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Mobile impurity near the superfluid–Mott-insulator quantum critical point in two dimensions
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We consider bosonic atoms in an optical lattice at integer filling, tuned to the superfluid–Mott-insulator critical
point, and coupled to a single, mobile impurity atom of a different species. This setup is inspired by current
experiments with quantum gas microscopes, which enable tracking of the impurity motion. We describe the
evolution of the impurity motion from the quantum wave packet spread at short times, to Brownian diffusion
at long times. This dynamics is controlled by the interplay between dangerously irrelevant perturbations at the
strongly interacting field theory describing the superfluid-insulator transition in two spatial dimensions.
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I. INTRODUCTION

The problem of a single particle interacting with its
environment is encountered frequently in condensed-matter
physics, and in many variations. Such scenarios appear in the
form of genuine defects in materials, like magnetic impurities
in metals and the associated ubiquitous Kondo problem [1].
Impurity problems are also often used as a stepping stone to
gain insight into the behavior of strongly correlated systems,
such as studying a single hole doped into a Mott insulator
helps in understanding some properties of high-temperature
superconductors [2–4].

In recent years, impurity problems have also started to
gain some attention in the context of ultracold atomic gases.
Among others, the fermionic polaron problem has been studied
thoroughly in connection with strongly imbalanced Fermi
gases close to a Feshbach resonance [5–8], where a single
“spin-down” atom interacting with a Fermi sea of “spin-up”
atoms appears as a polaronic quasiparticle and eventually
forms a two-particle bound state with one of the majority atoms
if the interactions are strong enough [9–11]. More generally,
such polaronic problems appear when we consider the nature
of the threshold of spectral functions of gapped excitations
above many-body ground states [12,13].

Here we are interested in a seemingly similar problem,
where a mobile impurity is coupled to a continuum of gapless
excitations at a quantum critical point, instead of gapless
particle-hole excitations at a Fermi surface. In particular,
we want to study the situation where bosons in an optical
lattice are tuned to the superfluid–Mott-insulator (SF-MI)
transition [14], and a single atom of a different species is
coupled to the bosons via a density-density interaction. This
scenario is especially interesting due to the recent experimental
implementation of quantum-gas microscopes [15,16], which
allow tracking the motion of the impurity through the bosonic
bath. Indeed, a recent combined experimental and theoretical
work has addressed a very similar situation in an effectively
one-dimensional system [17]. We are going to focus on
the other experimentally relevant, two-dimensional situation
instead. From our perspective, this case also happens to be the
most interesting scenario, because in d = 2 spatial dimensions
the critical behavior at the SF-MI transition is described by
a nontrivial fixed point without well-defined quasiparticle
excitations [18]. Recently there has been a renewed interest
in this particular transition as experiments succeeded in
observing the so-called Higgs amplitude mode [19–21].

The main motivation for our work is the prospect of
studying aspects of quantum critical transport in a clean, well-
defined experimental setting. Calculating transport coefficients
of systems close to a quantum phase transition remains a
challenging problem in theoretical condensed-matter physics.
The main reason is that all traditional methods for calculating
transport properties rely on a quasiparticle picture of the
low-energy excitations above the ground state, which breaks
down at a quantum critical point. Indeed, strongly coupled
conformal field theories (CFTs) that describe physical prop-
erties of physical systems close to quantum critical points
typically have no well defined quasiparticle excitations. Some
progress has been made recently using the so-called AdS/CFT
correspondence, which circumvents this problem by mapping
the strongly coupled CFTs to a dual, weakly coupled gravi-
tational theory, where transport coefficients can be computed
reliably [22].

In this paper our main interest is to calculate the diffusion
constant D of the impurity as a function of temperature
in the quantum critical regime, shown in Fig. 1. This
diffusion constant can be measured directly in experiments
with quantum-gas microscopes by evaluating the mean-square
displacement 〈x2〉 of the impurity atom from its initial position
after a time t ,

〈x2〉 = 4Dt, (1.1)

where the brackets denote an average over many experimental
realizations and the time t � τ has to be larger than the
typical collision time τ , below which the impurity propagates
ballistically. Several theoretical works have addressed similar
questions using the holographic correspondence in the context
of a heavy quark moving through a quark gluon plasma
[23–29]. Here we will use a conventional method based on
the Boltzmann equation, however, which turns out to provide
an adequate description at low temperatures. The quantum
criticality of the bulk critical point has a single characteristic
time which controls transport and relaxational processes
close to equilibrium τR ∼ h̄/(kBT ) [30]. We will show here
that the situation with impurity motion is not as universal,
and the impurity time scale is determined by an interplay
between several couplings which are formally irrelevant at
the critical point. One of the these couplings is the inverse
effective mass, 1/m, of the mobile impurity; there is the
associated energy scale mc2, where c is the velocity of the
bulk bosonic excitations at the critical point. The value of
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FIG. 1. Schematic phase diagram of the superfluid–Mott-
insulator transition of a Bose-Hubbard model in d = 2 spatial
dimensions at integer filling, as a function of temperature T and
the tuning parameter r = �2 − λ2 [see Eq. (2.10)]. TKT marks the
Kosterlitz-Thouless transition temperature to the superfluid state. The
quantum critical point, marked by XY , is in the universality class of
the three-dimensional (3D) XY model [18]. We focus on transport
properties of an impurity atom coupled to the bosons in the quantum
critical regime, indicated by the two dashed crossover lines.

m controls the quantum wave-packet spread of the impurity
at short times. The other “irrelevant” parameters couple the
impurity to the bulk excitations, and associated energy scales
determine the diffusion of the impurity at long times even at
the lowest temperatures. One of our interesting results is that
the diffusion constant of the impurity does not depend on m at
low temperatures, however.

The rest of the paper is organized as follows. In Sec. II we
derive an effective low-energy theory for a mobile impurity
coupled to bosons at the superfluid–Mott-insulator (SF-MI)
transition and we show that the presence of three-body
interactions changes the theory significantly at the particle-
hole symmetric point. In Sec. III we study perturbative self-
energy corrections to the impurity propagator and calculate
its diffusion constant as a function of temperature, neglecting
three-body interactions. We repeat these calculations including
three-body interactions in Sec. IV and show that this changes
the results qualitatively at low temperatures. Finally we
perform a renormalization-group analysis of the effective-field
theory in Sec. V.

II. FIELD THEORY APPROACH

We start by deriving the effective low-energy theory for
a Bose-Hubbard model at the SF-MI critical point in d = 2
spatial dimensions, following Ref. [31]. A convenient starting
point is to consider particle and hole excitations on top of a
Mott insulating state, which are described by the Lagrangian

Lc = p∗
(

∂τ + �p − ∇2

2mp

)
p + h∗

(
∂τ + �h − ∇2

2mh

)
h

− λ(p∗h∗ + ph) + · · · . (2.1)

Here the fields p ≡ p(x,τ ) and h ≡ h(x,τ ) represent particle
and hole excitations on top of a state with an integer filling
of bosons. The respective energy gaps for these excitations
are denoted by �p and �h, their effective masses by mp

and mh. The last term in Eq. (2.1) creates or annihilates
particles and holes in pairs, as required by the conservation
of the total number of bosons, and we do not explicitly show

higher-order terms in the fields p and h that are allowed by
symmetry.

