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Soliton dynamics of an atomic spinor condensate on a ring lattice
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We study the dynamics of macroscopically coherent matter waves of an ultracold atomic spin-1 or spinor
condensate on a ring lattice of six sites and demonstrate the spatiotemporal internal Josephson effect. Using a
discrete solitary mode of uncoupled spin components as an initial condition, the time evolution of this many-body
system is found to be characterized by two dominant frequencies leading to quasiperiodic dynamics at various
sites. The dynamics of spatially averaged and spin-averaged degrees of freedom, however, is periodic enabling
a unique identification of the two frequencies. By increasing the spin-dependent atom-atom interaction strength
we observe a resonance state, where the ratio of the two frequencies is a characteristic integer multiple and the
spin-and-spatial degrees of freedom oscillate in “unison”. Crucially, this resonant state is found to signal the onset
of chaotic dynamics characterized by a broadband spectrum. In a ferromagnetic spinor condensate with attractive
spin-dependent interactions, the resonance is accompanied by a transition from oscillatory- to rotational-type
dynamics as the time evolution of the relative phase of the matter wave of the individual spin projections changes
from bounded to unbounded.
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I. INTRODUCTION

Spinor condensates are atomic Bose-Einstein condensates
(BECs) with an internal spin degree of freedom that combine
magnetism with condensation. Examples are optically trapped
spinor condensates of atomic rubidium-87 [1–4], sodium [5,6],
or chromium [7] with either spin or angular momentum
f = 1, 2, or 3 condensates with a three-, five-, or seven-
component vector order parameter. In contrast to mixtures
of two or more atomic states [8] or mixtures of several atomic
species, spin-changing collisions in spinor condensates permit
coherent dynamics among the hyperfine states. A typical
process for two f = 1 atoms, one in spin component m = −1
and one in m = +1, can reversibly scatter into two atoms
with spin component m = 0, which conserves the global
magnetization of the condensate. This coherent spin mixing
leads, nevertheless, to oscillations of the spin populations
and is an analog of Josephson oscillations in ultracold atoms
[9–13]. Hence, just as collisional interactions allow for a
single-component condensate to be spatially coherent, spin-
changing collisions, driven by internal interactions, allow
coherence among internal degrees of freedom. A positive or
negative sign of the strength of the spin-changing interaction
determines whether the systems behave antiferromagnetically
or ferromagnetically, respectively [10,14]. Spinor physics has
also been studied in optical lattices with exactly two atoms per
lattice site [15].

In view of the nonlinear nature due to interparticle inter-
actions and the high degree of control in experiments, BEC
systems are ideal systems for visualizing a wide variety of
nonlinear phenomena. This includes solitary waves, which
are the localized nonlinear traveling waves that retain their
shape, size, and speed during propagation [16]. Experimental
realization of solitons in homogeneous single-component BEC
systems is a hallmark of the quantum coherence associated
with many-body systems [17–19]. There has also been

theoretical studies of solitons in a homogeneous spin-1
condensate [20,21]. Furthermore, theoretical and experimental
studies of double-well bosonic Josephson junctions have
unveiled novel phenomena such as broken-symmetry macro-
scopic quantum self-trapping [22] and π modes [23–25] as
well as symmetry-restored swapping modes [22]. In addition,
numerical investigations of BEC systems, spatially separated
into a ring lattice, have demonstrated chaotic dynamics, which
is deterministic dynamics with sensitive dependence on initial
conditions [26–28].

In this paper, we explore the quantum coherent time
evolution of a spin-1 BEC that is spatially separated into
six weakly coupled sites arranged to form a ring geometry;
see Fig. 1. For a large number of atoms such a system is
well represented by a three-component wave function or order
parameter, ��(�x,t), that satisfies a nonlinear Gross-Pitaevskii
equation [9,10]. Here, we restrict our calculations to the
case with no external magnetic field. More importantly, we
assume that all sites and spin components have at all times the
same identical localized spatial-mode function, φ(�x). That is,
for the mth component of ��(�x,t) we have

�m(�x,t) =
L∑

n=1

ψm
n (t)φ (�x − �xn) , (1)

where L is the number of sites, �xn is the center of site n, and the
dimensionless ψm

n (t) are complex time-dependent amplitudes.
The overlap between spatial-mode functions at different sites
leads to tunneling between neighboring sites.

