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Stability and excitations of a bilayer of strongly correlated dipolar bosons
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We study correlation effects and excitations in a dipolar Bose gas bilayer which is modeled by a one-dimensional
double-well trap that determines the width of an individual layer, the distance between the two layers, and the
height of the barrier between them. For the ground-state calculations we use the hypernetted-chain Euler-Lagrange
method, and for the calculation of the excitations we use the correlated basis function method. We observe
instabilities both for wide, well-separated layers dominated by intralayer attraction of the dipoles, and for narrow
layers that are close to each other dominated by interlayer attraction. The behavior of the pair distribution
function leads to the interpretation that the monomer phase becomes unstable when pairing of two dipoles
becomes energetically favorable between or within layers, respectively. In both cases we observe a tendency
towards “rotonization,” i.e., the appearance of a soft mode with finite momentum in the excitation spectrum. The
dynamic structure function is not simply characterized by a single excitation mode but has a nontrivial multipeak
structure that is not captured by the Bijl-Feynman approximation. The dipole-dipole interaction between different
layers leads to additional damping compared to the damping obtained for uncoupled layers.
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I. INTRODUCTION

Experimental advances in achieving Bose-Einstein
condensation (BEC) of atoms with large magnetic moment
(52Cr [1,2], 164Dy [3], 168Er [4]) and in generating quantum
gases of heteronuclear molecules (KRb [5–8], LiCs [9],
LiK [10], RbCs [11,12]) by Feshbach association have
lead to a growing interest in effects caused by the
dipole-dipole interaction (DDI). The shape of a trapped dipolar
condensate [13,14] and its stability against collapse [2,15]
have been investigated. The dynamics [16–20] has been
studied theoretically, but recently also experimentally [21].
The generation of novel phases with topological order using
polar molecules has been proposed [22]. A recent review of
the field can be found in Ref. [23]. The strength of the DDI
can be characterized by the dipolar length r0 = mCdd/(4πh̄2),
where m is the mass of the dipolar atom or molecule and
Cdd is proportional to the square of the dipole moment. For
magnetic moments, r0 is usually much smaller than for electric
dipole moments of molecules, which can range to thousands
of angstroms. Since achieving BEC with heteronuclear
molecules is much harder than with homonuclear molecules,
Er2 is a promising candidate to reach a much stronger DDI
regime with purely magnetic dipole moments [24].

The two-dimensional limit of a dipolar Bose gas (DBG)
polarized perpendicularly to the plane has been studied
extensively by quantum Monte Carlo methods [18,25–28] for
a wide range of dimensionless densities nr2

0 , including high
densities where the dipole-dipole repulsion leads to such strong
in-plane correlations that the excitation spectrum exhibits a
roton similar to the roton in superfluid 4He, and even higher
densities where the ground state of the two-dimensional (2D)
DBG is a triangular crystal. Such large nr2

0 may soon be in
experimental reach because r0 can be very large, as mentioned

above. For the 2D DBG with tilted polarization, a stripe
phase has been predicted recently for sufficiently large tilt
angle [20,29]. Also, the more complicated case of a quasi-2D
layer was studied, i.e., of a DBG in a one-dimensional trap
Uext(z). The finite extent in this direction allows pairs of
particles to explore the anisotropy of the DDI. Already by using
the mean-field approach of the Gross-Pitaevskii equation,
“rotonization” of a quasi-2D layer of a polarized DBG was
found to occur if the strength of the DDI surpasses a critical
value with respect to the short-range repulsion [17,30]. The
roton in this case is not a signature of the repulsive correlations,
as in the 2D limit for high densities, but a signature of the
attractive correlations for head-to-tail configurations of pairs
of dipoles. We have shown this conclusively in Ref. [19],
where even a crossover between these two kinds of rotons
was demonstrated by variation of the trap width. While the
effect of attractive correlations on the excitation spectrum can
be qualitatively described by mean-field methods that optimize
only the ground-state density by the Ritz’ variational principle,
repulsive correlations leading to 4He-like rotons require the
optimization of at least density and pair density. This is
exactly what the family of hypernetted-chain Euler-Lagrange
(HNC-EL) methods does. The HNC-EL method was therefore
used in Ref. [19] in order to investigate both kinds of rotons. A
summary of how HNC-EL works is given in the next section;
all details about the method can be found in Ref. [31].