Ultimately we are interested in the experimentally relevant
situation where the transition happens at a constant density,
i.e., at the tip of the Mott lobe. This happens only if the gaps
�p and �h are equal, such that particles and holes condense
at the same time when the gap closes. For the moment we will
consider the general case, however, and parametrize the gaps
as

�p = � − δ/2, (2.2)

�h = � + δ/2. (2.3)

Now we add a single, mobile impurity atom to the bosons, the
dynamics of which is described by the free particle Lagrangian

Limp = b∗
(

∂τ − ∇2

2m
− μ

)
b, (2.4)

where the field b(x,τ ) represents the impurity and the chemical
potential μ < 0 has to be adjusted such that the density of
impurities is zero. This is important only at finite temperatures,
however, where we need to ensure that no artificial, thermally
excited impurities exist. At zero temperature we can safely set
μ = 0.

Within a microscopic Bose-Hubbard-like model the cou-
pling between the impurity and the bosons is an on-site density-
density interaction, which is a pure two-body interaction in
the simplest case. Since the local boson density is given by
the difference between particle and hole densities (up to the
constant average number of bosons that we neglect in the
following, as it only renormalizes the impurity’s chemical
potential), the interaction term in our effective field theory
takes the form

L(2)
int = u2 |b|2 (|p|2 − |h|2), (2.5)

where the subscript 2 of the coupling constant u2 indicates that
this term derives from a two-body interaction. Furthermore we
include a term that descends from a three-body interaction,

L(3)
int = u3 |b|2 (|p|2 − |h|2)2, (2.6)

because in the case of particle-hole symmetry (δ = 0) this
interaction generates couplings that are more relevant in an
RG sense than those deriving from two-body interactions only,
as will be shown below. To avoid confusion we note that a
three-body interaction in the Bose-Hubbard model of the form
∼b

†
i bi ni(ni − 1), where ni denotes the number of bosons on

site i and b
†
i is the impurity creation operator, also generates a

term of the form (2.5) in addition to (2.6). For brevity we will
always refer to the term in (2.6) as the three-body interaction,
however.

Eventually our system is described by the total Lagrangian

L = Lc + Limp + L(2)
int + L(3)

int . (2.7)

In order to arrive at the more familiar low-energy theory for
the SF-MI critical point we define the fields

ψ = (p + h∗)/
√

2, (2.8)

ξ = (p − h∗)/
√

2 (2.9)
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and integrate out the field ξ . After a rescaling of ψ and defining
r = �2 − λ2 as well as c2 = (� + λ)(mp + mh)/(4mpmh) we
arrive at our final result,

L = ψ∗(δ ∂τ − ∂2
τ − c2∇2 + r

)
ψ + g

4
|ψ |4

+ b∗
(

∂τ − ∇2

2m
− μ

)
b + (δ u2 + u3) |b|2|ψ |2

+u2(ψ ∂τψ
∗ − ψ∗∂τψ)|b|2. (2.10)

The terms shown are the leading order terms within a gradient
expansion. For the case of particle-hole symmetry (δ = 0, i.e.,
�p = �h) the dynamical critical exponent of the bosons is
z = 1 and the critical point is described by the well-known
U(1) CFT in d + 1 dimensions. Even more interesting, the
direct interaction term between the bosons and the impurity
∼|b|2|ψ |2 vanishes if only two-body interactions are present.
This somewhat counterintuitive result (in the sense that the
particle-hole symmetric interaction term vanishes if the ψ4

theory is particle-hole symmetric) can be understood from
the fact that the two-body interaction term L(2)

int is invariant
under a particle-hole transformation (ψ → ψ∗, δ → −δ) only
in combination with u2 → −u2. This is not true for the
three-body interaction term L(3)

int , however, and that is why
the parametrically smaller u3 generates a term that is more
relevant than the one generated by two-body interactions at
the particle-hole symmetric point. The leading-order terms
that are consistent with the symmetry,

L[ψ ; δ,u2,u3] = L[ψ∗; −δ, − u2,u3], (2.11)

are the ones shown in Eq. (2.10). Also note that the two-body
interaction u2 couples the impurity density |b|2 to the timelike
component of the bosonic current density j0 = ψ ∂τψ

∗ −
ψ∗∂τψ .

We stress again that we focus solely on the particle-hole
symmetric case (δ = 0) in the rest of the paper. A tree-level
scaling analysis of the Lagrangian (2.10) using the exact
critical exponents of the bosonic CFT shows that both in-
teractions u2 and u3 are irrelevant in d = 2 spatial dimensions
at the p/h-symmetric point. Indeed, performing a scaling
with z = 1 gives the scaling dimensions [ψ] = (d − 1 + η)/2
and [b] = d/2 for the fields, as well as [|ψ |2] = d + 1 − 1/ν

and [j ] = d for the composite bosonic density and current
operators per definition. Here η and ν denote the anomalous
dimension and the correlation length exponent of the bosonic
CFT, which take the values η � 0.038 and ν � 0.671 55 at
the quantum critical point in d = 2 spatial dimensions [32].
From these scaling dimensions we get [u2] = 1 − d and
[u3] = 1/ν − d, thus both couplings are irrelevant in d = 2.
Also note that the curvature of the impurity dispersion is
an irrelevant perturbation, as the scaling dimension of the
impurity mass m is [m] = 1. We will perform a more elaborate
renormalization-group (RG) analysis in Sec. V.

III. TWO-BODY INTERACTIONS

In this section we analyze the field theory (2.10) at the
particle-hole symmetric point (δ = 0), assuming that three-
body interactions are absent (i.e., u3 = 0). The Lagrangian

FIG. 2. Self-energy contributions to the impurity propagator up
to second order in the interaction u2. Solid lines denote the boson
propagator, dashed lines correspond to the impurity propagator.

(2.10) thus takes the simplified form

L = ψ∗( − ∂2
τ − c2∇2 + r

)
ψ + g

4
|ψ |4

+ b∗
(

∂τ − ∇2

2m

)
b + u2(ψ ∂τψ

∗ − ψ∗∂τψ)|b|2. (3.1)

Note that we dropped the chemical potential since it is not
important at zero temperature, as argued above.

A. Perturbative analysis (T = 0)

As a first step towards an understanding of the impurity’s
properties we calculate its self-energy perturbatively in the
interaction strength u2 at zero temperature in the following.
Since u2 is irrelevant, we expect the perturbative calculation
to give qualitatively correct results. The terms up to second
order are shown in Fig. 2. The first-order tadpole contribution
turns out to be identically zero. Note that the boson loop in the
second-order diagram corresponds to the timelike component
of the bosonic current-current correlation function of the free
bosonic theory due to the particular form of the interaction
vertex in (3.1). At T = 0 the form of the bosonic current-
current correlator of the interacting ψ4 theory at the critical
point in d = 2 is fixed by conformal invariance and is given
by

KR
00(q,ω) = κ

q2√
c2q2 − (ω + i0+)2

. (3.2)

Here κ is a numerical factor that is renormalized by the boson
interaction g and takes the value κ = 1/16 for the free bosonic
theory. The functional form of K00(q,ω) is independent of
g, however. For this reason our results for the impurity self-
energy below are perturbative in u2, but valid to arbitrary order
in the boson interaction g.

