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Absence of the twisted superfluid state in a mean-field model of bosons on a honeycomb lattice
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Motivated by recent observations [Soltan-Panahi et al., Nat. Phys. 8, 71 (2012)], we study the stability of a
Bose-Einstein condensate within a spin-dependent honeycomb lattice towards forming a “twisted superfluid”
state. Our exhaustive numerical search fails to find this phase, pointing to possible non-mean-field physics.
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I. INTRODUCTION

A. Background

Recently Soltan-Panahi et al. found evidence of a zero
quasimomentum “twisted superfluid” state of a two-
component Bose-Einstein condensate (BEC) trapped in a spin-
dependent honeycomb lattice [1]. A twisted superfluid is char-
acterized by Bose-Einstein condensation into a state whose
order parameter (a macroscopically occupied single particle
wave function) has a spatially varying phase. The simplest
example is condensation at finite momentum. Alternatively, in
a non-Bravais lattice where the unit cell involves multiple sites,
one can have a twisted superfluid at zero quasimomentum if
the phase of the order parameter varies throughout the unit
cell. We model the experiment of Soltan-Panahi et al. [1]
with a mean-field Gross-Pitaevskii function. We find that the
twisted superfluid state is absent within mean-field theory thus
suggesting that the observations are due to non-mean-field
effects.

Twisted superfluids are quite exotic; the phase twists of
the order parameter are naturally associated with microscopic
currents. Moreover, the present example involves spontaneous
symmetry breaking, and provides a setting for studying
phase-transition physics. Analogous physics can be found
in magnetic systems [2] and in the excited states of lattice
bosons [3,4].

B. Experimental evidence for a twisted superfluid

In their experiment [1], Soltan-Panahi et al. created a
two-component BEC of 87Rb atoms in a spin-dependent
honeycomb lattice. Soltan-Panahi et al. find evidence for
the twisted superfluid state in two cases: a BEC of 87Rb
atoms in the |F = 1,mF = −1〉 and |F = 1,mF = 1〉 states
and a BEC of 87Rb atoms in the |F = 2,mF = −2〉 and
|F = 1,mF = −1〉 states. In both of these cases, the two
spin states form out-of-phase charge density waves in this
spin-dependent lattice. In Fig. 1, we show a cartoon of the
density of atoms in one of the two spin states. For the rest of
this paper, we focus on the case where the two spin states are
|F = 1,mF = −1〉 and |F = 1,mF = 1〉.

The main experimental evidence for nontrivial phases of
the superfluid order parameter comes from time-of-flight
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expansion, a technique where all trapping fields are removed
and the atomic ensemble falls freely under gravity. Neglecting
interactions [5], the long-time real space density profile is
simply the initial density in momentum space. For the special
case of a BEC, the momentum space density, nk is the
Fourier transform of the order parameter: nk = |ψ(k)|2 =
|∫ exp(+ik · r)ψ(r)|2, where ψ(r) is the order parameter of
the BEC. As schematically illustrated in Fig. 2, if ψ(r) is
real, and has the symmetry of the honeycomb lattice, its
Fourier transform (and consequently the time-of-flight pattern)
is sixfold symmetric. This sixfold symmetry persists even if
the densities on the two sublattices differ, forming a threefold
symmetric charge density wave as illustrated in Fig. 1.
Mathematically, this sixfold rotational symmetry of the time-
of-flight pattern is a consequence of the point group symmetry
of the lattice (C3v) and the relation ψ(−k) = ψ∗(k), which
holds for real ψ(r). Therefore, a time-of-flight pattern without
inversion symmetry [ψ(−k) �= ψ∗(k)] is direct evidence of a
complex wave function (i.e., a twisted superfluid state). The
experimentalists see exactly this signature.

From the time-of-flight images obtained in [1], a breakdown
of the sixfold rotational symmetry in momentum space is
observed for lattice depths Vlat ranging from about 1 to 4
ER, where ER = h̄2

2mλ2
L

, m is the mass of 87Rb atoms, and Vlat is
precisely defined by Eq. (6). Figure 2 illustrates this structure
in which the amplitudes of the first order time-of-flight peaks
(denoted by |t | and |z|) have different values for this range
of lattice depths. An important aspect of their experiment
was that this rotational symmetry breaking arises only if both
species of atoms are present. Moreover, the symmetry breaking
was opposite for the two species (i.e., |t1|

|z1| = |z2|
|t2| ). The order

parameter O for the twisted superfluid state is given by

O =
∣∣∣∣ |z|

2 − |t |2
|z|2 + |t |2

∣∣∣∣ . (1)

By construction, O has a nonzero value in the twisted
superfluid and is zero for a uniform condensate. Soltan-Panahi
et al. measure this quantity.

