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Vortex pump for Bose-Einstein condensates utilizing a time-averaged orbiting potential trap
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We show that topological vortex pumping can be implemented for a dilute Bose-Einstein condensate confined
in a magnetic time-averaged orbiting potential trap with axial optical confinement. Contrary to earlier proposals
for the vortex pump, we do not employ an additional optical potential to trap the condensate in the radial direction,
but instead, the radial confinement is provided by the magnetic field throughout the pumping cycle. By performing
numerical simulations based on the spin-1 Gross-Pitaevskii equation, we find that several pumping cycles can be
carried out to produce a highly charged vortex before a majority of the particles escape from the trap or before
the vortex splits into singly charged vortices. On the other hand, we observe that an additional, relatively weak
optical plug potential is efficient in preventing splitting and reducing particle loss. With these results, we hope to
bring the vortex pump closer to experimental realization.
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I. INTRODUCTION

Bose-Einstein condensation in alkali-metal gases was
observed experimentally in 1995 [1–4]. A few years later,
these pioneering experiments were followed by the creation of
singly quantized vortices [5,6] and vortex lattices [7–9] in such
systems. Since then, the study of vortices in Bose-Einstein
condensates (BECs) has flourished both theoretically and
experimentally [10,11] due to their close connection with
phase coherence and superfluidity. In particular, their stability
has been the subject of extensive research [12–24].

In a loop encircling a quantized vortex, the phase of the
condensate order parameter undergoes an integer multiple κ

of 2π windings. In principle, a vortex in a BEC can have
any winding number κ . However, it is well known that a
vortex with |κ| > 1 typically has a higher energy than the
corresponding number of separated single-quantum vortices.
Consequently, vortices with large winding numbers are prone
to splitting [25–32], which renders them challenging to create
with dynamical methods, such as using a focused laser beam
to stir [6] or slice through [33] the BEC, rotating it with
an asymmetric trap potential [34], or colliding condensates
separated by tailored optical potentials [35]. Being able to
produce vortices with large winding numbers would provide
access to novel vortex splitting patterns beyond the typical
linear chain that prevails for |κ| � 4 [25,30]. Due to the
distinct nature of the different splitting patterns predicted for
large values of κ [32], observing the decay of such vortices
would allow for a lucid comparison between theory and
experiment. Moreover, it has been speculated that giant-vortex
splitting may create necessary conditions for the initialization
of superfluid turbulence [36,37].

In addition to the above-mentioned dynamical methods,
vortices can be created with the so-called topological phase
engineering technique [38–41] (see Ref. [42] for review), in
which the spin degree of freedom of the BEC is controlled

*Present address: Department of Physics, P.O. Box 43, FI-00014
University of Helsinki, Finland; pekko.kuopanportti@gmail.com

adiabatically by a time-dependent nonuniform magnetic field.
Since the method does not rely on the relaxation of con-
densate dynamics, it is especially well suited for producing
multiquantum vortices. Indeed, the first two-quantum and
four-quantum vortices in dilute BECs were created by applying
the technique to spin-1 and spin-2 BECs confined in a magnetic
Ioffe-Pritchard (IP) trap [43].

Subsequent theoretical studies have demonstrated that the
topological phase engineering technique can also be used to
implement a so-called vortex pump [44–48]. In this device, a
fixed amount of vorticity is added to the BEC in each control
cycle, and thus its repeated application would—stability
issues notwithstanding—enable the creation of vortices with
arbitrarily large winding numbers. The original proposal [44]
involved creating 2F quanta of vorticity per cycle in a spin-F
BEC with a magnetic-field configuration consisting of the
standard IP trap and an additional hexapole magnetic field.
Backed by numerical simulations, the pump was shown to be
operable both fully adiabatically and partly nonadiabatically.
Later, Xu et al. [45] presented a different pumping cycle for
the IP trap in which the hexapole field was replaced with a
uniform transverse field. Unfortunately, both of these control
cycles suffer from the fact that the magnetic fields provide
radial confinement only during part of the cycle, and thus, the
fully adiabatic operation of the pump necessitates an optical
trap to confine the BEC radially. Since the purpose of the IP
trap has been to confine the atomic cloud in the first place, there
has been little incentive to supplement it with an optical trap
or a hexapole field. Therefore, pumping schemes not requiring
such extra ingredients would be desirable from a practical
standpoint.

