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We investigate the rotational response of both nondipolar and dipolar Bose-Einstein condensates confined in
an annular potential via minimization of the energy in the rotating frame. For the nondipolar case we identify
certain phases which are associated with different vortex configurations. For the dipolar case, assuming that the
dipoles are aligned along some arbitrary and tunable direction, we study the same problem as a function of the
orientation angle of the dipole moment of the atoms.
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I. INTRODUCTION

In recent experiments on ultracold atomic gases, the
confinement of atoms in toroidal traps has become possible [1].
In such confining potentials persistent currents have also been
created and observed [2–5], in close analogy to semiconductor
nanostructures [6,7]. The simplicity of these systems makes
them ideal for studying effects associated with superfluidity,
including, for example, rotational properties and persistent
flow.

In another series of recent experiments it has become
possible to trap atoms [8] and molecules [9] with a nonzero
dipole moment. An important difference with respect to
most of the previously realized experiments—in which the
particles had zero dipole moment and the effective atom-
atom interactions could be modeled with the usual contact
term—is that in the dipolar case the interaction potential
is long ranged and anisotropic. As a consequence, dipo-
lar gases present new properties that allow for the study
of interesting effects. In three dimensions, the head-to-
tail alignment of the dipoles causes instabilities towards
collapse [10], while low-dimensional confinement tends to
make the system more stable [11]. Quasi-two- or quasi-one-
dimensional confinement thus suppresses the instabilities as-
sociated with the dipolar interaction and is advantageous in that
respect.

Recently, several properties of dipolar gases have been
examined in effectively two-dimensional systems. Among
these, the rotational properties of dipolar degenerate gases have
received considerable attention. In particular, the rotational
properties of dipolar Bose-Einstein condensates have been in-
vestigated in different confining geometries, including axially
symmetric harmonic [12], elliptic harmonic [13], and toroidal
traps [14–18]. Also, recently it has become possible to create a
Bose-Einstein condensate of 164Dy, with a magnetic moment
roughly three times larger than 52Cr, which increases the dipole
coupling constant by approximately a factor of 10 [19].

Dipolar Bose-Einstein condensates confined in toroidal
traps have been investigated both within the mean-field
approximation [14] and in the few-particle limit [20]. These
systems have been shown to exhibit some very interesting

effects due to the interplay between the nontrivial topology
of the ringlike confinement and the anisotropic nature of
the dipole-dipole interaction. More specifically, when the
dipole moment has a nonzero in-plane component, the effects
associated with breaking the axial symmetry of the system have
been shown to have potential applications in, e.g., Josephson-
type oscillations and self-trapping phenomena [16,17,21].

Motivated by the experimental progress mentioned above
on toroidal traps and on dipolar gases, we study the states
of lowest energy in the rotating frame of a Bose-Einstein
condensate that is confined in an annular potential, first
considering a condensate that consists of nondipolar atoms
[22–25] and then addressing the dipolar case. Our calculations
are closely related with those of Ref. [26], which analyzed
the lowest-energy state of a uniform (nondipolar) rotating
superfluid confined in a hard-wall annulus. In this study it
was shown that as the rotational frequency increases, initially
there are vortices that are located in the region of zero density.
Eventually the vortices start to form in the region of nonzero
density, and finally the real vortices form a circular array, or
even multiple arrays of vortices. These theoretical predictions
were in good agreement with the experimental results on liquid
helium that followed afterward [27]. In what follows below, we
refer to the vortices that are located in the region of negligible
density as “phantom” vortices and the ones that are located in
the region of non-negligible density as “real” vortices.

The paper is organized as follows. In Sec. II we present
our model. In Sec. III we investigate the rotational response
of a nondipolar gas. In Sec. IV we investigate the effect of
the dipolar interaction, assuming that the dipole moment of
the atoms is oriented along some arbitrary direction due to
an external polarizing field, which rotates with the trap. We
demonstrate that the vortex configuration depends strongly
on the orientation angle of the dipole moment of the atoms.
Finally in Sec. V we summarize our results.