The experimental evidence suggests that the order param-
eter is uniform on each of the triangular sublattices of the
honeycomb lattice, but that there is a relative phase δ between
them.

|z|2 = n+ + n− + 2
√

n+n− sin(δ) and (2)

|t |2 = n+ + n− − 2
√

n+n− sin(δ), (3)

033621-11050-2947/2013/87(3)/033621(5) ©2013 American Physical Society

http://dx.doi.org/10.1038/nphys2128
http://dx.doi.org/10.1103/PhysRevA.87.033621


SAYAN CHOUDHURY AND ERICH J. MUELLER PHYSICAL REVIEW A 87, 033621 (2013)

FIG. 1. (Color online) The density wave formed in a honeycomb
lattice for the mF = 1 atoms. The points represent lattice sites.
Larger points indicate a site filled with more atoms. This pattern
is periodically repeated. A complementary density wave is formed
by mF = −1 atoms. This density wave does not lead to a sixfold
symmetry breaking in time-of-flight unless additional phases appear
on the sites.

where n+ and n− denote the density of atoms on the two
distinct sublattices. Thus, the order parameter is

O = 2
√

n+n−|sin(δ)|
n+ + n−

. (4)
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FIG. 2. (Color online) Schematic of the time-of-flight pattern for
a superfluid in a 2D honeycomb lattice. Larger darker dots correspond
to more particles with a given momentum. The complex numbers
|t | and |z| represent the amplitudes of the Fourier transform of the
condensate wave function at k = ( π

a
,0) and k = (

√
3π

2a
, π

2a
) (see text).

The twisted superfluid is described by |t | �= |z|.

II. THE MODEL

Within a mean-field model, we will investigate the relative
stability of twisted or ordinary superfluids. The energy of
a two-component BEC, described by macroscopic wave
functions ψ1 and ψ2 is

E3D =
∫

d3r
∑

σ=1,2

[
h̄2

2m
|∇ψσ (r)|2 + Vσ (r)|ψσ (r)|2

+ Uσ
3D

2
|ψσ (r)|4

]
+ W3D|ψ1(r)|2|ψ2(r)|2

+Vconf(r)[|ψ1(r)|2 + |ψ2(r)|2]. (5)

Here, Uσ
3D = 4πh̄2aσ

m
is the intraspecies interaction energy

(aσ is the intraspecies scattering length for species σ ), while
W3D = 4πh̄2a12

m
is the interspecies interaction energy (a12 is

the interspecies scattering length). As already mentioned in
Sec. I B, we focus on the case in [1], where the states 1
(described by ψ1) and 2 (described by ψ2) are the |F =
1,mF = 1〉 and |F = 1,mF = −1〉 states of 87Rb. For these
two hyperfine states of 87Rb atoms, U 1

3D, U 2
3D, and W3D are

almost equal (a ≈ 100a0 where a0 is the Bohr radius). In
principle, collisions can connect these hyperfine states to
others (for example, |F = 1,mF = 0〉). For the experimental
parameters, these processes are off resonant and the two-
component Bose gas model describes the physics.

In the experiment [1], the honeycomb lattice is generated
by three lasers yielding a potential Vi(r) = Vhex(r) ± αBeff(r),
where state 1 sees the sign “ + ” and state 2 sees the sign “−”
(with α = 0.13) and

Vhex(r) = 2Vlat(cos[kLb1 · x] + cos[kLb2 · x]

+ cos[kLb3 · x]), (6)

Beff(r) = 2
√

3Vlat(sin[kLb1 · x] + sin[kLb2 · x]

+ sin[kLb3 · x]), (7)

where b1 = − 1
2 ex −

√
3

2 ey; b2 = ex; b3 = − 1
2 ex +

√
3

2 ey; and
kL = 2

√
3π/λL (λL is the laser wavelength and is 830 nm for

the experiment under discussion). With these considerations
Vlat is the height of the barrier between neighboring sites.
The difference between the maximum and minimum values of
Vhex(r) is 8Vlat.

The experiment uses a separate set of lasers to provide
strong confinement in the third dimension, Vconf(r):

Vconf(r) = V1Dcos

[
2π

λ1D
z

]
≈ V1D

2

(
2π

λ1D

)2

z2. (8)

This potential restricts the dynamics to two dimensions and we
may take the wave function of the BEC in the third direction
to be constant and Gaussian. Then the energy can be written
as

E2D =
∫

d2r
∑

σ=1,2

[
− h̄2

2m
∇2ψσ (r) + Vσ (r)|ψi(r)|2

+ U2D

2
|ψσ (r)|4

]
+ W2D|ψ1(r)|2|ψ2(r)|2, (9)
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where U2D = U3D

√√
mV1D2π

λ1Dh
and W2D = W3D

√√
mV1D2π

λ1Dh
. In

the experiment [1], λ1D = λL = 830 nm and V1D = 8.8ER.
For these parameters, the weakest lattice yielding a Mott
state is Vlat ≈ 3.5ER for two particles per unit cell within the
Gutzwiller mean-field approximation [6].