In this work we extend our previous investigation of a
single quasi-2D DBG layer [19,32] to a bilayer. The coupling
between layers via the long-ranged DDI and the possibility of
pairing of dipoles on different layers to form dimers (and more
generally of n bound dipoles in n layers) has been investigated
previously [33,34]. Superfluidity of fermionic bilayers was
studied in Ref. [35]. The bound and scattering states of just two
dipoles on different layers have been studied [36,37] as well.
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Our bilayer is realized by a one-dimensional double-well
potential,

Uext(z) = A {cos (qz − π ) + λ cos (2qz − 2π )}. (1)

A DBG in this trap is homogenous and infinitely large in x

and y direction and finite in the confinement direction z. The
dipole moments are aligned along the z direction; therefore
the dipole-dipole interaction (DDI) potential takes the form

Vdd (ri ,rj ) = Cdd

4π

1 − 3 cos2 ϑij

r3
ij

, (2)

where ϑij is the angle between the dipoles i and j measured
from the z axis, and rij = |ri − rj |. To stabilize the system
against collapse [2], we add a hard-core repulsion that is mod-
eled by an r−12

ij potential, where we set the hard-core radius to
σ = 0.3. The Hamiltonian describing this many-body system,
in the reduced length and energy units r0 = mCdd/(4πh̄2) and
ε0 = h̄2/(mr2

0 ), respectively, looks as follows:

H = −1

2

N∑
i=1

∇2
i +

N∑
i=1

Uext(zi)

+
∑
i<j

Vdd (ri ,rj ) +
∑
i<j

(
σ

rij

)12

. (3)

Correspondingly, we give all values for energy, length, wave
number, and density in units of ε0, r0, r−1

0 , and r−2
0 ; hence all

quantities in tables and figures are dimensionless.
In previous work [16,17,19,32] it was established that a

translationally invariant single layer of a DBG in a one-
dimensional harmonic trap can become unstable due to
the attractive part of the interaction. The pair distribution
calculated in Ref. [19] shows that this instability can be
understood as a dimerization, where two dipoles can form
a bound state; such weakly bound dipoles would not be
stable and indeed experiments with 52Cr [2] and 168Er [4]
observe a collapse of the BEC for traps that are too wide
in the polarization direction. Similarly, two coupled layers
can become unstable not only due to the attractive interaction
within a layer, but also due to the attraction between dipoles
in different layers. This latter “instability” actually indicates
the dimerization of dipoles in different layers. As long as the
barrier between the layers is high enough that the two bound
dipoles remain in their respective layer, such a dimerized phase
would be stable.

We have studied the DBG in the trap potential (1) for
various potential parameters A, q, and λ that control the barrier

TABLE I. The potential parameters A and q, the corresponding
tunnel splitting for a single particle, and the chemical potential μ of
the many-body system.

q A �E μ

2.70 2 × 104 8.4 × 10−1 15.86
2.00 2 × 104 5.6 × 10−2 16.41
1.00 2 × 104 1.9 × 10−6 16.05
0.50 2 × 103 3.6 × 10−4 10.09
0.20 1 × 103 8.4 × 10−9 4.69
0.16 5 × 102 5.9 × 10−8 3.04
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FIG. 1. (Color online) The density profile ρ(z) is shown in the
upper panel and the trapping potential Uext(z) according to Eq. (1) is
shown in the lower panel. The respective trap parameters q and A are
listed in the upper panel. Uext(z) was scaled by a factor of 100

A
in order

to show all potentials in the same figure.

height between the wells, their separation, and their individual
width. We changed the parameters such that we can study
the transition from two broad, but well-separated layers to
two thin, but close layers. We thereby go from a limit that
is dominated by intra-layer attraction to a limit dominated
by inter-layer attraction. Both limits are characterized by the
appearance of a soft mode with a respective typical parallel
wave number k‖x = O(1). In the first limit, x = aho is the
oscillator length of the approximately harmonic well felt by
each layer; in the second limit, x = d is the distance between
the layers. The six combinations of potential parameters A and
q that we used are listed in the first two columns of Table I;
λ was fixed to λ = 0.3. The corresponding trap potentials are
plotted in the lower panel of Fig. 1, where we scale it by 100/A

in order to show all six potentials in the same figure.
We note that although the average of the DDI over the whole

plane vanishes, two dipoles on different two-dimensional
planes separated by a distance d always dimerize, i.e., form a
weakly bound state due to the attractive head-to-tail well of the
DDI, regardless of the value of d [38]. Hence in the zero density
limit, the ground state is always dimerized. At finite density,
our calculations in the 2D limit show that dimerization is sup-
pressed by many-body effects [39]. In other words, increasing
the density in the two layers stabilizes the monomer phase.

II. GROUND STATE

Ground-state properties of Bose gases can be calculated
using various methods, such as the Gross-Pitaevskii method
[40–42] and quantum Monte Carlo methods [43–46]. The
Gross-Pitaevskii method is widely applied for dilute systems,
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where the correlations between particles are sufficiently weak
such that the interaction between them can be approximated
by an effective mean potential felt by each particle. Quantum
Monte Carlo (QMC), on the other hand, is also suited for
strongly interacting systems but is computationally demand-
ing. For our calculations of the ground-state properties we use
the HNC-EL method, which is a variational method suitable for
strongly correlated systems [31] but with lower computational
demands than QMC. The starting point is a Jastrow-Feenberg
ansatz for the many-body wave function

ψ0(r1, . . . ,rN ) = exp

⎡
⎣1

2

∑
i

u1(ri) + 1

2

∑
i<j

u2(ri ,rj )

⎤
⎦ , (4)

which is optimized by solving the Euler-Lagrange equations
numerically,

δ〈H 〉
δρ(r)

= 0 ,
δ〈H 〉

δg(r,r′)
= 0 .

