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Correlations in lowest-Landau-level vortex states
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We show how the configuration-space form of the Bogoliubov ground-state wave function of a bosonic
condensate with a single vortex in a harmonic trap can be described in terms of bosonic Jastrow correlations.
We then generalize this result to study the effects of such correlations on a mean-field vortex lattice state and
show that the included correlations lower the energy below that of the mean-field state. Although the reduction
is relatively small, it is a precursor of the more general expected effect of correlations in describing the melting
of the vortex lattice at a high angular momentum per particle.
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I. INTRODUCTION

With increasing rotation, the ground state of an ultracold
gas of bosons in a harmonic trap undergoes a transition from
a vortex lattice with broken rotational symmetry, for which
mean-field theory provides a good description (see Ref. [1]
and references therein), to a series of symmetry-restored and
strongly correlated states [2], bosonic analogs of quantum
Hall states [3]. This transition is mediated by the correlations
present in the interacting system which are absent in mean-field
theory. Towards understanding how these correlations lead to
more favorable states, we studied in Ref. [4] a condensate with
a single vortex; including Bogoliubov fluctuations around the
mean-field ground state, we showed that the correlations in-
duced by these fluctuations lower the energy of the Bogoliubov
ground state compared to that of the mean-field ground state
and cause an uncertainty in the position of the vortex.

Here we take a first step in generalizing this earlier result
to a vortex lattice, showing how correlating two particles in
the wave function lowers the energy of the lattice. We focus
on correlations described by simple bosonic Jastrow factors,
(zi − zj )2, in the wave function, where z ∼ x + iy is the
position of a particle in the complex plane. Such correlations
tend to lower the interaction energy by keeping the particles
apart and are, hence, favored by repulsive interactions. On the
other hand, each factor carries 2 units of angular momentum
and, therefore, tends to increase the kinetic energy of the
system. With increasing angular momentum, more and more
of these factors enter the wave function, and the states become
more strongly correlated, e.g., as in the Read-Rezayi [6]
and the bosonic Laughlin [5] states. The evolution of the
system as its angular momentum increases towards and beyond
the melting transition and the role that Jastrow correlations
play in this phase transition are still an open problem [1].
With increasing angular momentum, particles begin to occupy
single-particle states which previously were empty (or had
vanishingly small occupations); this increase in the size of
the configuration space of the particles can lead to possible
quasidegeneracies between states with different single-particle
occupations and, consequently, to the onset of quantum
fluctuations which ultimately destroy the vortex lattice. Even
for low angular momenta, where only a few vortices are
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present, correlations still play a significant role in redistributing
the particles among single-particle states, as Cremon et al.
find [7] by studying few-vortex (Nv � 4) systems numerically
and comparing the exact and mean-field ground states. This
paper sheds a complementary light on such redistributions.

An informative example of how correlations function is
the gas of attractive bosons studied in Ref. [5]. For a total
(arbitrary) angular momentum h̄L, the ground-state wave
function is

ψ1(z; L) = zL
c , (1)

where zc = ∑N
i=1 zi/N is the center-of-mass coordinate. This

state has a total interaction energy ∼−N (N − 1)/2. Moreover,
the wave function

ψ2(z; L) =
∑
i1<i2

(
zi1 − zi2

)2
ψ1(z; L − 2) (2)

describes an excited state of the system with the same angular
momentum and with a higher interaction energy, ∼−N (N −
2)/2. If we now change the nature of the interactions from
attractive to repulsive, these two states switch places in the
energy spectrum, with |ψ2(L)〉 becoming lower in energy
than |ψ1(L)〉, although it does not become the ground state.
Similarly to the Bogoliubov single-vortex state, the Jastrow
correlations included in |ψ2(L)〉 help to lower the now
repulsive interaction energy.