At zero temperature the imaginary part of the retarded self-
energy up to second order in u2 is given by

ImR(k,ω) = −u2
2

∫
q
�(ω − εk−q) ImKR

00(q,ω − εk−q),

(3.3)

where εk = k2/(2m) denotes the impurity dispersion. At k = 0
the integral can be evaluated exactly and we obtain

ImR(0,ω) = −u2
2κm2

π

[
ω + mc2

2
ln

(
1 + 2ω

mc2

)
− ω

]

= − u2
2κ

3πc4
ω3 + O(ω4). (3.4)
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For finite momenta we can derive approximate analytic expressions, which take the form

ImR(k,δω) �
⎧⎨
⎩

− 2u2
2κ

45
√

2 π2

m4(29k2+31m2c2)
(m2c2−k2)3 δω3 + O(δω4) for k < mc,

− 8u2
2κ

3
√

2 π2

(k−mc)3

c
+ O(δω,(k − mc)4) for k > mc

(3.5)

with δω = ω − εk � 0.
The qualitative change of the self-energy at k = mc can be

understood from kinematic considerations. The only lifetime
limiting process for the impurity at zero temperature happens
to be the excitation of a bosonic “phonon” mode. Due to energy
and momentum conservation this process is prohibited as long
as the group velocity of the impurity vg = ∂kεk = k/m is
smaller than the “sound” velocity c of the bosons. For this
reason the impurity spectral function has a sharp δ-function
peak for all momenta k < mc, which is reflected by the fact
that the imaginary part of the self-energy scales as ∼δω3

close to the quasiparticle pole. On the other hand, for k > mc

the impurity can scatter strongly by exciting the bosons.
Consequently the imaginary part takes a nonzero on-shell
value, implying that there is no well defined impurity excitation
anymore. The appearance of this kinematic constraint can be
readily seen from Eq. (3.3), where the imaginary part of the
current correlator is nonzero only if ω > εk−q + cq.

It is important to note that this threshold behavior for
creating bosonic excitations at k > mc holds to all orders
in perturbation theory in the impurity-boson coupling u2.
Higher-order diagrams with more boson propagators describe
processes where the impurity excites multiple boson modes,
which in turn have an even higher energetic threshold. From
a theoretical perspective it is an interesting question, if the
impurity’s properties above this kinematic threshold at k = mc

are described by a RG fixed point. This is not the case, however,
and we will come back to this problem in Sec. V.

B. Diffusion constant in the quantum critical and Mott regimes

An important transport coefficient that can be directly
measured in experiments is the diffusion constant D of the
impurity. Here we calculate D(T ,m,�) as a function of
temperature T , impurity mass m, and the Mott gap � using
the Boltzmann equation, which gives qualitatively correct
results as long as the impurity has a well defined quasiparticle
peak. This condition is satisfied in the temperature regime
T � mc2 (we set kB ≡ 1 from now on), where the kinematic
threshold discussed in the previous section does not matter. Let
us quickly estimate the experimentally relevant temperature
regime before proceeding with the Boltzmann calculation.
Typical temperatures in experiments [15,16] in units of the
Hubbard interaction U are on the order of T/U ≈ 0.1. Using
the theoretical results for the hopping amplitude J as well
as the sound velocity c at the critical point of the 2D Bose-
Hubbard model [33], which take the values (J/U )crit = 0.0597
and (c/J )crit � 4.8, together with the band mass m = 2/J of
the impurity, we obtain T/(mc2) ≈ 0.04, which is typically
well below the kinematic threshold. Note that mc2 ≈ 46J is a
relatively large energy scale.

We are interested in a situation without external forces but
with an initial density gradient, thus the Boltzmann equation
takes the form

∂tfk(x,t) + k
m

· ∇x fk(x,t) = I [fk(x,t)], (3.6)

with fk(x,t) as the Wigner distribution function of the impurity
at momentum k, position x, and time t . The collision integral
has the standard form

I [fk] = −
∑

k′
(Wk,k′fk − Wk′,k fk′ ), (3.7)

where the transition rates Wk,k′ can be calculated using Fermi’s
“golden rule” and are given by

Wk,k′ = 2 u2
2

{
ImKR

00(k′ − k,εk′ − εk)

× nB (εk′ − εk) �(εk′ − εk)

+ ImKR
00(k′ − k,εk − εk′ )

× [1 + nB(εk − εk′)]�(εk − εk′ )
}
. (3.8)

Here KR
00(q,ω) denotes the timelike component of the retarded

bosonic current-current correlation function, nB is the Bose-
Einstein distribution function, and � denotes the unit step
function. Details of the derivation are given in Appendix A.

In typical experimental situations the impurity is initially
localized, released at some time t = 0 and then is allowed to
propagate through the bosonic bath. In principle the Boltzmann
equation (3.6) allows us to calculate the full time evolution of
the impurity distribution function. At short times collisions do
not play a role and the impurity propagates ballistically,

fk(x,t � τ ) = fk(x − kt/m,0), (3.9)

where τ denotes the typical time between collisions. If we
start at t = 0 with the particles localized in a Gaussian wave
function,

ψ(x,0) = 1√
πσ

exp

(
− x2

2σ 2

)
, (3.10)

then the short-time evolution of the Wigner distribution
function according to Eq. (3.9) is free particle behavior

fk(x,t � τ ) =
∫

d2y e−ik·yψ∗
(

x − y
2
,t

)
ψ

(
x + y

2
,t

)

= 4 exp

[
− 1

σ 2

(
x − k

m
t

)2

− k2σ 2

]
. (3.11)

At long times t � τ collisions dominate and the impurity
propagates diffusively. The Wigner distribution then takes the
form

fk(x,t � τ ) = 1

2mT Dt
exp

(
− x2

4Dt
− k2

2mT

)
, (3.12)
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with a Maxwell-Boltzmann distribution of the momenta.
Indeed, in the long-time limit, where the Wigner distribution
function of the impurity is close to equilibrium, we can derive
a diffusion equation from the Boltzmann equation (3.6) for
arbitrary linear collision integrals of the form (3.7). Again,
details can be found in Appendix A. The corresponding
impurity diffusion constant D takes the simple form

D = T

m
τ, (3.13)

with a transport relaxation time τ which is given by

τ−1 =
∑
k,k′

Wk,k′

[
1 − k′

k
cos θk,k′

]
f Boltz

k , (3.14)

where k = |k| and f Boltz
k ∼ exp(−βεk) is the equilibrium

Boltzmann distribution function. Using the explicit form of the
transition rates Wk,k′ in Eq. (3.8) we can cast the expression
for the diffusion constant D(T ,m,�) in a scaling form,

D = c6

u2
2T

3
�

(
T

mc2
,

�

mc2

)
. (3.15)

The corresponding scaling function � can be calculated
numerically and is shown in Fig. 3. Here we used the
one-loop result for the bosonic current correlator K00 at finite
temperature, where the dispersion relation of the bosonic
modes Ek =

√
(ck)2 + m2

b acquires a temperature-dependent
mass term,

mb = 2T ln

(
e�/(2T ) + √

4 + e�/T

2

)
, (3.16)

which follows from a 1/N expansion in the limit N → ∞ of
the bosonic CFT [34]. Note that this temperature-dependent
gap is an artifact of the N → ∞ limit and it is not the scope
of this paper to go beyond this limitation.