II. MODEL

The annular potential that we consider is modeled via a
combination of harmonic potentials in the transverse direction
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FIG. 1. (Color online) Schematic illustration of the rotating quasi-
two-dimensional annular trap. The atoms move on the xy plane with
an angular frequency �, which is along the z axis, in an annulus
of mean radius R and a width that is set by the oscillator length
a0 = √

h̄/(Mω0). In the case of dipolar atoms, their dipole moment
is oriented on the xz plane, forming an angle � with the x axis due to
an external (magnetic or electric) field E, which is assumed to rotate
with the same angular frequency as the trapping potential.

and in the direction perpendicular to the plane of motion of
the atoms,

V (r) = Vr (r⊥) + Vz(z) = 1
2Mω2

0(r⊥ − R)2 + 1
2Mω2

zz
2.

(1)

Here z is the symmetry axis of the trap, which is also the axis of
rotation of the annulus. In addition r⊥ is the position vector on
the xy plane, while ω0 and ωz are the trap frequencies. The ratio
ωz/ω0 is chosen to be equal to 100, which makes the motion of
atoms quasi-two-dimensional, since h̄ωz is the largest energy
scale in the problem. The ratio R/a0 is chosen equal to 4, where
a0 = √

h̄/(Mω0) is the oscillator length that corresponds to the
frequency ω0 and mass M . Figure 1 shows schematically the
corresponding annularlike potential and also the external field
that is assumed to polarize the (dipolar) atoms. Without loss of
generality, this field is taken to be on the xz plane, forming an
angle � with the x axis, and assumed to rotate with the same
angular frequency as the trapping potential.

Concerning the interactions, these are modeled via a short-
range contact potential (for the short-range correlations) and
the usual dipole-dipole potential, which describes the long-
range part of the interaction. Because of the assumed strong
confinement along the z axis, one may safely assume that the
order parameter has the product form

�(r) = �(r⊥)φ(z), (2)

where φ(z) is the Gaussian ground state of the harmonic
potential Vz(z). This assumption allows us to reduce the
problem from three dimensions to two dimensions for the order
parameter �(r⊥), which satisfies the Gross-Pitaevskii-like
equation[

−h̄2∇2
⊥

2M
+ Vr (r⊥) + Vdip(r⊥) + g|�(r⊥)|2 − �Lz

]
�(r⊥)

= μ�(r⊥). (3)

In the above equation g = (h̄2/M)
√

8πNa/az, where N is the
atom number, a is the scattering length for zero-energy elastic
atom-atom collisions, and az = √

h̄/Mωz is the oscillator
length in the z direction. Also � is the rotational frequency of
the trap, Lz is the operator of the angular momentum along the

z axis, μ is the chemical potential, and

Vdip(r⊥) =
∫

Veff(r⊥ − r′
⊥) |�(r′

⊥)|2 dr′
⊥ (4)

is the effective dipolar interaction potential. Here Veff(r⊥) is
given by [in cylindrical polar coordinates, with r⊥ = (r⊥,φ)]
[28],

Veff(r⊥) = D2

√
8π

ew/2

a3
z

{
(2 + 2w)K0(w/2) − 2wK1(w/2)

+ cos2 �

[
−(3 + 2w)K0(w/2)

+ (1 + 2w)K1(w/2)

]
+ 2 cos2 � cos2 φ

×
[
−wK0(w/2) + (w − 1)K1(w/2)

]}
. (5)

In the above equation w ≡ r2
⊥/2a2

z , and K0(w) and K1(w) are
the zero-order and first-order modified Bessel functions of the
second kind.

The problem thus reduces to solving the nonlocal and
nonlinear integrodifferential Eq. (3). We solve it with use of
a fourth-order split-step Fourier method within an imaginary-
time propagation approach [29]. Within this method one starts
with some initial state, which then propagates in imaginary
time until numerical convergence is achieved.