In this paper, we first show how the real-space form of
the Bogoliubov ground state of the single-vortex condensate
[4] includes two-particle bosonic Jastrow factors and can
be expanded as a sum over symmetric polynomials with
a successive number of Jastrow factors. The first term of
the sum is just the original uncorrelated mean-field wave
function, and the last term has N/2 simultaneous Jastrow
factors. The effect of such Jastrow correlations is to reduce
the total energy by a term O(N−1), which, although small, is a
precursor of the more general expected effect of correlations.
We then generalize the correlated single-vortex case to a
vortex lattice, initially described as a mean-field condensate.
Again, we find that the included Jastrow correlations lead to a
relative reduction in the energy O(N−1). We also find that the
inclusion of these correlations in the trial wave function leads
to a nonvanishing density at the vortex cores, indicating the
presence of quantum fluctuations of the vortices, similarly to
the case of the single-vortex system we previously studied [4].
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In the next section, we delineate the basic model describing
a condensate in terms of Landau levels. In Sec. III, we expand
the Bogoliubov ground state in terms of a series of N -particle
Fock states with an increasing number of particles in the two
single-particle states connected to the mean-field ground state
through the interactions; we show that these Fock states are
represented by monomial symmetric polynomials (which, in
turn, can be expanded in terms of other symmetric polynomials
containing Jastrow factors) and find the form of the correlations
present in the wave function. In Sec. IV, we generalize this
construction to a vortex lattice system. Finally, in Appendix A,
we derive a general algebraic identity connecting the monomial
symmetric polynomials encountered in this problem to sym-
metric polynomials with successive number of Jastrow factors,
and in Appendix B, we lay out the details of the derivations
used to arrive at the results of Sec. III.

II. BASIC MODEL

We consider a gas of N bosons of mass m in a harmonic
trap of frequencies ω⊥ in the x-y plane and ωz in the z

direction, rotating around the z axis with angular velocity �.
We assume weak two-body repulsive interactions of strength
g = 4πh̄2a/m, where a is the s-wave scattering length. The
Hamiltonian in the rotating frame is thus

H′ =
N∑

i=1

(
p2

i

2m
+ 1

2
m(ω × ri)

2 − ��i

)
+ g

∑
i<j

δ(ri − rj ),

(3)

where ω = (ω⊥,ω⊥,ωz) and � = ẑ · (r × p) is the angular
momentum along the z direction.

In the limit of fast rotation (� � ω⊥) at zero temperature,
the gas becomes quasi-two-dimensional and resides in the
axial ground state of the harmonic trap. The single-particle
eigenstates of the noninteracting system are the Landau levels,
|nm〉, where n is the radial quantum number and m � −n is
the angular momentum along the rotation axis. The character-
istic interaction energy scale is V0 = g/[(2π )3/2d2

⊥dz], where
d⊥,z = √

h̄/mω⊥,z are the characteristic oscillator lengths in
the transverse and axial directions. We assume the interactions
to be sufficiently weak that V0 � 2h̄ω⊥; therefore, as � →
ω⊥, the system resides in the lowest-energy (n = 0) manifold
of Landau levels. The wave function of a particle in the
lowest Landau level (LLL) with m units of angular momentum,
corresponding to the single-particle state |0m〉, is

φm(z) = 〈z|0m〉 = 1

d⊥
√

πm!
zme−|z|2/2, (4)

where z = (x + iy)/d⊥ is the dimensionless position in the
complex plane. For brevity, we suppress, throughout this paper,
the factor exp[−∑N

i=1 |zi |2/2]/(d⊥
√

π )N common to all N -
particle LLL wave functions.

III. CORRELATIONS IN THE SINGLE-VORTEX
BOGOLIUBOV GROUND STATE

We studied in Ref. [4] the properties of a single-vortex
system in the LLL by including small-amplitude Bogoliubov
fluctuations about a mean-field condensate in |01〉. These

fluctuations lower the energy of the Bogoliubov ground state
by −NV0/4 compared to the mean-field ground state; the
relative reduction in the interaction energy is O(N−1). The
vortex, which becomes energetically stable [9,10] at the critical
rotation frequency �c = ω⊥ − NV0/4h̄, is on average slightly
off-center, by O(1/

√
N ) (in units of d⊥), due to these quantum

fluctuations. In this section, we investigate the nature, in real
space, of correlations induced by Bogoliubov fluctuations.