At a fixed temperature T , the diffusion constant D takes its
minimal value in the quantum critical regime directly above the
quantum critical point, where the Mott gap vanishes (� = 0).

FIG. 3. (Color online) Scaling function �( T

mc2 , �

mc2 ) for the
diffusion constant in Eq. (3.15) as a function of temperature T and
Mott gap �. The scaling function has been evaluated numerically
from Eq. (A12) using the one-loop expression for the current-current
correlation function K00(q,ω) at finite temperature.
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FIG. 4. (Color online) Scaling function �( T

mc2 ,0) for the diffusion
constant in Eq. (3.15) as a function of temperature in the quantum
critical regime above the critical point, where the Mott gap vanishes
(� = 0). The scaling function has been evaluated numerically from
Eq. (A12) using the one-loop expression for the current-current
correlation function K00(q,ω) at finite temperature. The inset is
an expanded view of the low-temperature region, showing that the
scaling function �(x,0) is nonzero at x = 0. The dashed red and
dash-dotted green lines show the scaling function in the Mott regime
for �/(mc2) = 0.05 and 0.1 as a function of T/(mc2), respectively.

This is consistent with the naive expectation that the phase
space for scattering processes between the impurity and the
bosonic modes is large, if the gap of the bosonic modes is
small. The scaling function in the quantum critical regime for
� = 0 is shown in more detail in Fig. 4. Note that � approaches
a finite value �(0,0) � 0.267 at zero temperature and scales
linearly for small T/(mc2) � 1, as

�

(
T

mc2
,0

)
� 0.267 + 4.4

T

mc2
. (3.17)

Interestingly, the fact that the scaling function takes a constant
value at T = 0 and � = 0 implies that the diffusion constant
at the critical point does not depend on the impurity mass
m at very low temperatures. Indeed, the curvature of the
impurity dispersion, i.e., the inverse mass m−1, is an irrelevant
perturbation, and here there is no conspiracy between the
two irrelevant couplings m−1 and u2 that potentially could
change the T dependence of D from that expected from
its 1/u2

2 dependence. Only at higher temperatures does the
mass start to play a role, leading to a crossover from a
D ∼ T −3 behavior at very low temperatures to a D ∼ T −2

dependence at temperatures T � 0.06 mc2. Note that this
crossover temperature is around the typical temperatures in
experiments, where T � 0.04 mc2, thus we expect that the
D ∼ T −2 behavior at larger temperatures should be easily
accessible.

In order to compare our results directly to experiments it
would be natural to express the diffusion constant in units
of the hopping amplitude J (or more precisely Ja2/h̄, if
the lattice constant a and Planck’s constant are not set to
unity). Assuming that the Hubbard interaction u2 between
the impurity and the bosons equals the Hubbard U in the
bulk, the diffusion constant at a typical temperature T = 0.1U

above the critical point takes the value D � 3.95J . The
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corresponding transport relaxation time τ takes the value
τ � 4.67/J , showing that it is experimentally promising to
reach the diffusive regime at times t � τ .

We note here that in certain parameter regimes a direct
comparison of experimental results with our calculations might
be difficult due to the harmonic confinement in experiments.
This confinement effectively leads to an averaging of the
diffusion constant when the impurity explores different regions
of the trap. In most cases this is not a problem, however.
Only in the Mott regime at temperatures well below the Mott
gap, where the diffusion constant is large and the impurity
propagates almost ballistically, it explores larger regions of the
trap and averaging could become important. Such confinement
problems can be circumvented by increasing the temperature
slightly, since D and τ are strongly temperature dependent and
decrease by an order of magnitude if the temperature is raised
from T = 0.1U to T = 0.2U .

On a formal level, the fact that the scaling function at
the critical point �(0,0) is constant can be traced back to
the behavior of the current correlator at small frequencies,
which scales as ImKR

00(q,ω) ∼ ω for ω � T . It is important
to stress that this behavior, which is related to the fact
that ImKR

00(q,ω) = −ImKR
00(q, − ω) is an odd function of

frequency and expected to be an analytic at ω = 0, is likely
valid in general and not related to our one-loop approximation
of the current correlator. Indeed it has been argued that the
current-current correlation function takes a hydrodynamic
form for ω,q � T ,

KR
00(q,ω) = χ

Dq2

Dq2 − iω
, (3.18)

the imaginary part of which obviously scales as ∼ω for small
frequencies. This has also been confirmed by calculations
using the AdS/CFT correspondence [22].

In the Mott regime away from the critical point, where
the excitation gap � is finite, the scaling function diverges
exponentially as the temperature approaches zero,

�

(
T

mc2
,

�

mc2

)
∼ e�/T . (3.19)

This behavior can be understood from the fact that the impurity
does not scatter with bosonic excitations at temperatures well
below the Mott gap and thus propagates ballistically, which
translates to a diverging diffusion constant.

We also note that the mobility μ of the impurity is
independent of its mass at the critical point at low enough
temperatures. The mobility is defined as μ = vd/F , where
vd is the impurity’s terminal drift velocity in response to an
external force F . It is related to the diffusion constant D via the
Einstein relation D = μT and thus has the same dependence
on the impurity mass as the diffusion constant.

C. Diffusion constant in the superfluid regime

In the superfluid phase the impurity diffusion constant D

can be calculated in the same way as in Sec. III B, using a
1/N expansion in the limit N → ∞ for the bosonic current
correlation function K00. The only difference is that Eq. (3.16)

for the boson mass term has to be replaced by [34]

mb = 2T ln

(
e−2π�SF/T + √

4 + e−4π�SF/T

2

)
. (3.20)

In contrast to the Mott regime, where the energy scale is set by
the Mott gap �, the energy scale �SF in the superfluid phase is
set by the helicity modulus at zero temperature �SF = ρs(0)/2
[34].

In the 1/N expansion, the helicity modulus is nonzero
only at T = 0, and the O(N ) symmetry is fully restored at
any nonzero temperature. However, for the N = 2 case of
interest here, the helicity modulus is nonzero for a range of
low T : the helicity modulus ρs(T ) = ns(T )/M is proportional
to the superfluid density ns(T ), and close to the quantum
critical point, ρs(T ) is a universal function of ρs(0) and T .
Nevertheless, we expect the 1/N expansion to provide a
reasonable description of the impurity atom motion, because
the latter couples only to quantities which are invariant under
the U(1) global symmetry of the superfluid. Furthermore, the
gap in Eq. (3.20) is much smaller than T , and so is washed
out by thermal excitations. In the following we restrict our
discussion to the low-temperature regime, where the superfluid
density is essentially constant and independent of temperature.

Again, we can define a scaling function � for the impurity
diffusion constant, which takes the same form as Eq. (3.15).
The scaling function in the superfluid regime is shown in Fig. 5,
together with the results at the critical point and in the Mott
regime. Note that the temperature dependence of the diffusion
constant in the superfluid phase is qualitatively the same as
at the critical point, with the only difference that D takes
numerically slightly smaller values in the superfluid phase
than at the critical point. This can be understood from that
fact the impurity couples efficiently to gapless phonons in the
superfluid.