We assume a form of ψ1(r) and ψ2(r) which is consistent
with the time-of-flight measurements:

ψ1(r) =
∑

k

ψ1(k) exp(−ik · r), (10)

ψ2(r) =
∑

k

ψ2(k) exp(−ik · r), (11)

where k are the reciprocal lattice vectors of a honeycomb
lattice. We insert this variational ansatz into Eq. (5) and
minimize the energy with respect to the set of variational
parameters ψ1(k) and ψ2(k). We find from our simulations that
for all experimental parameters ψ1(k) = ψ∗

2 (k), where ψ∗
2 (k)

is the complex conjugate of ψ2(k). This result is sensible and
implies ψ1 and ψ2 are related by a lattice translation.

We perform the variational minimization in Fourier space
rather than real space (where such minimization is usually
done). This is equivalent to solving the Gross-Pitaevskii
equation in real space within a single unit cell with periodic
boundary conditions. Computationally, we find momentum
space to be more efficient. Moreover, the experimental probes
are all in momentum space. Similar approaches have been used
by other authors [7–9].

III. METHOD

In k space, the energy, Eq. (9), becomes

E2D

ER
=

∑
{k,k1,k2,k3}εL

∑
i=1,2

[
3k2ψ∗

i (k)ψi(k)

+Vi(k1)ψ∗
i (k2)ψi(k2 − k1)

+ U

2
ψ∗

i (k1)ψ∗
i (k2)ψi(k3)ψi(k1 + k2 − k3)

]

+Wψ∗
1 (k1)ψ1(k2)ψ∗

2 (k3)ψ2(k1 + k3 − k2), (12)

where L stands for the reciprocal lattice, i.e., k = (a1b1 +
a2b2), a1 and a2 being integers and k = |k|. One can also
generate this lattice from one of b1, b2, and b3, all explicitly
given following Eq. (7). All energies (Vi, U, and W ) are
expressed in terms of ER.

While we carried out unrestricted minimizations, our results
are best illustrated by considering an ansatz where the low
momentum physics is characterized by two complex numbers
t and z. In particular, we take ψ1(k) = t and ψ2(k) = z

for k = {b1,b2,b3} and ψ1(k) = z and ψ2(k) = t for k =
{−b1, − b2, − b3}. In terms of their real and imaginary parts,
we write

t = tr + iti (13)
and

z = zr + izi. (14)

As has been mentioned in Sec. I B, the order parameter for the
twisted superfluid state is given by

O =
∣∣∣∣ |z|

2 − |t |2
|z|2 + |t |2

∣∣∣∣ . (15)

For our minimization, we restrict ourselves to |k| � 6
giving us 159 complex variational parameters. We find that
there are no differences if we use |k| � 4 instead. Therefore,
we believe our results faithfully reflect what would be found
if an infinite number of Brillouin zones were included. We
gain further confidence in the convergence of our results by
noting that the fraction of population occupying the |k| = 4
state when U = 0.05ER and Vlat = 3.8ER is about 0.0001%.
It should also be noted that in the absence of interactions, at

Vlat = 4ER, the real space Wannier functions have width 1
kL

√
2
3

and the probability of having |k| � 2 is less than 2%. Interac-
tions tend to spread out the wave function, further reducing the
occupation of high |k| states. In our simulations, we vary U in
the range 0.03ER to 0.2ER corresponding to various strengths
of the transverse confinement. For the experiment, U ≈
0.05ER. We also vary α in the range 0.08–0.3, corresponding
to varying amounts of detuning of the laser beams.

IV. RESULTS

We do not find any evidence for the existence of the twisted
superfluid state despite an extensive search of the parameter
space. Since Eq. (12) is a quartic form, it will in general have
multiple minima and a number of other stationary points.
The most grave concern with our results is that we might
not have found the global minimum. To some extent, we can
alleviate this concern by noting that the experiment finds a
continuous symmetry breaking as a function of lattice depth. It
therefore suffices to establish that our solution is a dynamically
stable local minimum which is continuously connected to the
symmetry-unbroken ground state at Vlat = 0.

A. Local energetic stability

We check whether whether we have found a true minimum
by looking at the eigenvalues of the Hessian H defined by

Hij = ∂2E

∂ai∂aj

, (16)

where ai and aj are real variational parameters [corresponding
to the real and imaginary parts of ψ(k)]. We find that for all
parameters, the eigenvalues of H are positive. This implies
that we have at least found a local minimum. In Fig. 3, we plot
the minimum eigenvalues of the Hessian for different values
of the lattice depth (Vlat) at the illustrative interaction strength
U = 0.05ER and α = 0.14, for five particles (of each species)
per unit cell.