Recently, Xu et al. showed theoretically that vortex pump-
ing can be applied to quantum superpositions to generate
countercirculation states [47]. The authors used a novel control
cycle which is particularly suitable for the time-averaged
orbiting potential (TOP) trap [49] and has the advantage
that the radially confining quadrupole field can be kept on
throughout the entire cycle. However, since only one of
the components in the superposition state could be trapped
magnetically, a three-dimensional optical trap, as well as a
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strong optical plug potential piercing the vortex core, had to
be employed [47].

The aim of this article is to bring the vortex pump
closer to experimental realization by showing that it can be
implemented with mature, existing technologies alternative
to the ones considered in Refs. [44–48]. To this end, we
demonstrate that vortices can be efficiently pumped in the TOP
trap without using, in contrast to Ref. [47], additional optical
potentials to confine the BEC in the radial direction or to pin
the vortex core. Instead, the radial confinement is provided
solely by the magnetic field throughout the pumping process,
and optical trapping is required only in the axial direction. We
present simulations based on the Gross-Pitaevskii equation
which indicate that several pumping cycles can be carried out
before a majority of the particles escape from the trap or before
the generated multiquantum vortex splits into singly quantized
vortices due to dynamical instabilities [32,50]. On the other
hand, we also show that even a relatively weak optical plug
potential is efficient in preventing the splitting and in reducing
the loss of particles, thereby enabling the controlled creation
of isolated vortices with large winding numbers.

The remainder of this article is organized as follows. In
Sec. II, we present the zero-temperature mean-field theory of
the spin-1 BEC, describe the control cycle of the vortex pump,
and discuss in detail the confinement of the condensate during
the cycle. Section III presents our numerical results, which
we relate to realistic experimental setups in Sec. IV. Finally,
Sec. V concludes the article with a discussion.

II. THEORY AND METHODS

A. Mean-field model

We consider a dilute spin-1 BEC in the zero-temperature
limit, thereby neglecting the possible effects due to noncon-
densed atoms. In the standard mean-field treatment, the spin-1
condensate is described by a three-component order-parameter
field that we write in the eigenbasis of the spin-1 matrix Fz

as �� = (�+1,�0,�−1). Its time dependence is given by the
spin-1 Gross-Pitaevskii (GP) equation [51,52]

ih̄∂t
��(r,t) = (H + gn ��† �� + gs ��†F �� · F) ��(r,t). (1)

The single-particle Hamiltonian operator H is given by

H = − h̄2

2m
∇2 + Vopt(r) + μBgF B(r,t) · F, (2)

where m denotes the atomic mass, gF is the Landé factor, μB

is the Bohr magneton, B(r,t) denotes the external magnetic
field, and F = (Fx,Fy,Fz) is a vector of the standard spin-1
matrices [53]. Optical potential terms are contained in
Vopt(r) = Vtr(z) + Vplug(r), where Vtr(z) = mω2

zz
2/2 is a

strong axial harmonic trap and Vplug(r) = A exp(−r2/d2)
describes a possibly present Gaussian-shaped repulsive plug
potential of amplitude A � 0 and width d. Here, r =√

x2 + y2 is the radial coordinate. The coupling constants
gn and gs appearing in Eq. (1) measure the strengths of the
local density-density and spin-spin interactions, respectively.
They are related to the s-wave scattering lengths a(0) and a(2)

into spin channels with total spin 0 and 2h̄ by the expressions
gn = 4πh̄2[a(0) + 2a(2)]/3m and gs = 4πh̄2[a(2) − a(0)]/3m.

The order parameter is normalized such that
∫

d3r ��† �� = N0,
where N0 is the number of particles in the BEC.