The Bogoliubov ground state of a single-vortex LLL system
at � = �c is [4]

|G〉 = 1√
2

e−a
†
2a

†
0/

√
2|N1〉, (5)

where am annihilates a particle with angular momentum m

from state |0m〉, and |N1〉 is a coherent state with N1 particles
condensed in |01〉, satisfying the eigenvalue equation a1|N1〉 =√

N1|N1〉. This wave function does not conserve the particle
number. In order to find its form in configuration space, we
restrict the number of particles to N (assumed to be even) and
project |G〉 onto the N -particle Fock space. This new wave
function, |G; N〉, can be approximated as a sum over states
with N − 2m particles in |01〉 and m particles in |00〉 and |02〉,

|G; N〉 
 1√
2

N/2∑
m=0

(−1/
√

2)m |m,N − 2m,m〉, (6)

where |n0,n1,n2〉 contains nj particles in |0j 〉 (with j =
0,1,2). The norm of this wave function is 〈G; N |G; N〉 =
1 − 2−(1+N/2) and approaches unity when N → ∞.

The first term in the sum (m = 0) is just the orig-
inal mean-field many-body ground state, 〈z|0,N,0〉 ∼
z1 . . . zN where z = {z1,z2, . . . ,zN }. The m = 1 term in-
cludes first-order corrections and yields 〈z|1,N − 2,1〉 ∼
P[z0

1z2 · · · zN−1(z2
N/

√
2)], where P denotes the sum of the

distinct permutations with respect to the zj ’s needed to sym-
metrize the wave function. After simplifying this expression
(details in Appendix B), we find that the first-order Bogoliubov
corrections take one pair of particles out of the condensate and
correlate them through a bosonic Jastrow factor,∑

i1<i2

(
zi1 − zi2

)2 ∏
k �=i1,i2

zk ≡ J1(z). (7)

Similarly, the second-order Bogoliubov correction, the
m = 2 term in Eq. (6), leads to 〈z|2,N − 4,2〉 ∼
P[z0

1z
0
2z3 · · · zN−2(z2

N−1/
√

2)(z2
N/

√
2)]. Simplification of the

resulting expression (details in Appendix B) shows that two
pairs of particles are correlated through two simultaneous
Jastrow factors, resulting in the following term in the wave
function:∑′ (

zi1 − zi2

)2(
zi3 − zi4

)2 ∏
k �=i1...i4

zk ≡ J2(z), (8)

where the primed sum indicates the constraints i1 < i2, i3 <

i4, i1 < i3, i2 �= i3,i4.
In fact, the real-space projection of the mth term in

expansion (6) has up to m simultaneous Jastrow factors. To
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see this structure, we recast this term as

〈z|m,N − 2m,m〉
∼ P

[
z0

1 · · · z0
m

(
z2
m+1/

√
2
) · · · (z2

2m/
√

2
)
z2m+1 · · · zN

]
= 1

2m/2

[(
N

N − 2m

)(
2m

m

)]− 1
2

m{ 0...0︸︷︷︸
m

, 2...2︸︷︷︸
m

, 1...1︸︷︷︸
N−2m

}(z),

(9)

where ( N

N − 2m )( 2m

m ) is the number of distinct terms produced
by the permutations. The monomial symmetric polynomial [8]
mα(z) is defined in Appendix A, and its representation in terms
of symmetric polynomials with a successive number of Jastrow
factors, determined in Appendix B, is given by Eq. (B10).
Thus,

〈z|m,N − 2m,m〉

= 1

2m/2

[
1

m!

√
N !

(N − 2m)!
J0(z)

+
√

(N − 2m)!

N !

m∑
j=1

2j−1 (2m − 2j )!

(m − j )! j !
Jj (z)

]
, (10)

where the N -variable symmetric polynomial Jj (z), given
by Eq. (A3), includes j successive Jastrow factors. We
immediately see up to m pairs of Jastrow-correlated particles
in the mth-order Bogoliubov correction to the mean-field
ground state.

Substituting Eq. (10) into Eq. (6) and changing the order
of summation using the identity

∑N/2
m=0

∑m
j=0 = ∑N/2

j=0

∑N/2
m=j ,

we finally arrive at the expansion of the Bogoliubov ground
state in terms of Jastrow polynomials,

〈z|G; N〉 = 1√
2

N/2∑
j=0

Aj Jj (z), (11)

where

A0 =
N/2∑
m=0

(−1)m

2m m!