Here ρ(r) ≡ ρ1(r) is the one-body density and g(r1,r2) =
ρ2(r1,r2) [ρ(r1)ρ(r2)]−1 is the pair distribution function. ρ1(r)
and ρ2(r1,r2) are special cases of the n-body density reduced
from the full N -body probability of the (normalized) full wave
function ψ0(r1, . . . ,rN )

ρn(r1, . . . ,rn)

≡ N !

(N − n)!

∫
d3rn+1 · · · d3rN |ψ0(r1, . . . ,rN )|2.

Due to translational invariance in the x and y direction,
for the present layer geometry all two-body functions, such
as the pair distribution function, depend on three variables:
the modulus of the projection of r ≡ r1 − r2 on the plane,
r‖ =

√
(x1 − x2)2 + (y1 − y2)2, and the two z components z1

and z2. Hence we effectively have a pair distribution function
g(z1,z2,r‖).

All calculations are done for a total area density of nr2
0 = 1,

i.e., nr2
0 = 1/2 for each of the two layers. The HNC equations

can be formulated in terms of Mayer cluster diagrams known
from classical statistical mechanics [47]. The exact solution of
the HNC equations would require the calculation of a class of
diagrams called elementary diagrams that cannot be summed
exactly. Elementary diagrams are especially important at high
densities, while they can be neglected at lower densities.
Furthermore, we note that we use a Jastrow-Feenberg ansatz
that does not extend to triplet correlations, u3(ri ,rj ,rk). From
4He we know that both elementary diagrams and triplet
correlations are important for quantitative agreement with
experiment and quantum Monte Carlo simulations [48]. For the
area density used in this work, we have checked the influence of
the elementary diagrams and the triplet correlations in the 2D
limit. In this limit correlations are stronger than for quasi-2D
geometries, so the 2D limit gives a conservative estimate of
their importance. We found that they improve the accuracy
of the static structure function S(k) (see below) by less then
2%. Therefore we neglect elementary diagrams and triplet
correlations. In Ref. [32] we compared results for a 2D system
of aligned dipoles to QMC calculations [26] for the density
ρ0 = 2. The agreement between the HNC-EL results and the
QMC calculations for the static structure function is very good.

The total energy for both calculations differs by about 2.8%,
if elementary diagrams and triplet correlations are neglected.
For the even smaller area density considered here, we expect
the accuracy to be even better.

In Table I we show the six parameter combinations that we
chose for the trap potential (1) along with the tunnel splitting
for a single particle and the chemical potential μ of the many-
body system. μ is measured with respect to the single-particle
ground-state energy, i.e., with respect to a noninteracting Bose
gas in the same trap potential. As expected, the chemical po-
tential increases if we decrease the thickness of the individual
layers, which is due to the intralayer repulsion of both the DDI
and the short-range interaction. With increasing parameter q,
the two trap wells are not only getting closer, but with our
choice of parameter combinations, also the tunnel splitting
increases. As mentioned above, we gradually move from thick
layers that are widely separated to thin layers that are close to
each other, while keeping the total area density fixed at nr2

0 =
1. The results for the density profiles ρ(z) of the DBG in the
trap potentials can be seen in the upper panel of Fig. 1. The cor-
responding trap potentials Uext(z) are shown in the lower panel
using the same line style and color (online). Uext(z) is scaled by
the inverse of the trap parameter A such that all six potentials
can be shown using the same scale. Each potential is offset
such that the ground-state energy of a single particle is zero.

In the limit of zero density or in the noninteracting limit,
the density profile is given by the square of the ground-
state solution |φ0(z)|2 to the one-body Schrödinger equation
H1 = − 1

2∇2 + Uext(z). How closely the density |φ0(z)|2 of
the one-body problem approximates the density ρ(z) of the
many-body problem depends on the area density n and
the strength of the interactions, but also on the strength of the
trap potential. For very tight confinement, the eigenenergies
of H1 above the ground-state energy (or above the first two
modes in the case of a double well) have energies so high
that their contributions to the N -body ground state can be
neglected. The weaker the confinement, the more |φ0(z)|2 and
ρ(z) will differ from each other. This is indeed what we find for
the three weaker traps with (q,A) = (0.50,2 × 103),(0.20,1 ×
103), and (0.16,5 × 102). The comparison in Fig. 2 between
|φ0(z)|2 and ρ(z) shows that the interactions lead to a wider
density ρ(z), which does not agree anymore with the one-body
assumption |φ0(z)|2. For the three more confined geometries,
|φ0(z)|2 and ρ(z) are almost indistinguishable (not shown in
Fig. 2). Note that this does not mean that a DDI in a tight trap is
well described by the one-body Hamiltonian H1; the opposite
is true. In-plane correlations are stronger in a tight trap [19].