B. Magnetic fields and the pumping cycle

The operation principle of the vortex pump is to control
the spin degree of freedom of the condensate locally by
slowly tuning the magnetic field B(r,t) in a cyclic manner
such that the system acquires a fixed amount of vorticity per
cycle [44–48]. In the pumping scheme considered here, the
spin-1 atoms are assumed to be magnetically confined in the
standard TOP trap [49]. It consists of a quadrupole field Bq,
which has axial symmetry about the z direction, and a rapidly
rotating, spatially uniform magnetic field Brot oriented along
the xy plane. In addition, we assume that the TOP trap is
accompanied by a uniform axial bias field Bb

z (t)ẑ that can be
controlled independently of the other fields. The total magnetic
field can be written as

B(r,t) = Bq(r) + Brot(t) + Bb
z (t)ẑ, (3)

where Bq(r) = B ′(xx̂ + yŷ − 2zẑ) is the quadrupole field with
the radial gradient B ′ and the rotating transverse bias field is
given by

Brot(t) = Brot(t) [cos (ωrott) x̂ + sin (ωrott) ŷ] , (4)

where ωrot denotes its angular frequency of rotation about the
z axis. The bias field strengths are assumed to be bound by
B0 such that Bb

z (t) ∈ [−B0,B0] and Brot(t) ∈ [0,B0]. We point
out that the field configuration of Eq. (3) has already been
employed in BEC experiments [54,55].

In order to facilitate vortex pumping in the TOP trap, we use
the control cycle presented in Fig. 1. It is carried out by tuning
two magnetic-field parameters, Bb

z and Brot, and can be divided
into part A (0 � t � TA) and part B (TA � t � TA + TB =: T ).
Part A is similar to the original proposals of topological phase
engineering [38–41,44] and the experiments [25,43,56–59],
and it is responsible for increasing the circulation in the spin-1
BEC by two quanta. It is executed by reversing the axial bias
field with the rotating field switched off,

Brot(t) = 0

Bb
z (t) = B ′ρ0 tan

[
2t−T1

T1
arctan

(
B0

B ′ρ0

)]
⎫⎬
⎭ 0 � t � TA, (5)

where B0 should be large enough to render the BEC essentially
spin polarized along the z axis at t = 0 and t = TA. To improve
adiabaticity, the time dependence for Bb

z has been chosen such
that spins at a distance of ρ0 from the z axis are turned with
constant speed, but part A can also be performed by reversing
Bb

z (t) linearly in time [43]. In part B, the axial bias field is
returned to its initial value while ramping up and down the
rotating field,

Brot(t) = B0 sin β(t)

Bb
z (t) = B0 cos β(t)

}
TA � t � T , (6)

where β(t) = π (t − TA)/TB. Part B was originally proposed
by Xu et al. [47], and it is designed to preserve the accumulated
vorticity. The cyclic repetition of parts A and B will therefore
increase the vortex winding number of the spin-1 BEC by two
per cycle.
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FIG. 1. (a) Control cycle of the vortex pump in the (Brot,B
b
z )

plane, where Brot and Bb
z are the strengths of the transverse and axial

magnetic bias fields, respectively. The cycle starts at (Brot,B
b
z ) =

(0,−B0) and proceeds clockwise. (b) Time dependence of Brot (solid
line) and Bb

z (dashed line) [Eqs. (5) and (6)] during the cycle. The
cycle is divided into parts A and B as indicated. In part A, the axial
bias field Bb

z can also be reversed linearly.

To efficiently steer the condensate spin by the magnetic
field B(r,t) requires that the Zeeman energy dominates over
the kinetic energy at each point in space. Hence, to guarantee
adiabaticity, |B(r,t)| should be sufficiently large in the region
occupied by the BEC. This condition is not fulfilled at the
origin when Bb

z crosses zero at t = TA/2, and thus it is
desirable to prevent particles from entering this area. This can
be accomplished by introducing the repulsive plug potential
Vplug(r) along the z axis. The plug not only improves adia-
baticity but also serves to stabilize the created multiquantum
vortex against splitting [32,48]. The plug can be realized for
pancake-shaped BECs by a focused blue-detuned laser beam
as has been done in various experiments [3,8,9,60,61]. In this
article, we present results for vortex pumping both with and
without the plug potential.