0 0.02 0.04 0.06
T/mc2

0

0.2

0.4

0.6

Φ
(T

/m
c2 )

crit. point
superfluid (ΔSF = 0.0025 mc2)
Mott (Δ = 0.02 mc2)

FIG. 5. (Color online) Scaling function �( T

mc2 ) for the diffusion
constant in Eq. (3.15) as a function of temperature in the superfluid
regime (shown as red dashed line), together with the results at the
critical point (blue solid line) and in the Mott phase (green dash-dotted
line). Note that the temperature dependence of �SF was neglected
in this computation, which is therefore only valid well below the
superfluid transition temperature TKT (typical values for TKT are on
the order of the hopping amplitude J � 0.02mc2).
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IV. THREE-BODY INTERACTIONS

We discussed in Sec. II that three-body interactions are
more relevant than two-body interactions at the particle-
hole symmetric quantum critical point. Indeed, the behavior
of the impurity’s transport coefficients will be dominated by
three-body interactions at low enough temperatures, albeit the
three-body interaction being parametrically smaller than the
two-body interaction. In this section we thus repeat the analysis
of Sec. III for the case of three-body interactions u3. For the
sake of simplicity we set the two-body interaction to zero in
this section and start our discussion from the Lagrangian in
Eq. (2.10) with δ = 0 and u2 = 0. In reality both interactions
will be present, however, which will lead to a crossover in
the temperature dependence of the diffusion constant. The
associated crossover scale depends on the relative strength of
the two interactions, which will be discussed briefly at the end
of this section.

A. Perturbative analysis

Again, we start by performing a perturbative analysis of the
impurity’s self-energy at zero temperature, including terms
up to second order in u3. The two corresponding self-energy
diagrams are analogous to the ones shown in Fig. 2. Note
also that mixed terms ∼u2u3 vanish by symmetry. We neglect
the first-order tadpole contribution as it only renormalizes
the chemical potential, which we set to zero in order to
ensure a vanishing density of impurities. The second-order
contribution to the self-energy can be computed by replacing
the current-current correlator K00(q,ω) in Eq. (3.3) with the
bosonic polarization function �(q,ω). Again we want to obtain
a result for the impurity self-energy which is nonpeturbative
in the boson coupling g, thus we use the scaling form

�R(q,ω) ∼ (c2q2 − ω2)3/2−1/ν, (4.1)

for the bosonic polarization function at zero temperature,
which follows from the scaling dimensions of the fields
discussed in Sec. II. The corresponding integral to Eq. (3.3) for
the imaginary part of the impurity self-energy can be evaluated
exactly at k = 0. In the limit of small frequencies ω � mc2

we obtain

ImR(0,ω) ∼ −u2
3

|sin[π (3/2 − 1/ν)]|
4πc2(5/2 − 1/ν)

ω5−2/ν . (4.2)

Using the exact value for the correlation length exponent [32]
ν = 0.671 55, the imaginary part of the self-energy scales as
∼ω2.022 at low frequencies, i.e., the impurity spectral function
again has a sharp δ-function peak. Note that this is not true
in mean-field theory, where νMF = 1/2 and the the imaginary
part of the self-energy scales as ∼ω at small frequencies, which
would result in an algebraic singularity instead of a δ-function
peak in the spectral function.

At finite momenta we expect a similar behavior of Im as
described in Sec. III A for the case of two-body interactions,
where the self-energy acquires a finite imaginary part beyond
the kinematic threshold at k = mc. We calculate this imaginary
part explicitly in Sec. V.

B. Diffusion constant in the quantum critical regime

For the computation of the impurity’s diffusion constant
the same arguments hold as in Sec. III B and we restrict
our discussion here to the critical point where the Mott
gap vanishes (� = 0). The transition rates Wk,k′ have the
same form as in Eq. (3.8), with u2

2 ImKR
00(q,ω) replaced

by u2
3 Im�R(q,ω). Using the scaling form of the bosonic

polarization function at finite temperature,

�(q,ω,T ) = c2/ν−6 T 3−2/ν �̃(cq/T ,ω/T ), (4.3)

we can express the impurity diffusion constant in the scaling
form

D = c10−2/ν

u2
3 T 5−2/ν

�̃

(
T

mc2

)
. (4.4)

Unfortunately we cannot reliably calculate the scaling function
�̃ in the equation above, because neither the mean-field
approximation with ν = 1/2 nor the leading order 1/N

approximation where ν = 1 are good approximations for
the polarization function at finite temperature. In fact, from
Eq. (4.1) one can see that �R(q,ω) is close to being constant
at zero temperature, because the correlation length exponent
almost takes the value ν ≈ 2/3 at the critical point. However,
it is reasonable to assume that the scaling function �̃(x)
in Eq. (4.4) will again take a constant value at x = 0,
because Im�R(q,ω) = −Im�R(q, − ω) is an odd function of
frequency and expected to scale linearly, Im�R(q,ω) ∼ ω, for
small frequencies, similar to the case discussed in Sec. III B.
Based on this assumption the diffusion constant scales as
D ∼ T −2.022 at low temperatures.

If both two- and three-body interactions are present, there
will be a crossover in the temperature dependence of the
diffusion constant. Summing up the two inverse relaxation
times using Matthiessen’s rule, we obtain

D−1 ∼ u2
3 T 5−2/ν

(
1 + const

u2
2

u2
3

T 2/ν−2

c2/ν−4

)
, (4.5)

with a constant of order 1. We thus expect a crossover
from a T −2.022 to a T −3 behavior at temperatures T �
c (u3/cu2)ν/(1−ν), provided that the mass-dependent crossovers
happen at a higher temperature.

V. RG ANALYSIS FOR THE THREE-BODY INTERACTION

The simple tree-level scaling at the end of Sec. II showed
that both u2 and u3 are irrelevant couplings at the particle-
hole symmetric point (δ = 0), with u3 being less irrelevant
than u2. In this section we perform a more elaborate zero-
temperature RG analysis of the three-body interaction u3. Our
aim is to understand how a finite imaginary part of the self-
energy is generated beyond the kinematic threshold discussed
in Sec. III A, thus we are going to analyze the flow of the
impurity propagator at a fixed external momentum. The two-
body interaction u2 will be set to zero throughout this section.

We are using a functional RG (fRG) formulation to
derive our flow equations [35]. In order to keep the analysis
transparent we use simple parametrizations for the propagators
and vertices, however. Since the coupling between the impurity
and the bosons is a four-point coupling and the fRG flow
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equations have a one-loop structure, we employ the standard
trick and consider the flow in the symmetry broken phase
in order to generate a nontrivial frequency and momentum
dependence for the impurity propagator while maintaining a
simple parametrization of the interaction vertices [36]. This
approach is similar to the background field method used in
field-theoretic RG approaches.

Our starting point is to choose a simple truncation of the
effective action ��[ψ∗,ψ,b∗,b] at momentum scale � in the
symmetry broken phase

�� =
∑

q

(
ψ∗

q

(−G−1
�,q

)
ψq + g�φ2

�

4
(ψ∗

q ψ∗
−q + ψqψ−q)

)

+ g�φ�

2

∑
q,k

(ψ∗
q ψq−kψk + c.c.)