√
N !

(N − 2m)!
,

Aj �=0 =
N/2∑
m=j

(−1)m (2m − 2j )!

2m−j+1 (m − j )! j !

√
(N − 2m)!

N !
.

Equation (11) shows how incorporating Bogoliubov fluctua-
tions in the mean-field ground state leads to pairs of particles
being forced out of the condensate and correlated in the Jastrow
form. The last term in the expansion above has correlations
represented by N/2 Jastrow factors, and its coefficient is
O(N−N ) for large N .

Note that in the thermodynamic limit (N → ∞), the mean-
field ground state as described by the Gross-Pitaevskii equation
is the true ground state of the system (see, e.g., Ref. [1]). In fact,
the relative reduction in the energy between the Bogoliubov
and the mean-field ground states is O(N−1) for large N [4].
In mesoscopic Bose-condensed systems, the role played by
the correlations can be significant, with the Bogoliubov wave
function energetically favored over the mean-field solution.
Moreover, in Eq. (11), the ratio of coefficients of successive
terms decreases with increasing j ; most of the reduction in the

interaction energy is due to the first term, with only a single
Jastrow factor [as in Eq. (7)].

IV. EXTENSION TO MEAN-FIELD VORTEX LATTICES

As discussed above, the Bogoliubov ground state |G〉,
through the quantum fluctuations, has a lower energy than
the mean-field ground state. It is clear from the form of
the Jastrow polynomial Jj (z) in Eq. (A3) that this lower
energy state |G; N〉 is constructed by correlating j pairs of
particles through j distinct Jastrow factors, thereby leaving
only N − 2j particles in the original mean-field condensate,
|01〉. As a second example of the effect of Jastrow correlations,
we argued, using the wave functions studied in Ref. [5] for a
gas of attractive bosons, that correlating two particles through a
Jastrow factor, Eq. (2), reduces the energy for repulsive bosons.

We now show that such Jastrow correlations also lower
the energy of a vortex lattice state. In mean-field theory, an
N -particle LLL condensate with Nv vortices at positions {ξj }
(on a triangular lattice) takes the form

ψmf(z; Nv) =
N∏

i=1

Nv∏
j=1

(zi − ξj ). (12)

For large Nv, the system is well described by the Thomas-
Fermi approximation [11,12], with the Thomas-Fermi radius
R and rotation rate � given by the solution of the two equations

(R/d⊥)2 =
√

4bNV0

h̄(ω⊥ − �)
= (�/ω⊥)Nv, (13)

where b 
 1.158 is the Abrikosov lattice parameter. State (12)
is not an eigenstate of the total angular momentum operator L̂

but has 〈L̂〉 = h̄N [ 1
3 (R/d⊥)2 − 1] [11].

To study the effect of Jastrow correlations on the energetics
of the vortex lattice, we construct a trial wave function by
removing two particles from the mean-field condensate and
simultaneously correlating them, arriving at the wave function

ψtr(z; Nv) =
∑
i1<i2

(
zi1 − zi2

)2
ψmf

(
z − {

zi1 ,zi2

}
; Nv

)
, (14)

where ψmf(z − {zi1 ,zi2}; Nv) is an (N − 2)–particle coherent
state (with particles i1 and i2 removed) supporting the same
vortices as the original state, (12). Since the Jastrow factors in
Eq. (14) force the particles away from each other, we expect
the cloud for the correlated state to extend farther in space
compared to the mean-field one; in fact, the correlated state
carrying the same total angular momentum as the mean-field
one has a radius given by

R2
tr 
 R2 (1 + 4/N). (15)

The total interaction energy (found after a tedious calculation,
details of which are beyond the scope of this paper [13]) is

vtr 
 V0(4bν/3)(N − 8), (16)

where ν = N/Nv is the filling factor; this result is valid for
large filling factors. Including Jastrow correlations in the trial
wave function indeed lowers the energy [albeit by a term
O(N−1)] compared to the mean-field vortex lattice state, for
which vmf 
 V0(4bν/3)(N − 1) at the same value of the total
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angular momentum. The relative change in the interaction
energy is similar to that for a single-vortex system as well
as that for attractive bosons of Ref. [5]. Moreover, due to
correlations, the average density at the vortex cores is nonzero
for trial state (14), similar to the behavior found in Ref. [4] for
a single vortex. In the limit of a large number of vortices and
for ν � 1, we find that the density at the vortex core is [13]
ntr(ξj ) ∼ ν−1|ξj |2e−|ξj |2 (except for the central vortex).