C. Confinement during pumping

An essential difference between this article and earlier work
concerning the vortex pump [44–48] is that here we never
employ an optical trapping potential in the radial direction.
Instead, radial confinement is provided by the magnetic field
throughout the entire pumping cycle. In the case of spin-1
BECs, the magnetically trapped weak-field seeking state
(WFSS) corresponds locally to the highest-energy eigenstate
of the Zeeman Hamiltonian gF μBB(r,t) · F, with the effective
trap potential given by the local eigenvalue |gF μBB(r,t)|.

Even though this potential is solely responsible for the radial
confinement, a strong optical trap is still needed in the axial
direction to keep the atomic cloud centered around z = 0
throughout the pumping cycle. Changes in Bb

z shift the z

coordinate of the zero-value point of the total magnetic field,
and without the optical z confinement, carrying out the cycle
would merely move the whole BEC along the z axis. Hence,
the Hamiltonian in Eq. (2) includes the harmonic axial trapping
potential Vtr(z) = mω2

zz
2/2 with a trap frequency ωz that

is assumed to be large enough to render the condensate
pancake shaped, which means that the order parameter can
be taken to have the form ��(r,t) = ��2D(x,y,t)ζ (z), where
ζ (z) = exp(−z2/2a2

z )/ 4
√

πa2
z and az = √

h̄/mωz is the axial
oscillator length. This enables us to integrate out the z variable
in Eq. (1) and obtain an effectively two-dimensional GP
equation with the magnetic field determined at z = 0.

Let us consider the shape of the magnetic potential in the
vicinity of the origin. During part A of the cycle (0 � t � TA),
the strength of the magnetic field is given by

|B| =
√

(B ′x)2 + (B ′y)2 + [
Bb

z − 2B ′z
]2

≈ ∣∣Bb
z

∣∣ − 2B ′∣∣Bb
z

∣∣
Bb

z

z + B ′2

2
∣∣Bb

z

∣∣ r2, (7)

where in the expansion we have neglected third- and higher-
order terms in B ′r/|Bb

z | and B ′|z|/|Bb
z |. Therefore, the mag-

netic field at t = 0 gives rise to an approximately harmonic
potential in the radial direction with the trap frequency

ω0 = B ′(0)

√∣∣∣∣ gF μB

mBb
z (0)

∣∣∣∣. (8)

It is convenient to measure all quantities in terms of ω0, and
thus we express lengths in units of the corresponding oscillator
length a0 = √

h̄/mω0 � az, energies in units of h̄ω0, time in
units of 1/ω0, and the magnetic field in units of h̄ω0/|gF |μB.
Variables expressed in these units are henceforth denoted with
a tilde.

According to Eq. (7), the profile of the radial confinement
will change during part A. Initially, the potential is harmonic,
with the effective trap frequency ∝ |Bb

z (t)|−1/2 increasing in
time. At t = TA/2, the trap becomes purely linear in r with the
gradient |gF |μBB ′. The axisymmetric modulations of the trap
profile will cause shrinking of the BEC and excitation of its
breathing mode. Although these effects do not critically hinder
the operation of the pump, they can nevertheless be reduced by
introducing time dependence into B ′ such that it is decreased
when |Bb

z | is ramped down during part A. Here, we use the
dependence

B ′(t) =
⎧⎨
⎩B ′

0

[
B ′

min
B ′

0
+

(
2t−TA

TA

)2(
1 − B ′

min
B ′

0

)]
, 0 � t � TA,

B ′
0, TA < t � T ,

(9)
with B ′

0 = B ′(0) and B ′
min ≈ 0.4B ′

0. Varying B ′ is not
necessary but it improves the accuracy of the pump and reduces
the loss of particles.

In part B, the frequency ωrot of the rotating bias field is
chosen to be low compared with the frequencies of transitions
between different magnetic substates but large compared
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FIG. 2. (Color online) Squared modulus and complex phase of the order-parameter components �+1 (at t = lT , l ∈ N) and �−1 (at
t = lT + TA) in the xy plane during pumping (a) without and (b) with an optical plug potential of amplitude A = 10h̄ω0 and width d = 2a0.
The field of view in the panels is (a) 12a0 × 12a0 and (b) 14a0 × 14a0. The two parts of the control cycle have the durations TA = 3/ω0 and
TB = 2/ω0, and the dimensionless coupling constants are set to g̃n = 250 and g̃s = −0.01g̃n.