For the layer geometry we define a static structure function
S(k‖) as

S(k‖) = 1 +
∫

d3rd3r ′ eik‖(r−r′)[g(r,r′) − 1]

= 1 +
∫

dzdz′d2r‖ eik‖r‖ [g(z,z′,r‖) − 1], (5)

where k‖ is the parallel wave number, g(r,r′) is the pair
distribution function introduced above, and k‖ is any wave
vector in the xy plane with wave number k‖. Note that S(k‖)
depends only on k‖, while we integrate over the z and z′
dependence of g(r,r′). In Fig. 3 we show the static structure
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FIG. 2. (Color online) The density profile ρ(z) is shown for
the three wider traps and compared with the single-particle density
|φ0(z)|2 in the same traps (dotted lines).

function S(k‖) as a function of k‖ for the six traps studied
here. As we go from well-separated thick layers to close thin
layers, we observe a peak in S(k‖) in both limits, whereas the
peak vanishes in between. It is natural to assume that for wide
layers the peak is caused by correlations due to the intralayer
attraction of the dipoles, whereas for a small layer distance it
is caused by correlations due to the interlayer attraction of the
dipoles. However, S(k‖) does not contain enough information
to distinguish between these two mechanisms.

In order to gain information about intra- and interlayer
correlations, we define the partially integrated pair densities
ρ11(r‖) and ρ12(r‖),

ρ11(r‖) = 4

ρ2
0

∫ ∞

0

∫ ∞

0
dzdz′ ρ2(r‖,z,z′), (6)

ρ12(r‖) = 4

ρ2
0

∫ 0

−∞

∫ ∞

0
dzdz′ ρ2(r‖,z,z′). (7)

The prefactors are chosen such that ρij (r‖) → 1 for r‖ →
∞; thus ρ11(r‖) and ρ12(r‖) can be regarded as intra- and
interlayer pair distribution functions. They are the normalized
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FIG. 3. (Color online) Static structure function S(k‖) as a function
of the parallel momentum k‖ for the six different trapping potentials.
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FIG. 4. (Color online) Integrated two-body density (see text) for
particles in the same layer ρ11 (bottom panel), and particles in different
layers ρ12 (top panel).

probabilities to find two dipoles in the same layer and in
opposite layers at a parallel distance r‖, respectively, regardless
of their z coordinate within the layer. ρ11(r‖) and ρ12(r‖) are
shown in the lower and upper panel of Fig. 4 for all six traps.
For wide, but well-separated layers there are strong intralayer
correlations at r‖ = 0, whereas the interlayer correlations
are vanishingly small. This means that two particles in the
same layer have a very high probability for head-to-tail
configurations, with no parallel separation. As we decrease the
thickness of each layer, these intralayer correlations vanish. At
the same time we decrease the distance between layers, thereby
increasing the interlayer correlations. For the smallest distance,
two particles in different layers are strongly correlated and
have a high probability for head-to-tail configurations. Since
the layer is thin, particles in the same layer have a vanishing
probability for zero parallel separation because of the DDI and
the short-range repulsion. In both limits of two independent
wide traps and two close narrow traps, the respective strong
positive correlations of ρ11 and ρ12 suggest a tendency towards
dimer formation, where two dipoles align head-to-tail either
within a layer or across two layers.

What happens if we would drive the system to even larger
correlation peaks in ρ11(r‖) or ρ12(r‖)? The instability with re-
spect to dimerization manifests itself as a numerical instability
of the HNC-EL equations. Unlike other approximations, the
HNC-EL equations have the benefit that they do not produce a
solution, if a ground state of an assumed variational form does
not exist. In the present case, the Jastrow-Feenberg ansatz (4)
does not allow for the dimerization that our above analysis of
intra- and interlayer pair distributions clearly suggests. Since
the ground state we try to compute does not exist, our iterative
procedure to solve the HNC-EL equations does not converge.
In order to actually compute the properties of the dimerized
phase, one would have to optimize a variational ansatz that is
flexible enough to allow dimerization, or alternatively, perform
quantum Monte Carlo simulations, as, e.g., in Ref. [20].
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III. EXCITATIONS

A. Bijl-Feynman modes

Owing to the translational invariance, excitations can be
characterized by a parallel (i.e., in-plane) wave number k‖.
For a given k‖ there are in principle an infinite number
of excitations that are indexed by a perpendicular quantum
number n ∈ N associated with out-of-plane motion. Especially
for narrow double-well traps these modes have a much higher
energy than the lowest two modes in the interesting regime
of wave numbers k‖; therefore we restrict our discussion to
the two lowest modes and the appearance of a soft mode.
In Fig. 5 we show the first and the second excitation mode,
ε1(k‖) and ε2(k‖), in Bijl-Feynman approximation as a function
of k‖ for the six layer geometries for which we studied the
ground state above. The first and the second excitation mode
are almost degenerate for a large distance between layers
and considerably split for a small distance. Two completely
independent DBG layers would of course have twofold
degenerate excitation energies. Even for the most separated
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FIG. 5. (Color online) Energy of the first and the second excita-
tion mode in Bijl-Feynman approximation for different distances of
the layers (lines) in comparison to the energies obtained for two 2D
layers (dots).
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FIG. 6. Difference �ε(k‖) between the energies of the two lowest
excitation modes in Bijl-Feynman approximation.