III. NONDIPOLAR ATOMS IN A ROTATING
ANNULAR TRAP

We first consider the case of nondipolar atoms and vary the
rotational frequency � for a fixed interaction strength, choos-
ing Mg/h̄2 = √

8πNa/az = 150. Since the ratio between the
interaction energy and h̄ω0 is approximately Naa0/(azR) ∼
10, and also ωz/ω0 = 100, there is a clear hierarchy of energy
scales, with h̄ωz being roughly 10 times as large as the
interaction energy, which in turn is roughly 10 times as large
as h̄ω0. Therefore, while the cloud is in the ground state of
the harmonic oscillator along the z direction, it is closer to the
Thomas-Fermi limit in the direction along the plane of motion.

Using the numerical procedure outlined above, the ener-
getically favorable state of the cloud is determined in the
rotating frame for a certain value of �. In our simulations
we have considered initial conditions with different values
of the winding number in order to make sure that the states
that we have found are indeed the ones of lowest energy in
the rotating frame. As the rotational frequency of the trap �

increases, we observe that initially there is a critical value �c

where a “phantom” vortex state forms, which is located at
the trap center, as seen in Fig. 2(a). This phantom vortex is a
state of quantized circulation, which does not break the axial
symmetry of the density distribution of the cloud. The phase
of the order parameter acquires a jump of 2π , while phantom
vortices tend to make the gas expand in the radial direction
due to the centrifugal force [22]. For the parameters that we
have used, �c/ω0 ≈ 0.036. If one approximates the annulus
to a one-dimensional ring of radius R, then �c = h̄/(2MR2),
which implies that �c/ω0 = 1/32 = 0.03125, in rather good
agreement with our numerical result.
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FIG. 2. (Color online) Density and phase of the order parameter
corresponding to three frequencies for the nondipolar case (D = 0)
and

√
8πNa/az = 150. For (a) �/ω0 = �c/ω0 ≈ 0.036 a “phan-

tom” vortex appears, for (b) �/ω0 ≈ 0.53 there is a “real” vortex, and
for (c) �/ω0 ≈ 0.63 there is an array of vortices along the annulus.

As � increases further, more phantom vortices accumulate
inside the annulus. Eventually, one of these vortices penetrates
the annulus, giving rise to a “real” vortex state, as shown in
Fig. 2(b). According to our results, this state actually penetrates
the cloud from the center of the annulus. The point (in the
angular direction) where the vortex enters the cloud is arbitrary
(in the sense that the configuration of real and phantom vortices
in the plots of Fig. 2 can be rotated by an arbitrary angle), as
the symmetry of the Hamiltonian is broken spontaneously. We
have found that this vortex state starts to penetrate the annulus
at �/ω0 ≈ 0.53.

Finally, there is a third phase, where an array of vortices
forms along the annulus, as seen in Fig. 2(c). At �/ω0 ≈ 0.63,
we have determined that this lattice is roughly located at
the center of the annulus. The last two values of � that
are given above are rather close to each other. To get an
estimate of these frequencies we recall that for a sufficiently
large number of vortices, the velocity field resembles that of
solid-body rotation. It is well known that the line integral of
the velocity field

∮
v · dl around a closed loop that includes

Nv vortex states is equal to Nvκ , where κ = 2πh̄/M . For large
values of Nv , solid-body rotation implies that v = �r⊥φ̂ and
therefore around a radius R, 2π�R2 = Nvκ . The resulting
mean-vortex density Nv/(πR2) is thus 2�/κ . The formation
of real vortices is expected to take place when the mean vortex
density becomes comparable to the width of the annulus d [26],
which gives a frequency � ≈ κ/πd2 (ignoring logarithmic
factors), or �/ω0 ≈ 2(a0/d)2. From Fig. 2(c) d/a0 is roughly
4/3, and therefore �/ω0 ≈ 1.