with the effective radial trap frequency. Typically, magnetic
trap frequencies are of order 102 Hz, while the transition
frequencies are of order 106 Hz. Thus, a reasonable choice
would be, e.g., ωrot ∼ 104 Hz. These conditions ensure that
the atoms will not undergo transitions to other substates and
be lost from the magnetic trap but instead move in an effective
potential given by the time average of the instantaneous
magnetic potential over one rotation period of the field Brot.
For TA � t � T , the fast-time-averaged field strength can be
expanded in a power series in B ′r/B0 and B ′|z|/B0 as

ωrot

2π

∫
It

dt ′|B(t ′)|

≈ B0 − 2B ′z cos β + B ′2

4B0
(1 + cos2 β)r2 + 2B ′2 sin2 β

B0
z2,

(10)

where the third- and higher-order terms have been discarded
and the interval of integration is It = [t − π/ωrot,t + π/ωrot].
Equation (10) implies that the effective radial trap frequency
will decrease by ∼29% during part B, but this should not
significantly disturb the pumping process.

III. RESULTS

We study the temporal evolution of a spin-1 BEC during
vortex pumping by numerically solving the GP equation,
Eq. (1), with the T -periodic time dependence of the magnetic
field B(r,t) given by Eqs. (5), (6), and (9). After factoring
out the z dependence of the order parameter as �� (r,t) =
��2D (x,y,t) ζ (z), Eq. (1) is discretized on a uniform grid
with a finite-difference method and integrated in time for
several consecutive pumping cycles using a split-operator
approach. The dimensionless coupling constants are chosen
to have the values g̃n = N0mgn/

√
2πh̄4a2

z = 250 and g̃s =
N0mgs/

√
2πh̄4a2

z = −0.01 g̃n, the latter corresponding to
spin-1 condensates of 87Rb [62–65]. The durations for parts
A and B of the control cycle are given by T̃A = ω0TA = 3 and
T̃B = ω0TB = 2, respectively, and the parameters in Eqs. (5),
(6), and (9) have the values B̃0 = |gF |μBB0/h̄ω0 = 200, ρ̃0 =
ρ0/a0 = 5, B̃ ′

0 = |gF |μBa0B
′
0/h̄ω0 = √

200, and B̃ ′
min =

|gF |μBa0B
′
min/h̄ω0 = 6. The Landé factor gF is taken to be

negative as in the case of spin-1 87Rb. The frequency of
the rotating field is set to ω̃rot = ωrot/ω0 = 85. We present
results both with and without an optical plug potential of
amplitude Ã = A/h̄ω0 = 10 and width d̃ = d/a0 = 2. Before
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FIG. 3. (Color online) Particle number N and average orbital angular momentum 〈L̂z〉/N of the BEC as functions of time during the
vortex pump simulations presented in Fig. 2: (a) no optical plug potential; (b) Gaussian-shaped plug of amplitude A = 10h̄ω0 and width
d = 2ar .

the pumping is started, a relaxation method is used to bring
the BEC to the lowest-energy WFSS with the magnetic field
in its t = 0 configuration.

Figure 2 shows the squared moduli and the complex phases
of the most relevant order-parameter components �+1 (at t =
lT , l ∈ N) and �−1 (at t = lT + TA) during the pumping
process. The accumulation of two quanta of vorticity during
part A of each cycle is clearly visible in the phase fields at
t = lT + TA. Part B of the cycle, during which the rotating bias
field is on, is observed to leave the vorticity unaffected. The
pumping also causes breathing of the BEC, as indicated by its
oscillating spatial extent and by the nonzero radial derivatives
of the phase fields. The excitation of the breathing mode is
attributed to the changing magnetic confinement during the
pumping cycle [see Eqs. (7) and (10)].