layers, the Feynman dispersion is not truly degenerate but split
for small wave numbers. In order to illustrate this, we show the
energy difference �ε(k‖) = ε2(k‖) − ε1(k‖) between the two
lowest Feynman energies as a function of k‖ in Fig. 6 for the
two traps closest to instability. The lifting of the degeneracy
can only be due to the DDI that is long ranged and hence
couples even well-separated layers. We can estimate the typical
range of parallel wave numbers for which excitations are most
strongly affected. We assume a circular density wave ∼J0(kr),
of wave number k, in one layer. A particle at r = 0 in the
other layer will feel a particularly strong dipole force if k is
such that J0(kr0) = 0, where r0 is the radius where the DDI
changes from attractive to repulsive. r0 is given by r0 = d tan θ ,
where θ is the angle of the attractive cone of the dipole
interaction, cos θ = 1/

√
3, which gives r0 = d

√
2. From this

we get an estimate for the wave vector k at which we observe
the strongest dipole coupling, which is k = 2.4048/(d

√
2).

If we estimate d as the distance between the two maxima
of the density profiles shown in the top panel of Fig. 1, we
obtain k ≈ 4 and k ≈ 0.24 for the closest and most separated
layers, respectively. This simple estimate agrees reasonably
well with the maximum energy splitting of the Feynman
spectrum at k = 5 and k = 0.35 in Fig. 6. Note that for k = 0
the DDI averages out, leading to zero DDI-induced splitting
for k → 0, which is what we observe for well-separated layers.
For the closest layers the splitting at k = 0 is large, however,
which is caused by our short-range repulsion model (σ/r)12

which at such small d can be felt between different layers.
One could decrease σ without compromising the stability
against intralayer dimerization, but we preferred to tune only
the external trapping potential while keeping the interaction
parameters fixed. Furthermore, the tunnel splitting is not small
anymore for the closest layers, adding to the splitting caused
by the short-range repulsion.

In order to test our conclusions regarding interlayer cou-
pling for two layers of finite thickness, we also performed
calculations for the limit of two 2D layers. In this case the
interaction within the same layer is purely repulsive, ∼r−3.
Positive correlations are possible only for the interlayer pair
distribution ρ11(r‖). The 2D results for the two lowest Bijl-
Feynman energy dispersions are shown as symbols in Fig. 5.
For the wide layers that are far apart, the quasi-2D and 2D
results differ substantially (top left panel), which demonstrates
that the bending of the dispersion towards forming a roton is
an intralayer effect. As we make each layer narrower, the
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quasi-2D and 2D results become almost identical. This means
that the intralayer attraction plays less of a role and the soft
mode is truly an interlayer effect. Note that in the 2D limit, the
splitting between the two lowest modes vanishes for k‖ → 0,
in agreement with the above argument that the DDI averages
out when integrated over the whole 2D plane.

B. Dynamic structure function from CBF-BW

Calculations of the excitations in the 2D limit of single
layers have shown [18] that the Feynman approximation is
adequate for the dispersion relation only at very low densities,
but correlation effects become more important as the density
is increased and fluctuations of pair correlations must be taken
into account. Pair correlation fluctuations are accounted for
in the correlated basis function–Brillouin-Wigner (CBF-BW)
formalism [49]. The CBF-BW method not only improves the
accuracy of the excitation energies, it also describes damping
via decay of collective modes into lower energy modes. We will
see that the DDI coupling between layers leads to even larger
deviations of qualitative features of the excitation spectra in
the Feynman approximation.

The CBF-BW method was adapted to layer/film geometries
in Ref. [50] and applied to superfluid 4He films [50–52] and
recently to single layers of a DBG [19]. The CBF-BW method
has been demonstrated to yield excitation energies much closer
to the experimental results than the Feynman approximation,
even for such a strongly correlated system as 4He. Further
improvement had been achieved for bulk 4He by including
fluctuations of triplet correlations [53]. The added complexity,
however, precludes an application to inhomogeneous systems.

The CBF-BW excitation energies are conveniently ob-
tained by following the linear response approach that yields
the density-density response operator χ (r,r′,E) and—via
the fluctuation-dissipation theorem [54]—the dynamic struc-
ture function S(r,r′,E) = −�mχ (r,r′,E)/π , where E/h̄ is the
frequency of a small external perturbation. The derivation of
χ (r,r′,E) can be found in Ref. [50]. If we project S(r,r′,E)
onto plane waves