More advanced numerical modeling uses time-varying
mode functions [29,30] or directly solves for the three-
dimensional Gross-Pitaevskii equation [18]. As a first study
in the soliton dynamics of a spinor condensate we believe that
our simplified approach is justified. It shows the generalization
of the spinor Josephson effect as well as the route to
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FIG. 1. (Color online) Panel (a) shows a schematic of a ring lattice
of six sites (red dashed circle with labeled markers) containing an f =
1 spinor condensate. The solid black line represents the superfluid
population along the ring as a polar graph. Panel (b) shows the initial
fractional population ρn as a function of site index n used in our
dynamical simulations. The distribution corresponds to an excited
(period-6) solution of the DNLSE. For each site the population of the
three magnetic sublevels of the spinor is the same.

chaos in its clearest form. It should be noted that the ring
lattice with less than three sites is an integrable system.
Bose-Einstein condensates on a lattice with three or more
than three sites exhibit an amazing degree of complexity
including coexistence of regular and irregular behavior that is
known to accompany chaotic dynamics [31,32]. In our detailed
numerical exploration of ring lattices with different numbers of
sites, the key characteristics of the time evolution as discussed
in this paper are independent of the number of sites. Here, we
will present our results for a ring lattice of six sites only.

Our initial state is a discrete solitary wave that is an
excited eigenstate of the discrete nonlinear Schrödinger
equation (DNLSE) satisfied by the ψm

n (t) in the absence
of spin-changing interactions. The spin-changing interaction
then induces oscillatory dynamics, which is an internal
Josephson effect where different spin components evolve with
different amplitudes and phases. In reality the spin-changing
Hamiltonian cannot be turned off and this state needs to
be engineered by a combination of resonant electromagnetic
radiation that controllably creates superpositions of m states
[6] and off-resonant spatially dependent light forces that
induce solitons [17,18].

In this article we show that for weak spin-changing
interactions the dynamics on the ring lattice is dominated
by two frequencies. Interestingly, one of these frequencies,
which we denote ω, describes the periodic behavior of spatially
averaged spin populations. The second frequency, denoted by
�, describes the dynamics of the site-dependent population
summed over the three spin components. In other words, the
dynamics of collective or averaged coordinates is pendulum
like. As we discuss below, this is somewhat surprising because
the spatial profiles of the three spin components evolve
differently and the dynamics on the ring should deviate from
that for a “simple” trapped spinor condensate. The single-mode
approximation for the latter system has been shown to lead
to pendulum-type physics [10,12]. Our study suggests that

the origin of this “regular” global dynamics has its roots in
the strong correlations among different lattice sites and spin
projections and is not rooted in thermal averaging over many
degrees of freedom. We note that ω is solely determined by
the spin-changing interaction, whereas � shows a rather weak
dependence. We find that � is mainly controlled by the size of
the ring.

By increasing the absolute value of the spin-dependent
interaction strength, the two frequencies can be mode locked.
This resonance condition is found to describe the onset to
chaotic dynamics. In other words, the spinor condensate
exhibits a transition from quasiperiodic dynamics to chaotic
dynamics where at the onset to transition, all local and
global degrees of freedom oscillate in unison. Consequently,
the initial soliton profile reappears periodically, providing a
unique demonstration of a spatiotemporal internal Josephson
effect. Furthermore, in contrast to the antiferromagnetic case,
in the ferromagnetic condensate, the resonance is accompanied
by a transition from bounded to unbounded dynamics. In
the antiferromagnetic case, the dynamics remains bounded
and oscillatory. Nevertheless, beyond the resonance additional
frequencies appear.

For the sake of simplicity, we restrict our simulations to zero
magnetization. This is enforced by choosing initial conditions
where the m = +1 and m = −1 components have the same
initial wave function. In fact, we choose an initial state where
all three components have the same initial wave function. An
alternate initial state with zero magnetization contains mostly
m = ±1 atoms lead to similar results. It will not be described
here.

In Sec. II we review the mean-field equations that describe
the evolution of the spinor condensate on a lattice as well as the
underlying single-mode approximation on each lattice site.
The latter has been shown to provide a reasonable description
for the continuum system. For our ring lattice, the single-
mode approximation (SMA) suggests collective coordinates
to describe the global dynamics. The initial state is described
in Sec. III. In Sec. IV, we show numerical simulations for
weak positive, antiferromagnetic spin-dependent integrations
and show that the dynamics, although complex, is dominated
by two frequencies. In Sec. V, we discuss the resonance
condition that occurs when the spin-dependent interaction
strength is increased. At resonance we observe an onset to
chaos. Section VI briefly illustrates the ferromagnetic case.
We conclude in Sec. VII.