Axisymmetric vortex states with large winding numbers κ

have been found to be dynamically unstable against splitting
in pancake-shaped, harmonically trapped single-component
BECs for most values of the interatomic interaction strength,
with the degree of instability generally increasing with increas-
ing κ [24,32]. Therefore, when the stabilizing plug potential
is not employed in the pumping, the created multiquantum
vortex is expected to split after it has accumulated a sufficiently
large winding number. In Fig. 2(a), the onset of splitting
is visible around t = T + TA, when κ = 4. As shown for
t = 5T + TA, the process eventually results in a line of singly
quantized vortices and is thus ascribed to a dynamically
unstable excitation mode with orbital angular momentum of
±2h̄ per particle with respect to the condensate [32]. On
the other hand, when the relatively weak plug is employed
[Fig. 3(b)], the vortex does not split despite its significant
breathing, and a nearly symmetric 12-quantum-vortex state
is observed at t = 5T + TA. We have confirmed numerically
that the plug amplitude A can be subsequently ramped down
without destroying the state.

Due to the finite pumping period T and magnetic field
strength |B|, the pumping process is not perfectly adiabatic,
and there are spins that do not follow the local magnetic field.
Since these spin components are no longer trapped, they escape
the condensate region. Consequently, the number of particles

in the trap decreases during the process. The loss rate depends
on the degree of adiabaticity of the pump, i.e., on the pumping
speed and on the local field strength |B(r)|.

Figure 3 presents the number of particles in the trap,
N = ∫

r�R
d3r ��† �� � N0, and their average orbital angular

momentum 〈L̂z〉/N = −ih̄
∫
r�R

d3r ��† [ẑ · (r × ∇)] ��/N as
functions of time during the pumping process. Here, the
particles are considered lost after their distance from the z axis
exceeds R = 13a0. Therefore, the curves in Fig. 3 also include
contributions from unconfined atoms that have not drifted
away from the trap region. Even after taking this into account,
we find that a substantial portion of the atoms still remain in
the WFSS at t = 5T . As expected, the optical plug [Fig. 3(b)]
is observed to significantly reduce the loss of particles.

Whereas the number of vortices in a scalar condensate is
quantized, the orbital angular momentum 〈L̂z〉 is a continuous
quantity. The angular-momentum curves in Fig. 3 indicate the
increment of vorticity by two during part A of each cycle and
show that 〈L̂z〉/N increases monotonously during the first few
cycles. The considerable deviation of 〈L̂z〉 from the ideal value
2lh̄N after l cycles is mainly due to the contribution of the
untrapped atoms that remain in the region r � R. Moreover,
the slight increase in 〈L̂z〉/N during each part B is attributed
to the small center-of-mass motion induced by the rotating
transverse bias field.

IV. EXPERIMENTAL FEASIBILITY

Let us briefly relate the proposed topological vortex
pump to a realistic experimental setup. As an example of
previously realized experimental parameters, the experiment
of Ref. [61] studied condensates of 2 × 106 87Rb atoms in the
5 2S1/2 |F = 1,mF = −1〉 state. The atoms were confined in
a TOP trap with a bias field of Brot = 5 G and a quadrupole
field with the radial gradient B ′ = 27 G/cm. An additional
red-detuned Gaussian laser beam propagating in the xy plane
provided strong confinement along the z axis and negligible
confinement in the radial plane; the TOP trap provided the
significant portion of radial confinement. This laser beam had
a wavelength of 1090 nm, a power of ∼0.5 W, and radii of

033623-5
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∼20 μm along z and ∼2 mm along r . The combined optical
and magnetic traps gave trapping frequencies of (ω0,ωz) =
2π × (8,90) Hz, low compared with the TOP trap rotation
frequency of ωrot = 2π × 4 kHz.

As a proposed implementation of the vortex pump, we
consider the spin-1 condensates of 87Rb and the following field
parameters. First, in place of a red-detuned trapping laser, we
assume the use of a blue-detuned beam that has a Gaussian
profile in the xy plane and a first-order Hermite-Gauss profile
along z. Since the atoms would be trapped in the dark region
between the two halves of the beam, the laser would not
provide any radial confinement. A 1-W, 532-nm beam, with
Gaussian radii of ∼9 μm along z and ∼500 μm along r ,
will give an axial trapping frequency of ωz ≈ 2π × 900 Hz.
This field remains constant throughout the pumping cycle and
is large enough to support the atoms against gravity and the
magnetic-field forces along z.