S(k,E) =
∫

d3rd3r ′ eik(r−r′)S(r,r′,E),

we obtain the inelastic cross section for a perturbation
imparting the momentum h̄k to the system. For a given k, a
peak in S(k,E) at an energy E = Ē indicates an excitation
of energy Ē. Peaks can have zero linewidth, if decay of
an excitation is kinematically forbidden, or finite linewidth
otherwise. Translation invariance in the xy plane implies that
the projection k‖ of k on the xy plane is a good quantum
number. A perturbation transferring a parallel momentum h̄k‖
and energy E to the system probes the dispersion relation
εn(k‖) of the collective excitations, which we have calculated
above in the simpler Feynman approximation. One might
think that since only the parallel component of k matters for
measuring the dispersion relation, we can restrict ourselves
to a parallel k, with a vanishing perpendicular component
k⊥. However, the corresponding dynamic structure function
S(k‖,E) probes only excitation modes of even symmetry with
respect to the xy plane. Since we are interested not just in
the lowest (even) mode but also in the second (odd) mode,

we will show S(k,E) also for wave vectors k which have an
angle θ with the xy plane. A purely perpendicular perturbation
(k‖ = 0) could be implemented by fluctuations of the trapping
potential (1) itself, but such a perturbation does not probe the
dispersion relation.

1. Parallel momentum transfer

In Fig. 7 we show S(k,E) for the six different traps shown
in Fig. 1, the parameters given in Table I, and for wave
vectors k that are parallel to the xy plane, i.e., k⊥ = 0 and
hence k‖ = k. S(k,E) is represented in Fig. 7 by mapping
S(k,E)1/4 to a gray scale. The power of 1

4 makes sure that
also broad, but low-intensity features can be seen well. Full
lines track peaks of S(k,E) of zero linewidth, i.e., which are
proportional to a δ function. The resulting line is an undamped
dispersion relation. For sufficiently large wave number k, the
dispersion relation merges with the gray area, where damping
by decay of an excitation into two lower-energy excitations
is kinematically possible (i.e., energy and momentum are
conserved). The Bijl-Feynman spectrum is shown as dotted
lines for comparison, including also higher modes. For wider,

FIG. 7. (Color online) S(k‖,E) is shown for six different traps,
with the trap parameters q and A given in each panel. For better
visibility of low-intensity features, we map S(k‖,E)1/4 to a gray scale.
The full lines trace undamped peaks, and the dotted lines are the
dispersion relations in Bijl-Feynman approximation.
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FIG. 8. (Color online) The left panel shows S(k‖,E) for A =
2 × 104 and q = 2.0 as in Fig. 7, i.e., with interlayer DDI. The right
panel shows the corresponding S(k‖,E) when the DDI between the
layers is switched off.

well-separated traps, the Bijl-Feynman dispersion agrees quite
well with the CBF-BW result—even for the widest trap where
a roton starts to form due to the intralayer instability (top
left panel). Of course, the Bijl-Feynman approximation does
not account for damping. As we confine the two layers more
strongly by increasing both trap potential parameters A and q,
the dipole coupling between films leads to a splitting of the
Bijl-Feynman energies, as discussed above. S(k,E) has a much
richer structure that is poorly represented by the Bijl-Feynman
spectrum. On the one hand the density increases as the trap
tightens (see Fig. 1), and the Bijl-Feynman approximation
becomes worse at higher density. On the other hand, the DDI
between layers leads, in addition to a splitting of excitation
energies, also to more decay channels.

We demonstrate the importance of interlayer DDI coupling
by switching it off for the two traps resulting in the closest
layers (A = 2 × 104 and q = 2.0; 2.7). This is simply achieved
by setting Vdd to zero if z1 and z2 have opposite signs. In
Figs. 8 and 10 we show S(k‖,E) with the full DDI in the
left panels and without interlayer DDI in the right panels. For
q = 2.0 (Fig. 8), the lack of interlayer DDI almost completely
decouples the two layers, leading to an almost degenerate
Bijl-Feynman spectrum. What we get is the dynamic struc-
ture function of a single layer, which has been studied in
Ref. [19]. The interlayer DDI leads to significant additional
damping for higher energies, seen by the wider peak in the
energy regime where the dispersion becomes approximately
quadratic. Note that even without interlayer DDI, there is a
bend in the dispersion for q = 2.0, which shows it is not
so much caused by interlayer coupling but by the intralayer
repulsion of the DDI that, for much higher area density, results
in the type of roton studied in Ref. [18] in the 2D limit.

While a full S(k‖,E) map is necessary to track the dispersion
relation, the detailed line shapes of the various peaks are best
seen by plotting slices of S(k‖,E) for fixed values of k‖. The
top panel of Fig. 9 shows, for trap parameters A = 2 × 104

and q = 2.0, a slice of S(k‖,E) at k‖ = 5.0, which is slightly
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FIG. 9. (Color online) A slice of S(k‖,E) with (full line) and
without (dashed line) interlayer DDI, with A = 2 × 104 and q = 2.0.
k‖ = 5.0 in the upper panel and k‖ = 8.0 in the lower panel. The
vertical lines in the upper panel indicate the respective energies of the
undamped mode. Arrows show the respective excitation energies in
Bijl-Feynman approximation.

below the value of k‖ where the sharp dispersion curve
merges into the damping regime and thus becomes broad
[see full S(k‖,E) map in Fig. 8]. The full line and dashed
line are the results for S(k‖,E) with and without interlayer
DDI, respectively. The corresponding excitation energies in
Bijl-Feynman approximation are indicated by arrows. The
vertical lines are the undamped peaks of the sharp dispersion.
We see that S(k‖,E) has only one broadened peak without
interlayer DDI, while the inclusion of the interlayer DDI leads
to two broadened peaks. We stress again that for parallel
momentum transfer, S(k,E) only probes the lower, even mode;
hence the two broad peaks are not due to the splitting of a
degenerate eigenmode [S(k‖,E) for nonparallel momentum
transfer is presented below].