Interestingly, the above-mentioned intermediate phase with
a single vortex state that we have found in our calculations
was not observed in the study of Ref. [22], which considered a
similar problem. However, in that paper the authors modeled
the annular potential with a harmonic minus quartic term,
giving rise to a considerably wider annulus than the one
produced by our shifted parabolic confinement. Indeed, in a
harmonic potential it is well known that a single off-center

FIG. 3. (Color online) Density and phase of the order parameter
corresponding to three frequencies for the nondipolar case (D =
0) and

√
8πNa/az = 150. For (a) �/ω′

0 = 0.18 there are four
“phantom” vortices, for (b) �/ω′

0 = 0.19 there is one phantom
and four “real” vortices, and for (c) �/ω′

0 = 0.25 there are four
phantom vortices and an array of six vortices along the annulus. Here
ω′

0 = ω0/2.

vortex state cannot be stable in the rotating frame [30]. If one
creates a narrow hole in the density of the cloud at the center of
the trap, such a state is still unstable. This explains the absence
of such a single vortex state for a wide annulus, as in Ref. [22].
Nevertheless, if the width of the annulus becomes narrow
enough this state may become stable, as we have found in
our imaginary-time propagation. We have also confirmed that
this state is stationary by evolving it in real time. Furthermore,
when the annulus is wide enough, i.e., for a smaller value of
ω′

0 = ω0/2, with the rest of the parameters being the same as
those of Fig. 2, we have found that there is no stable phase with
a single real vortex state. Rather, with increasing � there is a
direct transition from a state that has phantom vortices only,
Fig. 3(a), to a state with one phantom and four real vortices,
Fig. 3(b). For even higher rotational frequencies, Fig. 3(c), the
system forms a regular vortex lattice, as in Fig. 2(c).

In a sufficiently narrow annulus a single off-center vortex
state cannot be stable because of the form of the energy
spectrum (for a repulsive effective interaction) [31]. Therefore
our results imply the existence of a range of values for the width
of the annulus that allow the stability of a single off-center
vortex state.

IV. DIPOLAR CASE

We turn now to the case where the atoms have a nonzero
dipole moment. In addition to the hard-core potential consid-
ered in the previous section, which is kept fixed with Mg/h̄2 =√

8πNa/az = 150, we consider a dipolar interaction of a fixed
strength. Introducing the dipolar length add ≡ MD2/(3h̄2), we
choose add/a = 2.5052/3 ≈ 2.092. In the above expression
D2 = d2/(4πε0) when the atoms have an electric dipole
moment d, where ε0 is the permittivity of the vacuum; when the
atoms have a magnetic moment μ, D2 = μ0μ

2/(4π ), where
μ0 is the permeability of the vacuum. With this choice of
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parameters the dipolar and the contact interactions are of
comparable magnitude.

We stress that while the results presented below are
representative of a whole range of reasonable parameters,
they do not in any way exhaust all the phases that one may
find. The richness of the possible phases is due to the large
number of free parameters, including the strength and sign of
the contact potential, the strength of the dipolar interaction, the
width of the annulus, the orientation angle of the polarizing
field, the rotational frequency of the trap, and the atom
number.

In this problem, small values of D and thus weak dipolar
interactions may give rise to a very smooth energy surface,
which leads to degeneracy problems in the calculation. On
the other hand, large values of D tend to cure this problem;
however, they also make the system unstable against collapse
for small values of the angle � due to the head-to-tail alignment
of the dipoles.

We investigate the rotational response of the cloud con-
sidering four values for the angle of the dipole moment,
� = 0◦, 30◦, 60◦, and 90◦, as in Fig. 1. When � = 90◦
the interaction respects the axial symmetry of the trapping
potential and is also purely repulsive. As a result, the system
behaves qualitatively as in the case of a contact potential alone,
with a phantom vortex state, a real vortex state, and a vortex
lattice forming with increasing �.

For any other value of the angle �, as � increases, initially
the cloud still responds by forming one phantom vortex at
the center of the trap, as in the nondipolar case. On the other
hand, for higher rotational frequencies the gas behaves in a
qualitatively different way. In this case the dipolar interaction
breaks the axial symmetry of the Hamiltonian, introducing a
preferred direction.