We note that a relative O(N−1) change in the energy is
not enough, in the thermodynamic limit, to drive the system
towards the strongly correlated regime where the vortex
lattice melts [2]. A detailed description of the melting of the
lattice will involve states with large numbers of Jastrow-like
correlations, e.g., as in Read-Rezayi states. Therefore, vortex
lattice wave functions of the form (14) are only good for
large filling factors where the Gross-Pitaevskii equation is an
excellent approximation.

V. CONCLUSION

This work is an initial study of the role of correlations in
the ground state of a vortex lattice state, in the regime where
the Gross-Pitaevskii equation is a good first description and
quantum fluctuations are small. Although the advantages of
including such interparticle correlations are clear—keeping
the particles apart and reducing the interaction energy in the
system—the detailed correlations in the exact ground state
of the vortex lattice are not known analytically. Quantum
fluctuations, driving the system towards a melting transition
to strongly correlated quantum Hall states, become more
pronounced as the angular momentum per particle approaches
O(N ) and the particle density becomes small, underlining
the importance of interaction-induced correlations in this
transition. The real-space form of the Bogoliubov ground state
of a single-vortex condensate in the LLL studied here shows
explicitly the Jastrow-like correlations of pairs of particles in
this state. The Bogoliubov wave function is a superposition
of the original uncorrelated mean-field ground state and
correlated states with a successive number of Jastrow pairs.
As we showed, including Jastrow-correlated pairs (similar to
those in the single-vortex Bogoliubov wave function) in an
LLL system with Nv vortices on a triangular lattice lowers
the energy compared to the mean-field wave function with
no correlations; this state also exhibits nonzero density at
the vortex cores, reflecting the quantum uncertainty in the
vortex positions. Generally, interparticle interactions lead to
the occupation of single-particle states that were originally
unoccupied in the mean-field picture, allowing the system to
explore larger regions of phase space, as effectively takes place
in our trial wave function, (14), as well as in Ref. [4] in the
single-vortex Bogoliubov wave function. The next step needed
is a systematic study of the evolution of the populations of
the single-particle states of the vortex lattice with increasing
angular momentum.
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APPENDIX A: MONOMIALS AND JASTROW FACTORS

In this Appendix, we define the elementary and mono-
mial symmetric polynomials and find the expansion of the
latter polynomials in terms of symmetric polynomials with
Jastrow factors. We consider a set of N variables, denoted
z = {z1,z2, . . . ,zN }, and a set of N exponents, denoted
α = {α1,α2, . . . ,αN }. The elementary symmetric polynomials
defined on z are

s0(z) = 1, s1(z) =
∑
i1

zi1 , s2(z) =
∑
i1<i2

zi1zi2 ,

s3(z) =
∑

i1<i2<i3

zi1zi2zi3 , . . . ,

sN (z) =
∑

i1<i2<···<iN

zi1zi2 · · · ziN =
∏
k

zk.

The monomial symmetric polynomials, denoted by mα(z),
are defined as the sum over all z

αi1
1 z

αi2
2 · · · zαiN

N where the
exponents αi1 ,αi2 , . . . ,αiN range over all distinct permu-
tations one can get from α [8]. For example, for N =
3, we have m{2,0,0}(z1,z2,z3) = z2

1z
0
2z

0
3 + z0

1z
2
2z

0
3 + z0

1z
0
2z

2
3 =

z2
1 + z2

2 + z2
3.