+ g�

4

∑
q,k,p

ψ∗
k ψ∗

q−kψq−pψp +
∑

q

b∗
q

(−B−1
�,q

)
bq

+
∑
q,k,p

u�(�q) ψ∗
k b∗

q−kbq−pψp

+φ�

∑
q,k

u�(�q)(b∗
qbq−kψk + c.c.). (5.1)

Here φ� is the expectation value of the bosonic field ψ ,
the subscript � denotes scale dependent quantities, we use
the shorthand notation q = (i�q,q) for sums over bosonic
Matsubara frequencies and momenta, and we dropped the
subscript on the three-body coupling u3 ≡ u for notational
brevity. Note that even though φ� is zero at the critical point,
the properly rescaled field expectation value φ̃ will be nonzero
and is related to the anomalous dimension of the bosons.

The effective action in Eq. (5.1) is a straightforward gener-
alization of Eq. (2.10) for δ = 0 and u2 = 0 to the symmetry
broken phase. The important renormalizations appear in the
propagators, which we parametrize as [we set the velocity of
bosonic excitations to unity (c = 1) from now on]

G−1
�,q = −Z

ψ

�

(
�2

q + q2
) − r� − g�φ2

�, (5.2)

B−1
�,q = Zb

�i�q − v�

(
qx + q2

2Q

)
+ iγ�sgn(�q), (5.3)

where Z
ψ

� and Zb
� are wave-function renormalizations and sgn

denotes the sign function. Note two important modifications
of the impurity propagator B�,q . First, we expanded the
dispersion relation around a fixed momentum Q = Qêx and its

corresponding on-shell frequency Q2/(2m) in order to study
the flow of the propagator at a fixed external momentum. The
group velocity v = Q/m is allowed to flow, which in turn
captures renormalizations of the impurity’s effective mass.
Second, we include a damping term γ , which will flow to
nonzero values above the kinematic threshold. As will become
clear later, generating a finite imaginary self-energy γ is the
only possible way to cure the mass-shell singularity that arises
from the large phase space for scattering processes between the
(almost) linearly dispersing impurity mode and the linearly dis-
persing critical bosonic modes above the kinematic threshold.

Also note that we did not include a chemical potential in the
impurity propagator. During all our calculations we enforce a
vanishing density of impurities by neglecting the contribution
of the impurity propagator’s pole (or branch cut, if γ �= 0)
in all diagrams. This procedure is tantamount to adjusting a
chemical potential such that the density of impurities is zero.

Apart from the impurity propagator also the three-body
coupling u� in (5.1) will acquire an important nonanalytic
frequency dependence during the flow above the kinematic
threshold, which can be parametrized as

u�(�q) = u′
� + iu′′

� sgn(�q). (5.4)

Flow equations for all scale dependent quantities can now
be derived in the usual way from the exact flow equation for
the effective action [37],

∂���[�] = 1

2
Tr

[
1

�
(2)
� [�] + R�

∂�R�

]
. (5.5)

Here �
(2)
� [�] is shorthand for the second functional deriva-

tive of the effective action with respect to the fields, i.e.,
(�(2)

� [�])kq = δ2�/(δ�k,αδ�q,β) has a 4 × 4 matrix structure
coming from the field index α,β = 1, . . . ,4 with �k =
(ψ∗

k ,ψk,b
∗
k ,bk), besides its usual frequency- and momentum-

space matrix structure. The trace in Eq. (5.5) is taken with
respect to all momentum, frequency, and field indices. R�

denotes the regulator function

(R�)k,q = diag
(
R

ψ

�,k,R
ψ

�,k,R
b
�,k,R

b
�,k

)
δk,q , (5.6)

and we choose an optimized Litim cutoff for both, the bosons
as well as the impurity [38],

R
ψ

�,k = Z
ψ

�(�2 − k2)θ (�2 − k2), (5.7)

Rb
�,k = v�

Q
(�2 − k2)θ (�2 − k2). (5.8)

FIG. 6. Schematic representations of the flow equations for the impurity propagator (dashed line) and the three-point vertex u�φ� (grey
circle). Grey squares and black dots denote the four-point vertex u� and the boson three-point coupling g�φ�, respectively. Insertions of
regulator derivatives and associated combinatorial factors are not shown explicitly. The wiggly line is an abbreviation for the difference
between the normal and the anomalous boson Green’s function (Gp − Fp). Black lines without arrows denote either Gp or Fp and we do not
show all combinatorial possibilities explicitly. For details see Eqs. (5.9) and (5.10).
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As customary, we neglect derivatives of Z
ψ

� and v� in the scale
derivative of the regulator ∂�R�.

The explicit form of our flow equations for all scale-
dependent parameters is shown in Appendix B. Note that
the flow equations for the four boson parameters r�, g�,
φ�, and Z

ψ

� are decoupled from the impurity flow equations.
This is because we only consider the case of a vanishing
impurity density where all diagrams with internal impurity
loops evaluate to zero and thus do not give a contribution to

the flow equations. For this reason the properties of the bosons
at the critical point are described by the usual Wilson-Fisher
fixed point with critical exponents in the universality class of
the 3D XY model.

Without discussing the standard flow equations for the
bosons much further, we now turn to the impurity flow
equations, shown in Fig. 6 in a very schematic way. The
equations for the impurity propagator and the three-point
vertex are given by

∂�B−1
�,q = u�

∑
p

(
G2

p + F2
p

)
Ṙ

ψ

�,p + 2 u2
�φ2

�

∑
p

[
(Gp − Fp)2Bq−p Ṙ

ψ

�,p + (Gq−p − Fq−p)B2
p Ṙb

�,p

]
, (5.9)

∂�(u�φ�) = −u�g�φ�

∑
p

[
2G3

p + 3G2
pFp + 6GpF2

p + F3
p

]
Ṙ

ψ

�,p − 2 u2
�φ�

∑
p

[
(Gp − Fp)2Bp Ṙ

ψ

�,p + (Gp − Fp)B2
p Ṙb

�,p

]
− 3 u2

�g�φ3
�

∑
p

[
2(Gp − Fp)3Bp Ṙ

ψ

�,p + (Gp − Fp)2B2
p Ṙb

�,p

]
− 2 u3

�φ3
�

∑
p

[
(Gp − Fp)2B2

p Ṙ
ψ

�,p + 2(Gp − Fp)B3
p Ṙb

�,p

]
, (5.10)

where Ṙ = ∂�R is the scale derivative of the regulator and
Gp, Fp, and Bp denote the regularized normal and anomalous
boson Green’s functions as well as the regularized impurity
Green’s function, respectively,

Gp = G−1
�,p − R

ψ

�,p(
G−1

�,p − R
ψ

�,p

)2 − (
g�φ2

�/2
)2 , (5.11)

0 2 4 6 8 10
-0.5
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0.5

1
us’
us’’
20 γs

0 2 4 6 8 10s
0.898

0.9
vs

FIG. 7. (Color online) Upper panel: RG flow of the rescaled three-
body interaction parameters ũ′

s and ũ′′
s (shown as solid blue and dashed

red line) as well as the nonrescaled imaginary part γs (shown as green
dash-dotted line) as a function of the flow parameter s = ln �0/�,
obtained by integrating the RG equations in Appendix B. The initial
conditions were chosen such that the group velocity v of the impurity
is above the kinematic threshold for creating particle-hole excitations.
Note that γs has been multiplied by a factor 20 for better visibility.
Lower panel: corresponding RG flow of the rescaled impurity velocity
ṽs .