II. MEAN-FIELD EQUATIONS FOR SPINOR
CONDENSATE AND COLLECTIVE COORDINATES

An atomic spinor condensate with large atom number
is described within mean-field theory by a complex vector
order parameter or condensate wave function 	(�x,t), whose
evolution is governed by a multicomponent Gross-Pitaevskii
equation [9,10]. We will assume that the order parameter can
be approximated by Eq. (1), where a single time-independent
mode function φ(�x) determines the spatial dependence in each
well. We denote this by the L-site single-mode approximation
(L-SMA) in analogy to the SMA for a spinor condensate in a
dipole trap.
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The interactions between two spin-1 atoms have a spin-
independent and a spin-dependent (or spin-changing) contribu-
tion. Within a mean-field theory and the L-SMA their strength
is given by cq = 4πh̄2gq/(2μ)

∫
d �x|φ(�x)|4/ ∫

d �x|φ(�x)|2 with
q = 0 and 2 for the spin-independent and spin-dependent
contribution, respectively. Here μ is the reduced mass for two
atoms and h̄ is the reduced Planck constant. The lengths gq are
g0 = (a0 + 2a2)/3 and g2 = (a2 − a0)/3, where a0 and a2 are
scattering lengths for s-wave collisions of two f = 1 bosons
with total angular momentum F = 0 and 2, respectively. For
stable condensed gases we require that c0 > 0. We note that
c2 > 0 for antiferromagnetic Na and c2 < 0 for ferromagnetic
87Rb.

The dynamics of the ψm
n (t) are governed by the DNLSE

ih̄ψ̇−1
n = −J

(
ψ−1

n−1 + ψ−1
n+1

)
+ (c0 + c2)

(∣∣ψ−1
n

∣∣2 + ∣∣ψ0
n

∣∣2)
ψ−1

n

+ (c0 − c2)
∣∣ψ1

n

∣∣2
ψ−1

n + c2
(
ψ0

n

)2(
ψ1

n

)∗
, (2)

ih̄ψ̇0
n = −J

(
ψ0

n−1 + ψ0
n+1

) + c0

∣∣ψ0
n

∣∣2
ψ0

n

+ (c0 + c2)
(∣∣ψ1

n

∣∣2 + ∣∣ψ−1
n

∣∣2)
ψ0

n + 2c2ψ
1
nψ−1

n

(
ψ0

n

)∗
,

(3)

ih̄ψ̇1
n = −J

(
ψ1

n−1 + ψ1
n+1

) + (c0 + c2)
(∣∣ψ1

n

∣∣2 + ∣∣ψ0
n

∣∣2)
ψ1

n

+ (c0 − c2)
∣∣ψ−1

n

∣∣2
ψ1

n + c2
(
ψ0

n

)2(
ψ−1

n

)∗
, (4)

where J is the positive site-to-site tunneling energy and we use
periodic boundary conditions. In the absence of the last and
only spin-changing term on the right-hand side of Eqs. (2)–(4),
the set of equations describes a three-species condensate.
(Spin-changing terms are those interaction terms proportional
to c2 that do not contain local densities |ψm

n |2.) Spin-changing
terms make a spinor condensate unique as they induce
population oscillations between m levels. Equations (2)–(4)
conserve total atom number and magnetization. In other words,∑

nm |ψm
n (t)|2 and

∑
nm m|ψm

n (t)|2 are conserved.
We will monitor the local population of each spin state as

well as global or collective coordinates, such as spatially and
spin-averaged population and phases. It is therefore convenient
to define ψm

n (t) = √
ρm

n (t) exp[iφm
n (t)] with populations ρm

n (t)
and phases φm

n (t). Following Refs. [9,10] for a single-mode
spinor condensate natural local canonical coordinates are

Zn = ρ0
n − (

ρ+1
n + ρ−1

n

)
and γn = φ−1

n + φ1
n − 2φ0

n, (5)

as well as globally averaged coordinates Z = ∑
n Zn/L and

γ = ∑
n γn/L. Throughout this article we call γn and γ spinor

phases. Other useful population averages are

ρm = 1

L

L∑
n=1

ρm
n and σn = 1

3

1∑
m=−1

ρm
n . (6)

In a dipole trap, or equivalently for L = 1, a simple spinor
model is given by the SMA. The canonical variables Z and γ

then satisfy the pair of equations

Ż = c2

h̄
(1 − Z2) sin γ and γ̇ = −2

c2

h̄
Z(1 + cos γ ), (7)

which are independent of the spin-independent interaction
with strength c0. For small Z and γ the dynamics are harmonic.