Secondly, for the magnetic-field parameters, we assume the
field values given above that correspond to Ref. [61]. Thus, we
take the maximum strength of the uniform fields to be B0 =
5 G [Eqs. (5) and (6)], which is reached for the axial bias field
Bb

z at the beginning and end of part A of the cycle, i.e., at t = 0
and t = TA. Between these times, the rotating component of
the TOP trap is off, the quadrupole field with the gradient
B ′

0 = 27 G/cm is on, and the bias field pushes the zero-value
point of the total magnetic field B from nearly 1 mm above
the pancake-shaped BEC to nearly 1 mm below the BEC. For
this trap, the harmonic approximation of Eqs. (7) and (10) is
well justified. Equation (8) yields ω0 ≈ 2π × 11 Hz, and hence
the simulations in Sec. III correspond to TA = 3/ω0 = 44 ms.
As assumed in Eq. (9), B ′ (t) can optionally be ramped to a
minimum value of B ′

min ≈ 11 G/cm during part A. In part
B, the rotating bias field Brot is ramped on while the bias
field Bb

z reverses direction, bringing the zero-value point of B
in a spiraling trajectory around the BEC prior to Brot being
ramped back off. Our simulations fix the duration of this stage
at TB = 2/ω0 = 29 ms.

Additionally, for the parameters assumed above, the imple-
mentation of an optical plug would be straightforward. The
assumed value of the plug radius used in our simulations,
d = 2a0, corresponds to a Gaussian 1/e2 beam radius of
2
√

2a0 ≈ 9 μm, similar to the beam used in Ref. [61].
For numerical convenience, our simulations have assumed

smaller numbers of atoms than would be ideally used in an
experiment, as well as lower values of magnetic fields than
those typically found in TOP traps [66]. Nevertheless, based
on the validity of the harmonic approximation and the readily

achievable time and length scales, the primary features seen
in the simulations should be preserved and observable with
experimentally feasible parameters.

V. CONCLUSION

In summary, we have discussed how to implement a vortex
pump for a BEC in a TOP trap, resorting only to standard
experimental techniques and magnetic-field configurations
that are already available in BEC laboratories. We showed that
the pumping can be carried out without using an additional
optical potential to trap the atoms in the radial direction.
Instead, the radial confinement is provided solely by the
magnetic field, and a harmonic optical potential is employed
only in the axial direction. Our simulations demonstrated that
even if the pumped multiquantum vortices are not stabilized by
a Gaussian-shaped plug potential piercing their core, several
pumping cycles can still be carried out before the vortex splits
clearly. On the other hand, already a relatively weak plug
potential was found to prevent the splitting and to reduce the
loss of atoms from the trap.

Our results are expected to facilitate the experimental
realization of the vortex pump. This achievement would
represent an important milestone in vortex physics, since it
would provide a controlled method to produce almost any
desired amount of vorticity. From a theoretical point of view,
the vortex pump is a fascinating example of adiabatic quantum
dynamics for which the control parameters of the system
are varied cyclically but the system does not return to its
initial eigenspace. In fact, the appearance of vortices can
be interpreted as the accumulation of a position-dependent
geometric Berry phase [67] for individual spins of the
condensate atoms [38–44].
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[21] J. A. M. Huhtamäki, M. Möttönen, and S. M. M. Virtanen, Phys.

Rev. A 74, 063619 (2006).
[22] E. Lundh and H. M. Nilsen, Phys. Rev. A 74, 063620 (2006).
[23] P. Capuzzi and D. M. Jezek, J. Phys. B 42, 145301 (2009).
[24] P. Kuopanportti, E. Lundh, J. A. M. Huhtamäki, V. Pietilä, and
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[44] M. Möttönen, V. Pietilä, and S. M. M. Virtanen, Phys. Rev. Lett.
99, 250406 (2007).

[45] Z. F. Xu, P. Zhang, C. Raman, and L. You, Phys. Rev. A 78,
043606 (2008).

[46] Z. F. Xu, R. Q. Wang, and L. You, New J. Phys. 11, 055019
(2008).

[47] Z. F. Xu, P. Zhang, R. Lü, and L. You, Phys. Rev. A 81, 053619
(2010).
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