Fp = g�φ2
�/2(

G−1
�,p − R

ψ

�,p

)2 − (
g�φ2

�/2
)2 , (5.12)

B−1
p = B−1

�,p − Rb
�,p. (5.13)

From the explicit form of the flow equations in Appendix B
it is clear that the three-body interaction u is always irrelevant.
This is mainly due to the screening of the three-body
interaction by bosonic particle-hole excitations, giving rise to
a contribution to the β function of the interaction u which
is linear in u and negative, independent of the impurity’s
properties.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
v

0

0.05

0.1

0.15

0.2

γ

u0’ = 10
u0’ = 5

FIG. 8. (Color online) Imaginary part of the self-energy γs at the
end of the RG flow (� → 0) as a function of the impurity’s initial
group velocity v�=�0 , plotted for two different initial three-body
interaction strengths u�0 = 10 (blue solid line) and u�0 = 5 (red
dashed line). The threshold value of the velocity is renormalized
from vth = 1 to vth = (1 + r̃∗ + g̃∗φ̃2

∗/2)1/2 in units where the boson
velocity is set to c = 1 (see text).
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Even though u always flows to zero, a qualitative change in
the RG flow occurs if the group velocity v of the impurity
is above the kinematic threshold for creating particle-hole
excitations. In perturbation theory this happens for v > c ≡ 1,
as discussed in Sec. III A. In our RG procedure the threshold
velocity is slightly renormalized to vth = (1 + r̃∗ + g̃∗φ̃2

∗/2)1/2

in units with c = 1, where r̃∗, g̃∗, and φ̃∗ denote the fixed-point
values of the rescaled variables (see Appendix B). Indeed, for
v > vth the RG generates a finite damping term γ for the
impurity. Typical RG flows of the impurity parameters in the
regime v > vth are shown in Fig. 7.

We do not find a RG fixed point that controls the flow of
γ above the kinematic threshold. Instead, γ flows to a finite,
nonuniversal value while u flows to zero. In Fig. 8 we show the
value of γ at the end of the flow (i.e., at � → 0) as a function
of the initial velocity v�=�0 , showing the sharp onset of γ for
v > vth. Formally, generating a flow for γ is intimately linked
to the appearance of a nonintegrable mass-shell singularity
above the kinematic threshold.

VI. CONCLUSIONS

In this paper we have analyzed the problem of a mobile
impurity atom interacting with bosons at the superfluid-
Mott insulator critical point in d = 2 spatial dimensions.
The effective low-energy theory describing this system is
qualitatively different if three-body interactions are present.
We calculated the diffusion constant D of the impurity as a
function of temperature and showed that D does not depend
on the impurity mass at low temperatures. Furthermore we
showed that the zero-temperature properties of the impurity
change if its group velocity exceeds the kinematic threshold
for creating particle-hole excitations. This behavior is not
controlled by a RG fixed point, however. Instead the imaginary
part of the impurity’s self-energy flows to a nonuniversal value
while the interaction flows to zero.
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APPENDIX A: DERIVATION OF THE BOLTZMANN
EQUATION

In this appendix we derive the collision integral for the
Boltzmann equation in Sec. III B as well as the diffusion
equation, which describes the propagation of the impurity at
long times. Our collision integral will be perturbative in u2,
but we want to make sure that effects to all orders in the
boson coupling g are accounted for, similar to the perturbative
calculation in Sec. III A. This can be done without invoking the
Keldysh formalism by considering an effective model where
the impurity is coupled to a bath of phonons. As will be shown
in the following, the spectral density of the phonons needs to be

chosen such that it matches the spectral function of the bosonic
current-current correlation function. The collision integral for
the Boltzmann equation can then be derived straightforwardly
from the effective phonon model using Fermi’s golden rule.

We start from the effective action describing the impurity
coupled to a bath of harmonic oscillators,

Seff = 1

2

∑
k,α

ϕ−k,α

(
�2

k + ω2
α

)
ϕk,α +

∑
k

b∗
k (−i�k + εk)bk

+
∑
k,q,α

ck,α ϕk,αb∗
q−kbq, (A1)

where ωα denotes the frequency of the phonon mode ϕk,α , ck,α

are coupling constants, and we use the shorthand notation k =
(�k,k). In order to match this effective action to our original
action (3.1) we integrate out the phonons and obtain

S = Sb − 1

2

∑
k,q,q ′

∫ ∞

0

dω

π

J (k,ω)ω

�2
k + ω2

b∗
q−kbqb

∗
q ′−kbq ′ , (A2)

where we have defined the spectral density of the phonons via

J (k,ω) = π
∑

α

c2
k,α

ωα

δ(ω − ωα). (A3)

On the other hand, if we formally integrate out the bosons in
our original action (3.1) to second order in u2, we get the same
result as in Eq. (A2) with

J (k,ω) = 2u2
2 ImKR

00(k,ω). (A4)

Now that we have matched the spectral density of the effective
phonon bath to our original model we can straightforwardly
employ Fermi’s golden rule and obtain the collision integral
in Eq. (3.8).

Close to equilibrium we can solve the Boltzmann equa-
tion (3.6) by first employing a Fourier transform with respect
to the spatial coordinate x,

∂tfk(q) − i
k · q
m

fk(q) = I [fk(q)], (A5)

and making the ansatz

fk(q) = f 0
k (q) + (k · q)f̃k. (A6)

Here f 0
k (q) ∼ nq exp(−βεk) and f̃k describes the deviation

of the momentum distribution from equilibrium. This is
basically a leading-order expansion in spherical harmonics
where the angular dependence of fk(q) on the momentum k
only enters through the (k · q) term. Note that the impurity
density distribution is given by

nq =
∑

k

fk(q) =
∑

k

f 0
k (q). (A7)

Using the ansatz (A6) we can derive a diffusion equation from
the Boltzmann equation (A5) for arbitrary linear collision
integrals of the form (3.7) as follows. Taking an angular
average of the Boltzmann equation (A5) we obtain

∂tf
0
k (q) − i

q2k2

2m
f̃k =

∫ π

−π

dθk

2π
I [fk(q)] = I

[
f 0

k (q)
] ≡ 0.

(A8)
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Moreover, taking an angular average over the Boltzmann
equation multiplied by k · q we get

∂2
t f 0

k (q) + k2q2

2m2
f 0

k (q) = i

m

∫ π

−π

dθk

2π
(k · q)I [fk(q)], (A9)

where we have used (A8) to replace f̃ with f 0. The right-hand
side of the above equation can be evaluated straightforwardly
for a collision integral of the form (3.7),∫ π

−π

dθk

2π
(k · q)I [fk(q)]

= −q2k2

2

∑
k′

[
Wk,k′ f̃k − Wk′,k

k′

k
cos θk,k′ f̃k′

]
. (A10)

Again, using Eq. (A8) to replace f̃ with f 0 in Eq. (A10),
summing over k, and neglecting the ∂2

t f 0 term, we finally
arrive at the diffusion equation

∂tnq = −Dq2nq, (A11)

with the diffusion constant specified in Eqs. (3.13) and (3.14).
The explicit expression of the scaling function for the

diffusion constant in Eq. (3.15) is

�−1(x1,x2)

= 1

2π2 x2
1

∫ ∞

0
dy

∫ ∞

0
dz

∫ π

−π

dθ

× ImK̃00

(√
2

x1
(y + 2z − 2

√
z(y + z) cos θ ) , y , x2/x1

)

×
[

[1 + n(y)]

(
1 −

√
z

y + z
cos θ

)
e−y

+ n(y)

(
1 −

√
y + z

z
cos θ

)]
e−z, (A12)

where K̃00 is the scaling function of the current correlator,

KR
00(q,ω,�,T ) = T

c2
K̃00(cq/T ,ω/T ,�/T ), (A13)

and n(y) = (ey − 1)−1. All of the results derived above also
apply to the case of three-body interactions if the current
correlator K00(q,ω) is replaced by the density correlator
�(q,ω) as well as u2 by u3.