In general, however, these coupled equations describe a non-
linear pendulum whose length depends upon the momentum.

For a L > 2 ring of lattice sites the collective variables Z

and γ satisfy

Ż = c2

h̄

∑
n

(
σ 2

n − Z2
n

)
sin γn, (8)

γ̇ = −2
c2

h̄

∑
n

Zn(1 + cos γn) + J

h̄
W, (9)

where W = Re [
∑

n(2ψ0
n+1/ψ

0
n − ψ+1

n+1/ψ
+1
n − ψ−1

n+1/ψ
−1
n )].

The spin-independent interaction strength c0 does not explic-
itly appear in these equations. As already mentioned in the
introduction and further discussed in next section, this suggests
that the spatially averaged Z and γ will exhibit periodic
oscillations, with frequency ω, that are solely determined
by the spin-changing interaction. Finally, the spin-averaged
populations at each site satisfy

σ̇n = −J

h̄
Im

(
1∑

m=−1

(
ψm

n

)∗ [
ψm

n+1 + ψm
n−1

])
, (10)

which does not explicitly depend on c2. Hence, we expect that
the σn oscillate periodically, characterized by frequency � and
its harmonics.

III. INITIAL DISCRETE SOLITON

For a ring lattice of six sites, we use the initial condition
shown in Fig. 1. Commonly, referred to as a discrete soliton,
it is a stationary solution of the DNLSE in the absence of
the spin-changing interaction [26,33] (i.e., with c2 = 0) and
c0 = J . Along with phase φm

n = 0 or π for even or odd site
index n, respectively, the initial state populations are the same
for the three components.

This stationary solution, corresponding to a solution
ψm

n (t) = ψm
n (t = 0) exp(−iμt/h̄) where μ is the chemical

potential, is obtained by numerically solving the resulting
nonlinear map, as Eqs. (2)–(4) reduce to a set of L two-
dimensional cubic maps. Following Ref. [28], we find that for
L = 6 the solutions are six-fold degenerate and for a range of μ

the localized soliton mode in Fig. 1 is the only stable solution.
In fact, we have used μ = 2.5J . Intriguingly, for these values
of the chemical potential the homogeneous solution with the
same density at all sites is unstable.

It should also be noted that known localized soliton-
type solutions with zero phase for all sites correspond to
attractive spin-independent interactions with c0 < 0. To obtain
localized solutions for repulsive interactions, one needs to
consider solutions with phases different from zero. In general,
it can be shown that for a lattice with an even number of sites,
the mapping ψm

n → (−1)n(ψm
n )∗ relates a soliton solution for

attractive interactions with those with repulsive interactions.
For a single-component condensate discrete solitons have been
studied extensively for ring lattices of various sizes [26–28].

Experiments with single-component Bose condensates in
double-well potentials [24] have observed Josephson oscil-
lations and quantum self-trapping in the limit J � c0. The
opposite limit can also be reached leading to tunneling of
(nearly) independent atoms. Here, we chose a compromise
with c0 = J . As an aside we note that with our initial state and
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c0 = J we have implicitly specified the chemical potential and
thus the atom number in each site.

IV. QUASIPERIODIC DYNAMICS OF
ANTIFERROMAGNETIC SPINOR

Figure 2 shows the time evolution of the spinor soliton on
a six-site ring, described in terms of the spinor coordinates Zn

and Z, spinor phases γn and γ , as well as populations σn. We
use a small positive spin-changing interaction strength c2 for an
antiferromagnetic spinor. We observe that the time dependence
of Z and γ are nearly sinusoidal. The site-dependent Zn, γn,
and σn, however, oscillate at a higher frequency. They do so in
a nonsinusoidal manner with sharper minima than maxima or
vice versa. The phases γn only show small excursions around
the average γ . Finally, we note that the spinor phases are
bounded for oscillatory motion.

Figure 3 shows the power spectrum of three of the time
traces shown in Fig. 2. It highlights the existence of two
dominant frequencies ω and � as well as weaker higher
harmonics in � indicating nonsinusoidal periodic behavior.
The spatially averaged degrees of freedom predominantly
oscillate with a frequency ω, which from simulations with
other small c2 is found to be proportional to the absolute
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FIG. 2. (Color online) Time dynamics of an antiferromagnetic
spinor soliton on a six-site ring for several spin- and/or spatially
averaged degrees of freedom assuming a small positive spin-changing
interaction energy. Time is in units of h̄/J , where J is the tunneling
energy between the sites. Calculations are performed for c2 = 0.1J

and c0 = J . Panel (a) shows the dynamics of the spatially averaged
spinor population Z (black line) and the spinor population Zn for the
individual sites n (colored lines). The symmetry of the initial soliton
around n = 3 implies that only four of the six sites have a distinct time
evolution. Panel (b) shows the spinor phases γ (black line) and γn

(colored lines). Finally, panel (c) shows the site-specific population
σn, averaged over the three spin components.

