained by direct
diagonalization of the Hamiltonian and E is computed using
Eq. (17).

s = 0.1 s = 0.2 s = 0.4 s = 0.5

GS 6.1 × 10−4 7.4 × 10−4 6.9 × 10−4 5.8 × 10−4

1st 2.1 × 10−4 9.2 × 10−5 4.9 × 10−4 1.7 × 10−3

2nd 1.1 × 10−4 1.6 × 10−5 1.8 × 10−3 4.1 × 10−3

4th 3.4 × 10−5 1.5 × 10−4 3.5 × 10−3 5.2 × 10−3

8th 4.7 × 10−6 5.7 × 10−4 3.3 × 10−3 3.4 × 10−3

16th 3.9 × 10−5 1.0 × 10−3 1.7 × 10−3 1.4 × 10−3

APPENDIX D: NUMERICAL COMPARISON

In this section we compare energies obtained by solving
Eq. (17) with the numerical values determined by the full
direct diagonalization of the Hamiltonian using the matrix
elements in Eq. (7). In Table I we show the relative difference
between both values, i.e., EDD−E

EDD
, where EDD denotes the value

obtained from direct diagonalization and E denotes the energy
obtained by solving Eq. (17). The comparison is performed for
the ground state (GS) and several excited states with zero an-
gular momentum (see the first column in Table I). We observe
an excellent agreement between the values from both methods,
with EDD−E

EDD
in the order of 10−3 and below; see Table I.
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/ − hω
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FIG. 5. Comparison between the ground-state energy E0 ver-
sus λ0 obtained from Eq. (17) (lines) and that computed by
direct diagonalization (symbols). The widths from top to bot-
tom are s = 0.5 (squares), 0.4 (triangles), 0.2 (crosses), 0.1 (cir-
cles), and l = 1. See text for more details. All quantities are
dimensionless

Finally, we perform a study of the ground-state energy for
different widths, s = 0.1, 0.2, 0.4, and 0.5, as a function of
λ0. The results are shown in Fig. 5, where we plot the values of
the ground-state energy as obtained from Eq. (17) and direct
diagonalization. The values obtained from Eq. (17) are in a
very good agreement with the ones from direct diagonalization
for λ0/h̄ω up to 4. Analogous behavior was also found for the
excited states.
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