The identity z2
1 + z2

2 = (z1 − z2)2 + 2z1z2 for N = 2 can
be rewritten in terms of the symmetric polynomials defined
above as m{2,0}(z1,z2) = (z1 − z2)2 + 2 s2(z1,z2). There exists
a similar identity for N = 4 [see Eq. (B6)] which, in the
language of symmetric polynomials, becomes

m{2,2,0,0}(z1,z2,z3,z4)

= 1
2 [(z1 − z2)2(z3 − z4)2 + (z1 − z3)2(z2 − z4)2

+ (z1 − z4)2(z2 − z3)2] + [(z1 − z2)2z3z4

+ (z1 − z3)2z2z4 + (z1 − z4)2z2z3 + (z2 − z3)2z1z4

+ (z2 − z4)2z1z3 + (z3 − z4)2z1z2] + 6 s4(z1,z2,z3,z4).

(A1)

We now find a similar identity for general N , assuming,
without loss of generality, that N = 2n. Defining

m{ 2...2︸︷︷︸
n

, 0...0︸︷︷︸
n

}(z) = P
[
z2

1z
2
2 · · · z2

nz
0
n+1z

0
n+2 · · · z0

2n−1z
0
2n

]
, (A2)

Ji(z) = P[

i Jastrow pairs︷ ︸︸ ︷
(z1 − z2)2(z3 − z4)2 · · · (z2i−1 − z2i)

2

× z2i+1z2i+2 · · · z2n−1z2n], (A3)

we can write

m{2...2,0...0}(z) =
n∑

i=0

ci Ji(z). (A4)

Note that J0(z) = s2n(z).
To find the coefficients, we proceed as follows. First, we

set zj = 1 for all j . Therefore, in expansion (A4), only the c0

term is nonzero. Since the number of terms in the monomial
is (2n)!/(n!)2 and all are equal to 1 in this case, we find c0 =
(2n)!/(n!)2. Next, we set z1 = 0 and zj �=1 = 1. We find that
on the right-hand side of Eq. (A4), only the c1 term survives if
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z1 is one of the two variables in the Jastrow pair, while on the
left-hand side, only terms with z0

1 survive. There are ( 2n − 1
1 )

ways on the right-hand side to make a Jastrow pair with z1 and
one other variable; the remaining variables can be arranged in
only one way. On the left-hand side, for terms with z0

1, there are
(2n − 1)!/[n!(n − 1)!] ways to get a nonzero value (which is
1). Therefore c1 = (2n − 2)!/[n!(n − 1)!]. Generalizing this
approach to find ck (with k � n), we set z1 = z2 = · · · = zk =
0 and the rest of the zj ’s equal to 1 and proceed as before to
find

ck = (2n − 2k)!

n!(n − k)!
= (N − 2k)!

(N/2)!(N/2 − k)!
, (A5)

which yields

m{2...2,0...0}(z) =
N/2∑
i=0

(N − 2i)!

(N/2)!(N/2 − i)!
Ji(z). (A6)

Let us count the number of terms in each Jj (z). We write the
act of the permutation operator P as

Jj (z) =
∑′ (

zi1 − zi2

)2(
zi3 − zi4

)2 · · ·(
zi2j−1 − zi2j

)2 ∏
k �=i1...i2j

zk, (A7)

where the prime on the sum indicates the following conditions:

i1 < i2, i3 < i4, . . . , i2j−1 < i2j ,

i1 < i3 < i5 < · · · < i2j−1, (A8)

i2l �= i2l+1, i2l+2, . . . , i2j for 1 � l < j.

In order to construct the Jastrow factors, we choose the z’s in
them as follows. We pick two z’s for the first Jastrow factor
in ( N

2 ) distinct ways, then the two different z’s for the second

factor in ( N − 2
2 ) distinct ways, and so on, until the last one,

for which there are ( N − 2j + 2
2 ) distinct ways. Therefore, we

have N !/[(N − 2j )! 2j ] distinct ways to pick the z’s for the
Jastrow factors. Moreover, the Jastrow factors can be permuted
in j ! distinct ways among themselves while keeping Jj (z)
invariant; however, only one of these permutations satisfies
the constraints above. The remaining z’s can be arranged in
only one way. Thus, each Jj (z) has

N !

(N − 2j )! j ! 2j
(A9)

distinct terms.