FIG. 3. (Color online) Power spectrum or Fourier transform of
the time evolution of the spatially averaged spin population ρm=+1

(red), and spin-averaged population σn=1 at site n = 1 (blue lines
with crosses). The parameters and initial state are as in Fig. 2 and
the frequency is in units of J/h̄. The top and bottom panels show
the power spectra on a linear and logarithmic scale, respectively.
Also indicated are the dominant frequencies ω and �, which have
been assigned as due to the spin-dependent and spin-independent
interactions, respectively. In the bottom panel higher harmonics of �

can be observed.

value of c2. In contrast, spin-averaged local populations
oscillate nearly sinusoidal with frequency �, which from other
simulations is found to weakly depend on the spin-changing
interaction but is inversely proportional to the number of
lattice sites. Finally, the local dynamics for individual spin
projections is quasiperiodic with a slow frequency ω and a
faster beat frequency at multiples of �. This illustrates the
correlations that exist among the spatial and spin components.
Our detailed studies with various ring sizes indicate that
the spinor dynamics is characterized by two frequencies,
irrespective of the size of the ring.

V. RESONANCE CONDITION FOR
ANTIFERROMAGNETIC CONDENSATE

Figures 1 and 2 showed that for small c2/c0 two frequencies
ω and � are very distinct. For increasing positive c2 at fixed
c0, as shown by time traces in Fig. 4 and power spectra
in Fig. 5, both frequencies increase although at a different
rate. For a critical spin-changing strength c2 when ω = � the
antiferromagnetic spinor reaches a “resonance” state. All three
spin components at all the sites of the ring then oscillate as a
single entity. For c0 = J this resonance occurs at c2 = 0.65J .
For large values of c2 the behavior becomes chaotic, which
is apparent as broadband features in the corresponding power
spectrum shown in Fig. 5.

Fourier analysis of collective as well as local coordinates
shows that the resonance state corresponds to matching of not
only the dominant frequencies ω and �, but also some of
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FIG. 4. (Color online) Time series for an antiferromagnetic
spinor showing the resonance condition for increasing spin-changing
strength c2. Time is in units of h̄/J and c0 = J . In all panels Z (red
curve) and σn=1 (blue curve) are shown. Panels (a), (b), and (c) show
results for c2 = 0.5J , 0.65J , and 1.0J , respectively. The resonance
condition occurs for c2 = 0.65J , where the spatially averaged Z and
spin-averaged σn=1 oscillate at the same rate. For c2 > 0.65J the
traces are chaotic.

the other less-prominent frequencies (not visible in the linear
plot) as illustrated in the log-linear plot in the middle row of
Fig. 5. In fact, at resonance, the dominant or the primary peak
is accompanied by secondary satellite peaks, equally spaced
on the either side of the primary peak.
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FIG. 5. (Color online) Power spectra showing the resonance
condition for increasing spin-changing strength c2 for the same
parameters as in Fig. 4. The frequency is in units of J/h̄. In all panels
the spatially averaged ρm=+1 (red curve labeled ω) and spin-averaged
σn=1 (blue curve labeled �) are shown. Panels on the left and right
show spectra on a linear and logarithmic scale, respectively, while
from top to bottom c2 = 0.5J , 0.65J , and 1.0J .
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FIG. 6. (Color online) Spin-averaged soliton profiles σn for the
antiferromagnetic spinor (a) before and (b) at resonance. Five
different curves correspond to five different times spaced by time
interval 2π/�, starting with the initial state (red curve, where the
soliton is peaked at site 3). We use c0 = J and panels (a) and (b)
correspond to c2 = 0.5J and c2 = 0.65J , respectively. The soliton
reforms close to its initial state at resonance when c2 = 0.65J .