As k‖ is increased further, the sharp peak loses more and
more spectral weight and eventually becomes damped. This
case is shown in the lower panel of Fig. 9, where k‖ = 8.0
and the sharp dispersion has vanished for both the coupled and
uncoupled bilayer (see Fig. 8). Again there is only a single peak
without interlayer DDI and two peaks with interlayer DDI. The
lower peak is caused by the DDI coupling, while the higher one
is only shifted slightly with respect to its position without DDI
coupling. Note that the DDI coupling approximately doubles
the width of the higher peak, and hence reduces the lifetime of
the associated excitation by about a factor of 2. Thus, as one
can expect, the dipole-dipole coupling between layers leads to
faster decay of excitations compared to uncoupled layers.

Finally, in Fig. 10 we compare S(k,E) with and without
interlayer DDI for even closer layers (A = 2 × 104 and
q = 2.7). The bending is now significantly enhanced by the
interlayer DDI. In CBF-BW approximation, the dispersion
(blue line) has a small slope at k‖ = 3, i.e., the system is
close to “rotonization.” Note that the residual splitting of the
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FIG. 10. (Color online) Same as Fig. 8 for A = 2 × 104 and
q = 2.7.

dispersion without interlayer DDI is due to tunneling and the
short-range repulsion as mentioned above.

2. Nonparallel momentum transfer

Parallel momentum transfer only probes those excitations
which are even with respect to inversion at the z = 0 plane,
because a perturbation independent of z is even and therefore
cannot excite odd modes. In order to probe odd modes, we
study S(k,E) for wave vectors k with an arbitrary angle θ

with respect to the z = 0 plane. Figure 11 shows S(k,E) for
θ = 0◦; 20◦; 40◦; 60◦; 80◦, for trap parameters A = 2 × 104

and q = 2.7. We plot S(k,E) as a function of k‖, not |k|,
since only k‖ is a good quantum number that is meaningful for
characterizing the excitation spectrum. Unlike in all previous
figures of S(k,E), we now add an artificial small imaginary
part η = 0.1 to the energy E which slightly broadens all
features of S(k,E). The rationale behind this broadening is

that it makes the spectral weight of peaks with zero intrinsic
linewidth visible.

The case θ = 0◦ was shown already in Fig. 7 (without arti-
ficial damping), and is shown here again for better comparison
with θ > 0◦. For θ = 0◦ indeed only the lowest, even mode is
visible. As θ is increased, a second mode becomes visible and
gains weight. For θ = 60◦, both modes can be seen equally
clear in S(k,E), where they appear as a narrow dark trace.
Note that the second, odd mode is damped for small k‖. This
is very different from the low-k‖ behavior of the lowest mode
(sound mode), which is not damped because of its negative
curvature. The damping of the second mode can be seen
as a broadening (in addition to the artificial broadening) for
k‖ � 1.8. We introduce the damping limit En,m(k‖), which is
the energy above which an excitation of parallel wave number
k‖ can decay into two modes with perpendicular wave number
n and m. En,m(k‖) is given by

En,m(k‖) = min
q‖

[εn(k‖) + εm(|q‖ − k‖|)],

where, due to the limitations of the CBF-BW approximation,
εn(q‖) are the excitation energies in the Bijl-Feynman approx-
imation, not the excitation energies following from CBF-BW
itself. (Inclusion of triplet correlations has been shown for
homogeneous systems to lead to a self-consistent formulation
of the self-energy, see Ref. [53].) Even modes can decay
into combinations where n + m is even and vice versa for
odd modes. Since we are interested only in decays of the
lowest two modes, we obtain three decay limits, which fulfill
E1,1(k‖) < E1,2(k‖) < E2,2(k‖). They are shown in Fig. 11 as
dashed lines. The lowest mode can decay into (n,m) = (1,1)
and (2,2) and the second mode can decay into (n,m) = (1,2).
The effect of these respective limits are clearly seen in Fig. 11.
Damping indeed sets in as the dispersion relation of the mode
crosses the damping limit with a symmetry appropriate for the
mode.

Also visible in Fig. 11 are interference patterns that lead to
a modulation of the intensity of S(k,E) as k‖ and thus k⊥ =
k‖ tan θ is increased. These are simply due to the perpendicular
wave number k⊥ being in phase or out of phase with even

FIG. 11. (Color online) S(k,E) is shown as a function of k‖ for different angles θ of k with respect to the plane of the bilayer. The trap
parameters are A = 2 × 104, and q = 2.7 and S(k,E) was broadened by adding a small imaginary part to the energy, η = 0.1. As θ is increased,
the second excitation modes becomes visible in S(k,E). The dots are the energies in Bijl-Feynman approximation, and the dashed lines are the
damping limits En,m(k‖) discussed in the text.
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or odd modes. For example, a value of k⊥ ≈ π/d, where d

is a measure for the distance between the layers, leads to a
cancellation of the intensity for even modes but to a maximal
intensity for odd modes.