APPENDIX B: EXPANSION TERMS

In this Appendix, we discuss the method we use to simplify
the expansion terms in the Bogoliubov ground state, Eq. (6),
and to bring out the Jastrow factors that include interparticle
correlations. The m = 1 term in Eq. (6) is proportional to
P[z0

1z2 · · · zN−1z
2
N ], where the permutations yield ( N

N − 2 )( 2
1 )

distinct terms, i.e.,

〈z|1,N − 2,1〉

=
[(

N

N − 2

)(
2

1

)]−1/2

P
[
z0

1z2 · · · zN−1
(
z2
N

/√
2
)]

. (B1)

To proceed, we note that the indices of summation (and
multiplication) are, in fact, dummy variables and find∑

i �=j

z0
i z

2
j

∏
k �=i,j

zk =
∑
i �=j

1

2

(
z0
i z

2
j + z2

i z
0
j

) ∏
k �=i,j

zk

=
∑
i<j

[(zi − zj )2 + 2zizj ]
∏
k �=i,j

zk. (B2)

We thus write

P
[
z0

1z2 · · · zN−1z
2
N

] =
∑
i<j

(zi − zj )2
∏
k �=i,j

zk + 2

(
N

2

) ∏
k

zk,

(B3)

which leads to the expansion of 〈z|1,N − 2,1〉 in terms of
Jastrow polynomials.

The m = 2 term in Eq. (6) is proportional to
P[z0

1z
0
2z3 · · · zN−2z

2
N−1z

2
N ], where the permutations yield

( N

N − 4 )( 4
2 ) distinct terms, i.e.,

〈z|2,N − 4,2〉 =
[(

N

N − 4

)(
4

2

)]−1/2

×P
[
z0

1z2 · · · zN−2
(
z2
N−1/

√
2
)(

z2
N/

√
2
)]

.

(B4)

The permutation operator can be expanded as∑
i1 �= i2

�= i3 �= i4

1

2
z0
i1
z0
i2

1

2
z2
i3
z2
i4

∏
k �=i1...i4

zk

= 1

4

∑
i1 �= i2

�= i3 �= i4

1

6

(
z0
i1
z0
i2
z2
i3
z2
i4

+ z0
i1
z2
i2
z0
i3
z2
i4

+ z0
i1
z2
i2
z2
i3
z0
i4

+ z2
i1
z0
i2
z0
i3
z2
i4

+ z2
i1
z0
i2
z2
i3
z0
i4

+ z2
i1
z2
i2
z0
i3
z0
i4

) ∏
k �=i1...i4

zk, (B5)

where the unrestricted sum on the left-hand side overcounts
each factor of zα

i1
zα
i2

(with α = 0,2) by 2 (e.g., z0
1z

0
2 and z0

2z
0
1);

as before, the equality originates from the permutations on the
dummy variables i1,i2,i3,i4. The terms in parentheses above
can be rewritten in a more suitable form with the identity

z2
1z

2
2 + z2

1z
2
3 + z2

1z
2
4 + z2

2z
2
3 + z2

2z
2
4 + z2

3z
2
4

= 1
2 [(z1 − z2)2(z3 − z4)2 + (z1 − z3)2(z2 − z4)2

+ (z1 − z4)2(z2 − z3)2] + [(z1 − z2)2z3z4

+ (z1 − z3)2z2z4 + (z1 − z4)2z2z3 + (z2 − z3)2z1z4

+ (z2 − z4)2z1z3 + (z3 − z4)2z1z2] + 6z1z2z3z4.

(B6)

Using this in Eq. (B5) leads to (i) three equal contributions
from the first term on the right-hand side of Eq. (B6), each of
which leads to a factor of 2 × 2 for converting the unrestricted
sum to i1 < i2 and i3 < i4 and another factor of 2 for imposing
the condition i1 < i3; and (ii) six equal contributions from the
second term on the right-hand side of Eq. (B6), each of which
leads to one factor of 2 for converting the sum to i1 < i2 and
another factor of 2 to count the interchangeablity of i3 and i4.
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Therefore,∑
i1 �= i2

�= i3 �= i4

z0
i1
z0
i2
z2
i3
z2
i4

∏
k �=i1...i4

zk

= 2
∑′(

zi1 − zi2

)2(
zi3 − zi4

)2 ∏
k �=i1...i4

zk

+ 4
∑
i1<i2

(
zi1 − zi2

)2 ∏
k �=i1,i2

zk +
(

N

4

)
4!