In Fig. 4 we plot the density and the phase of the order
parameter for four values of the angle � = 0◦, 30◦, 60◦, and
90◦. The value of � in each case is the one for which the
first real vortices form around the annulus. While for � = 90◦
the position where the vortex enters the annulus is arbitrary
(as in the nondipolar case), for all other values of � this is
determined by the direction of the polarizing field, which is
chosen to be in the direction going from the bottom to the
top of the page. For � = 60◦ and 30◦ there are actually two
vortex states which enter the annulus from opposite ends. For
� = 0◦ instead of two vortices, there are two pairs of vortices,
which are symmetrically displaced from the direction of the
polarizing field. Actually, we have found that this behavior is
not specific to � = 0◦ only, but rather it persists up to roughly
� = 10◦.

In addition, as one can see from the phase of the order
parameter, as � decreases the number of phantom vortices
increases. The main reason for this is the fact that the rotational
frequency increases, too. Especially for � = 0◦ the number of
vortices is very large because of the value of the rotational
frequency, which is close to ω0, �/ω0 ≈ 0.80. Also for the
nondipolar case, D = 0, the number of vortices is comparable
to the one seen in Fig. 4(a), with the only difference being
that there is already an array of real vortices. Therefore, the
main effect of the dipolar interaction is the suppression of real
vortices. Also, with decreasing � the density at the center
of the trap decreases. For � = 0◦ the density in this region

FIG. 4. (Color online) Density and phase of the order parameter
corresponding to the dipolar case, with

√
8πNa/az = 150 and

add/a0 = 2.5052/3. For (a) � = 0◦, �/ω0 ≈ 0.80, (b) � = 30◦,
�/ω0 ≈ 0.5835, (c) � = 60◦, �/ω0 ≈ 0.36, and (d) � = 90◦,
�/ω0 ≈ 0.296. The polarizing field is chosen to be in the direction
going from the bottom to the top of the page.

is extremely small and therefore it appears to be “empty” in
Fig. 4, as can be seen also from the phase plot.

V. SUMMARY

In the present study we have investigated two problems.
First, we studied the rotational response of a superfluid that is
confined in an annular potential. Such a trapping geometry
interpolates in a sense between one- and two-dimensional
motion, depending on the ratio between the mean radius of the
annulus and its width. The second problem we have addressed
is the effect of the long-range and anisotropic character of the
dipolar interaction.

Starting with the nondipolar case, as the rotational fre-
quency of the annulus increases, there is a critical frequency
above which a phantom vortex state appears in the region
of essentially zero density, around the center of the trap.
As the rotational frequency increases further, more phantom
vortices start to reside in this region; however, these vortices
do not affect the density in the axial direction. The number of
the phantom vortices increases until it reaches a threshold.
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Eventually, a vortex array or arrays form with increasing
rotational frequency of the trap. In addition, provided that
the width of the annulus is neither too large nor too small, it is
found that an intermediate phase with a single off-center real
vortex state may also be stable.

The dipolar case differs from the above mainly because of
the symmetry breaking of the Hamiltonian due to the dipolar
interaction (unless the dipole moment is perpendicular to the
plane of motion of the atoms). Even the nonrotating system is
affected by the dipole-dipole interaction, with the formation
of one or two density maxima, depending on the value of the
parameters, as seen in Refs. [12,14,15]. This inhomogeneity
in the density affects also the critical rotational frequencies.
Initially a phantom vortex still appears at the center of the trap.
However, for larger rotational frequencies of the trap the real
vortices penetrate the annulus either in pairs or in couples of
pairs from opposite ends of the cloud in the direction of the
polarizing field of the dipoles.

Rotating atomic Bose-Einstein condensates confined in
toroidal potentials have been realized experimentally recently,
while dipolar gases are under intense experimental investiga-
tion. As shown in the present article, the combination of these
two effects—that should be accessible also experimentally—
gives rise to interesting effects.
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