IV. DISCUSSION AND CONCLUSION

In this work we generalized our previous studies [19] of
dipolar Bose gas layers from a single layer in a harmonic trap
to double-well traps, which results in a bilayer geometry. As
in our previous work, the bilayer calculations are based on
the HNC-EL method for the many-body ground state and on
the CBF-BW method for excitations. Dipolar bilayers have
a richer structure than single layers owing to the interlayer
dipole coupling. The possibility of head-to-tail pairing of two
dipoles on different layers leads to similar rotonization effects
in the nonpaired (monomer) phase, as previously predicted
in single layers. We restricted ourselves to the calculation of
ground-state correlations of the monomer phase, as well as
its excitation spectrum, including damping due to decay of
excitations into two lower excitations.

We systematically varied the double-well trap parameters
between two close, but thin layers and two well-separated,
but wide layers, while keeping the total area density fixed at
a modest nr2

0 = 1. The two end points of the range of trap
parameters are marked by instabilities of the monomer phase.
Either if layers are too close or if one layer is too wide, inter-
layer or intralayer dimerization occurs, respectively. The latter
kind of dimers are not stable and would quickly collapse via
three-body collisions, but interlayer dimers are stable, given a
sufficiently high double-well barrier. The propensity to pairing
was clearly seen in the monomer pair distribution functions
ρ12(r‖) or ρ11(r‖), which are the normalized probabilities to
find two dipoles in different or the same layers, respectively, at
a parallel distance r‖. We showed that at r‖ = 0, ρ12(r‖) grows
a peak for small interlayer distance, while ρ11(r‖) grows one if
each single layer is sufficiently wide. In both cases, the peak
of ρij (r‖ = 0) is a precursor to the pairing of two dipoles in
head-to-tail orientation.

We presented calculations of the dynamic structure function
S(k,E) in the CBF-BW approximation. S(k,E) for parallel
momentum transfer probes only even modes, where we are
mostly interested in the lowest one. S(k,E) typically consists
of a lower, undamped peak (that vanishes for higher k‖)
and two broad peaks that are due to the interlayer DDI
coupling (without it, there is only one broad peak), which
also enhances damping. The double-peak structure is not to
be confused with the more trivial effect that each mode is
split into two because the interlayer DDI lifts its degeneracy.
The rich structure of S(k‖,E) is not captured by the simple
Bijl-Feynman approximation, which would predict a single,

undamped peak for the lowest mode. The intra- and interlayer
instabilities of the monomer phase are characterized by a
bending of the dispersion relation of the lowest (intralayer
dimer) or lowest two (interlayer dimer) excitation modes.
This bending, that is less pronounced but still visible in the
Bijl-Feynman approximation, indicates “rotonization,” which
is well studied for single layers. As in our previous work on
single layers, we found that the iterative procedure to solve the
nonlinear set of HNC-EL equations becomes unstable as we
approach rotonization, i.e., as the dispersion relation starts to
have a local minimum at finite k‖. This leads to the conjecture
that the ground state is only metastable when the excitation
spectrum exhibits a roton, while the true ground state, i.e., the
state of lowest energy, is the (intra- or interlayer) dimerized
phase. For a proof of this conjecture, however, one would need
to compare our monomer results with results for the dimerized
phase to find out which state has the lowest energy. Finally,
we also presented results for nonparallel momentum transfer,
i.e., where the angle between k and the plane of the layers is
nonzero. The dynamic structure function depends on both the
parallel and perpendicular components of k, k‖ and k⊥. k‖ still
is a good quantum number, while the nonzero k⊥ allows prob-
ing also odd modes, particularly the second excitation mode.
Showing S(k,E) as a function of the parallel wave number,
the second mode becomes clearly visible for, e.g., an angle
θ = 60◦. Unlike the lowest mode, the second mode is damped
for small k‖ due to decay into two excitations of lower energy.

An interesting topic is the correlations of the monomer
phase and its excitations generalized to N layers. The long-
ranged DDI coupling between different layers, for example,
lifts an N -fold degeneracy of the excitation spectrum and
opens many possible decay channels for the resulting N

modes. Another direction is the study of “unbalanced” bilayers
where the two layers have different area densities, or bilayers
with different kinds of particles (e.g., different mass) on each
layer. If, for example, the density in one layer is very low,
the DDI interaction with the other layer would constitute a
very-well-controlled model of an impurity particle moving in
one layer, coupled to a bath of particles in the other layer.
The mechanism of how an impurity attains an effective mass
could be investigated in a well-controlled fashion over a much
wider range of densities and interaction strengths than in
condensed-matter systems.
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