Figure 6 further illustrates that at resonance all sites
oscillate in phase with the same frequency. The spatial profile
of the soliton reemerges periodically without any significant
change from the initial profile. Thus, the resonance state is an
ordered state where wave functions of all the components of
the spinor condensate at all L sites of the ring lattice oscillate in
unison and the dynamics is well characterized one frequency.
The fact that the soliton profile reemerges periodically provides
a unique demonstration of quantum coherence and an internal
spatiotemporal Josephson effect.
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FIG. 7. (Color online) Time evolution of spatially averaged
population Z (red) and spin-averaged population σn=1 (blue) for a
ferromagnetic spinor condensate with negative c2. Panels (a), (b),
and (c) show traces for c2 = −0.075J , −0.09J , and −0.095J ,
respectively, corresponding to cases before, at, and beyond resonance.
We use c0 = J and time is in units of h̄/J .
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FIG. 8. (Color online) Phase portraits or parametric plots of
the time-evolution of the spinor population Z and phase γ for a
ferromagnetic spinor at c2 = −0.075J , panel (a), and c2 = −0.095J ,
panel (b). The system is at resonance in panel (b). The dynamics in
panel (b) is accompanied by unbounded motion of the spinor phase.
We use c0 = J .

VI. FERROMAGNETIC CONDENSATE

We now briefly describe the dynamics of a ferromagnetic
spinor condensate with negative c2. For a small spin-changing
interaction, the dynamics is similar to that of an antiferro-
magnetic spinor. Namely, the spatially averaged behavior is
pendulum like with dominant frequency ω, while the local
population oscillates with frequency �. An example is shown
in Fig. 7. The local density for each spin component oscillates
with both frequencies. A resonance state can again be achieved
by increasing |c2| but, for c0 = J , now occurs when ω/� = 3.

In contrast to the antiferromagnetic case, however, the
resonant transition is accompanied by unbounded dynamics
or phase winding where the phase of the condensate becomes
unbounded as shown in Fig. 8. This behavior manifests itself
as a zero-frequency mode in a power spectrum. In other words,
chaotic dynamics with its broadband spectrum is accompanied
by a transition from an oscillatory to rotational mode for the
collective degrees of freedom.

VII. DISCUSSION

In summary, numerical explorations of mean-field equa-
tions of spinor condensate on a ring lattice with a small
number of sites reveals strikingly correlated dynamics of the
many-body system. Even though the condensate is separated
into L sites, soliton dynamics at all sites can be characterized
by just two frequencies. With quasiperiodic dynamics at
local sites for individual spin components, spatially averaged
behavior for each spin component as well as spin-averaged
dynamics at each sites is found to be periodic. The fact that
the time series describing local dynamics is characterized by
two frequencies and these two frequencies untangle in the
collective degrees of freedom is rooted in correlations among
different spin degrees of freedom at various sites of the lattice.
However, a proper understanding of these correlations remains
an open challenge. Our study with ring lattices of various
sizes show that two-frequency characterizations of the spin-1
condensate on a ring lattice is valid irrespective of the number
of sites on the lattice.

Our study provides an illustration of a quasiperiodic route
to chaotic dynamics in a many-body system where the critical
point is known to be characterized by a resonant state. Simple
models of dynamical systems such as the one-dimensional cir-
cle map [34] are paradigms of the quasiperiodic route to chaos,
where the critical point corresponds to parameters where the
two frequencies are mode locked. The quasiperiodic route
to chaos is a well-established scenario in dynamical systems
exhibiting a transition from regular to chaotic dynamics [34].
However, the fact that the critical point describes periodic
dynamics is unusual in many-body systems rooted in the
coherence associated with spinor condensates. In this case, the
critical point is a highly ordered many-body state exhibiting
spatial-temporal coherence. At the critical point where the
two dominant frequencies are in resonance, the ring lattice
with L sites oscillates in unison with a single characteristic
frequency. This internal Josephson effect where an unscathed
soliton profile reemerges periodically provides an illustration
of both spatial and temporal coherence.
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Staa, L. Cacciapuoti, J. J. Arlt, K. Bongs, and K. Sengstock,
Phys. Rev. Lett. 92, 040402 (2004).

[4] J. Guzman, G.-B. Jo, A. N. Wenz, K. W. Murch, C. K. Thomas,
and D. M. Stamper-Kurn, Phys. Rev. A 84, 063625 (2011).

[5] A. T. Black, E. Gomez, L. D. Turner, S. Jung, and P. D. Lett,
Phys. Rev. Lett. 99, 070403 (2007).

[6] Y. Liu, S. Jung, S. E. Maxwell, L. D. Turner, E. Tiesinga, and
P. D. Lett, Phys. Rev. Lett. 102, 125301 (2009).
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