∏
k

zk,

where the prime on the sum indicates conditions (A8). We now
have

P
[
z0

1z
0
2z3 · · · zN−2z

2
N−1z

2
N

]
= 1

2

∑′(
zi1 − zi2

)2(
zi3 − zi4

)2 ∏
k �=i1...i4

zk

+
∑
i1<i2

(
zi1 − zi2

)2 ∏
k �=i1,i2

zk +
(

N

4

)
3!

∏
k

zk (B7)

and, in turn, the expansion of 〈z|2,N − 4,2〉 in terms of Jastrow
polynomials.

As shown in Eq. (9), the mth term in Eq. (6) is proportional
to the monomial m{0...0,2...2,1...1}(z), which we rewrite as

m{0...0,2...2,1...1}(z)

=
∑

i1 �=···�=i2m

1

m!
z0
i1

· · · z0
im

1

m!
z2
im+1

· · · z2
i2m

∏
k �=i1...i2m

zk

=
∑

i1 �=···�=i2m

1

(m!)2

1

(2m)!/(m!)2

× m{2...2,0...0}
(
zi1 . . . zi2m

) ∏
k �=i1...i2m

zk

= 1

(2m)!

m∑
j=0

(2m − 2j )!

m! (m − j )!

×
⎡
⎣ ∑

i1 �=···�=i2m

Jj

(
zi1 . . . zi2m

) ∏
k �=i1...i2m

zk

⎤
⎦ , (B8)

where (i) due to i1, . . . ,i2m being dummy variables, we have
used a method similar to (B5) to get the second equality and to

represent all the terms in the sum by a new monomial acting
on a limited set of z’s; and (ii) we use Eq. (A6) in the last
equality.

To proceed further, we need to recast the square bracket
above (which includes Jastrow polynomials defined on the
subset {zi1 , . . . ,zi2m

} ⊂ z) in terms of Jastrow polynomials
acting on set z. The result is∑
i1 �=···�=i2m

Jj

(
zi1 . . . zi2m

) ∏
k �=i1...i2m

zk

=
[

(2m)!

(
N

2m

)
δj0 + (2m)! 2j−1

j !
(1 − δj0)

]
Jj (z), (B9)

where the details of this derivation are as follows. Clearly,
the sum over i1, . . . ,i2m leads to an overcounting which we
need to determine separately for each j . Since i1, . . . ,i2m

are dummy variables, each term in Jj (zi1 . . . zi2m
) produces

the same polynomial after being summed over; this brings
in an overcounting factor given by (A9). On the other hand,
since

∑
i1 �=i2

= 2
∑

i1<i2
, due to conditions (A8), we are

overcounting by a factor of 2 for each Jastrow factor (of which
there are j ) and by a factor of 2 for each two adjacent Jastrow
factors (of which there are j − 1), in toto, an overcounting
factor of 22j−1. Permutations of the remaining z’s outside the
Jastrow factors in Jj (zi1 . . . zi2m

) leave it invariant, and this
leads to an overcounting factor of (2m − 2j )!. Therefore, when
we transform Jj (zi1 . . . zi2m

) to Jj (z1 . . . zN ), we overcount
by a factor of (2m)! 2j−1/j ! for each j �= 0. For the special
case of j = 0, since there are no Jastrow factors present
in J0(zi1 . . . zi2m

), we instantly end up with J0(z1 . . . zN ) but

overcounted by a factor of (2m)! ( N

2m ).
Hence, we write the monomial m{0...0,2...2,1...1}(z) in terms of

symmetric polynomials with a successive number of Jastrow
factors as

m{0...0,2...2,1...1}(z) = 1

m!

m∑
j=0

(2m − 2j )!

(m − j )!

×
[(

N

2m

)
δj0 + 2j−1

j !
(1 − δj0)

]
Jj (z)

(B10)

and, in turn, find the expansion of 〈z|m,N − 2m,m〉 in terms
of Jastrow polynomials, Eq. (10).
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