APPENDIX B: EXPLICIT FORM OF THE RG FLOW
EQUATIONS

It has been shown in Sec. V that the flow equations for the
boson parameters decouple from the impurity flow equations.

Indeed, using the rescaled variables

φ̃� = (Zψ

�)1/2 φ�

�(d−1)/2
, r̃� = r�

Z
ψ

��2
, g̃� = g�

(Zψ

�)2�3−d

(B1)

and defining the anomalous dimension of the bosons via

η = −d log Z
ψ

�

d log �
, (B2)

the flow equations for the boson parameters are given by (s =
ln �0/�)

η = g̃2
s φ̃

2
s

4π

(
15

32(1 + r̃s)7/2
+ O

(
g̃s φ̃

2
s

))
, (B3)

∂s r̃s = (2 − η) r̃s + g̃s

4π

(
1

2(1 + r̃s)3/2
+ O

(
g̃2

s φ̃
4
s

))
, (B4)

∂sφ̃s = d − 1 + η

2
φ̃s − g̃2

s φ̃
3
s

4π

(
225

32(1 + r̃s)7/2
+ O

(
g̃s φ̃

2
s

))
,

(B5)

∂sg̃s = (3 − d − 2η) g̃s − 15 g̃2
s

32π (1 + r̃s)5/2

×
(

1 − 9 g̃s φ̃
2
s

1 + r̃s

+ O
(
g̃2

s φ̃
4
s

))
. (B6)

In order to bring the flow equations into an analytically
tractable form we expanded them in g̃∗φ̃2

∗ . This basically
amounts to an expansion in a small anomalous dimension,
which works well in d = 2 spatial dimensions. At the Wilson-
Fisher fixed point the rescaled variables take the values

η∗ = 1

29
≈ 0.035, g̃∗φ̃2

∗ = 380

7749
≈ 0.049,

(B7)

r̃∗ = − 28

123
≈ −0.228.

Note that the value of the anomalous dimension at the critical
point η∗ = 1/29 agrees pretty well with the expected value for
a 3D XY transition, where η ≈ 0.038 [32].

For the impurity flow equations we define the rescaled
variables and the anomalous dimension of the impurity as

γ̃� = γ�

Zb
��

, ṽ� = v�

Zb
�

,

(B8)

ũ� = u�

Z
ψ

�Zb
��2−d

, ηb = −d log Zb
�

d log �

and the flow equations take the form

ηb = φ̃2
∗

2π
Re

[
(ũ′

s + iũ′′
s )2

(
(α − iγ̃s)3 − iγ̃s ṽ

2
s

ṽ2
s α

3
[
(α − iγ̃s)2 − ṽ2

s

]3/2 − 1

ṽ2
s α

3

)]
, (B9)

∂sũ
′
s = −η∗ũ′

s − ũ′
s g̃∗

16π

[
3

(1 + r̃∗)5/2
− 115 g̃∗φ̃2

∗
4(1 + r̃∗)7/2

]
− Re

[
(ũ′

s + iũ′′
s )2

2π

(
ṽ2

s + iγ̃s(α − iγ̃s)

ṽ2
s α

3
[
(α − iγ̃s)2 − ṽ2

s

]1/2 − iγ̃s

ṽ2
s α

3

)]

+ 3g̃∗φ̃2
∗

2π
Re

[
(ũ′

s + iũ′′
s )2

(
3iγ̃s(α − iγ̃s)3 − 3ṽs + ṽ2

s

(
4α2 − 9iγ̃sα − 6γ̃ 2

s

)
4ṽ2

s α
5
[
(α − iγ̃s)2 − ṽ2

s

]3/2 − 3iγ̃s

4ṽ2
s α

5

)]
, (B10)
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∂sũ
′′
s = −ηũ′′

s − ũ′′
s g̃∗

16π

[
3

(1 + r̃∗)5/2
− 115 g̃∗φ̃2

∗
4(1 + r̃∗)7/2

]
− Im

[
(ũ′

s + iũ′′
s )2

2π

(
ṽ2
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ṽ2
s α

3
[
(α − iγ̃s)2 − ṽ2

s

]1/2 − iγ̃s

ṽ2
s α

3

)]

+ 3g̃∗φ̃2
∗

2π
Im

[
(ũ′

s + iũ′′
s )2

(
3iγ̃s(α − iγ̃s)3 − 3ṽs + ṽ2

s

(
4α2 − 9iγ̃sα − 6γ̃ 2

s

)
4ṽ2

s α
5
[
(α − iγ̃s)2 − ṽ2

s

]3/2 − 3iγ̃s

4ṽ2
s α

5

)]
, (B11)

∂s ṽs = −ηbṽs + φ̃2
∗

2π
Re

[
(ũ′

s + ũ′′
s )2

(
ṽs(α − iγ̃s)3 + iγ̃s ṽ

3
s

ṽ2
s α

3
[
(α − iγ̃s)2 − ṽ2

s

]3/2 − 1

vα3

)]
, (B12)

∂sγ̃s = (1 − ηb)γ̃s − ũ′′
s

8π

2(1 + r̃∗) − 3 g̃∗φ̃2
∗

2(1 + r̃∗)5/2
+ φ̃2

∗
4π

Im

[
(ũ′

s + iũ′′
s )2

(
ṽ2

s + iγ̃s(α − iγ̃s)

ṽ2
s α

3
[
(α − iγ̃s)2 − ṽ2

s

]1/2 − iγ̃s

ṽ2
s α

3

)]
, (B13)

where we have defined α2 = 1 + r̃∗ + g̃∗φ̃2
∗/2 and fixed

all boson parameters at their respective critical values.
Again we have expanded boson loops in g̃∗φ̃2

∗ and
moreover we have taken Q → ∞ for the sake of sim-
plicity, which amounts to neglecting the small curva-
ture of the impurity dispersion in (5.3). This does not
change the results qualitatively. We also mention that
the term ∼ηbus canceled exactly with the ∼u3

s contribu-
tion in the flow equation for the three-body interaction
u�.

The particular structure with real and imaginary parts in the
impurity flow equations originates from the nonanalytic term
∼iγ sgn�q in the boson propagator (5.3). After setting the
external boson frequencies to zero, all diagrams with internal
impurity lines depend on the external impurity frequency
�q via the damping term iγ sgn�q . We can extract the
contributions of analytic and nonanalytic terms by taking limits
�q → 0± from above and below and adding or subtracting the
resulting expressions, which gives rise to the particular form
of the impurity flow equations above.
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