We further illustrate the stability of our theory by doing two
separate numerical experiments:

(a) Fix the ratio of zr (Re[z]) to tr (Re[t]) and vary the
remaining variational parameters to find the energy minima.
We find that the minimum of the energy occurs when zr : tr = 1
and there are no other local minima. The dotted curve shows
this in Fig. 4.

(b) Fix the ratio of zi (Im[z]) to ti (Im[t]) and vary the
remaining variational parameters to find the energy minima.
We find that the minimum of the energy occurs when zi : ti = 1
and there are no other local minima. The solid curve shows
this in Fig. 4.
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FIG. 3. Minimum eigenvalue of the Hessian, λ0, in the normal
superfluid phase plotted against the lattice depth Vlat (in units of ER)
when U = 0.05ER and five particles (of each species) are present
per unit cell. All the eigenvalues of the Hessian are positive, thereby
showing the stability of the normal phase. We conclude that there is
no twisted superfluid state for these potential depths. This result is
illustrative of all parameter ranges we explored.

We conclude that there is no second order phase transition
within mean-field theory.

B. Local dynamic stability

We also check whether the minimum found is unstable
against perturbations. This is done by looking at the Gross-
Pitaevskii equation:

ih̄
∂ψ

∂t
= ∂E

∂ψ∗ . (17)

This would imply

ih̄
∂δaj

∂t
= δE

δaj

≈
∑

l

∂2E

∂aj∂al

δal. (18)

FIG. 4. (Color online) Slice through the energy landscape at
Vlat = 1.8ER and U = 0.05ER and five particles (of each species)
per unit cell. Dotted curve: The ratio Re[z]/Re[t]is varied and the
energy is found by minimizing with respect to the other variational
parameters. Solid curve: Same, but with varying Im[z]/Im[t]. We
find that the overall energy minimum occurs when Re[z] = Re[t]
and Im[z] = Im[t].

Taking the real and imaginary parts of both sides, we get the
eigenvalue equations

h̄ωu = Mu, (19)

where

M =
[

Re[H ] −Im[H ]
Im[H ] Re[H ]

]
.

We look at the eigenvalues of this matrix, M . A complex
eigenvalue would signify the presence of a mode which will
grow with time, thus rendering this ground state unstable.
We find that all the eigenvalues are real. Thus, the minimum
that we have found is also dynamically stable. This is a
generic feature of quantum systems: Energetic stability implies
dynamic stability [10].

V. DISCUSSION

Given that our mean-field treatment of Eq. (5) fails
to reproduce the experimental observations, we must now
confront the question of what additional physics is needed to
produce a twisted superfluid state. In this section, we present a
tight-binding model which has a twisted superfluid ground
state and discuss connections with our approach. Namely,
consider a Hamiltonian

H =
∑
〈ij〉

( − t(â†
i↑âj↑ + â

†
i↓âi↓) + tcf(â

†
i↑â

†
j↓âj↑âi↓) + H.c.).

(20)

Here, aiσ annihilates a particle labeled by the spin index σ

on site i, and the sum is over all nearest-neighbor sites of a
honeycomb lattice. The parameters t and tcf represent single
particle and counterflow hopping. We consider a mean-field
ansatz where âjσ is replaced by a c number, which can take
one of two values, depending on which sublattice site j belongs
to (see Fig. 1):

aj↑ = √
n+ exp(−iδ/2) sublattice A (21)

aj↑ = √
n− exp(+iδ/2) sublattice B (22)

and

aj↓ = √
n− exp(+iδ/2) sublattice A (23)

aj↓ = √
n+ exp(−iδ/2) sublattice B. (24)

A twisted superfluid corresponds to δ �= 0 and physically
can be interpreted as a state where there are microscopic single
particle currents, which are precisely balanced by microscopic
counterflow currents. The mean-field energy per site is

E = [−12t
√

n+n−cos(δ) + 6tcfn+n−cos(2δ)]. (25)

The lowest energy state has δ �= 0 if

2tcf(n+n−) > t
√

n+n−. (26)

Our model in Eq. (5) contains terms of the same form as
those in Eq. (25). For deep lattices [11],

t ∼ |a|−3/2exp(−π
√

Vlat/ER/2) (27)
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and

tcf ∼ |a|−3exp(−π
√

Vlat/ER), (28)

where a is the distance between nearest neighbors. The
exponential suppression of tcf means that for any reasonable
particle density, Eq. (26) is not satisfied. On the other hand,
quantum fluctuations suppress single particle hopping more
than counterflow [12–16], and a beyond mean field theory
treatment of Eq. (5) could yield a twisted superfluid. Thus, the

observations of Soltan-Panahi et al. [1] may be evidence of
non-mean-field physics.
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