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Multipath interferometer with ultracold atoms trapped in an optical lattice
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We study an ultracold gas of N bosons trapped in a one-dimensional M-site optical lattice perturbed by a
spatially dependent potential gxj , where the unknown coupling strength g is to be estimated. We find that the
measurement uncertainty is bounded by �g ∝ 1

N(Mj −1)
. For a typical case of a linear potential, the sensitivity

improves as M−1, which is a result of multiple interferences between the sites, an advantage of multipath
interferometers over two-mode setups. Next, we calculate the estimation sensitivity for a specific measurement
where, after the action of the potential, the particles are released from the lattice and form an interference pattern.
If the parameter is estimated by a least-squares fit of the average density to the interference pattern, the sensitivity
still scales like M−1 for linear potentials. We finally discuss the role of useful entanglement of the initial state in
the lattice to beat the shot-noise limit.

DOI: 10.1103/PhysRevA.87.033607 PACS number(s): 03.75.Dg, 37.25.+k, 03.75.Gg

I. INTRODUCTION

As scientists gain insight into the microscale in both the
space and time domains, it becomes increasingly relevant to
develop ultraprecise measurement devices. Very prominent
among those are interferometers, where the parameter to be
measured is mapped into a phase difference θ (or optical path
length difference) between two (or more) arms of the device.
By recombining the outputs of each arm, an interference figure
appears, which contains information about the parameter to be
estimated.

The key quantity which describes the performance of an
interferometer is its sensitivity. In a typical interferometer,
where the signal which is used to determine θ comes from
a collection of N independent particles, the precision scales
at the shot-noise level, i.e., �θ ∝ 1√

m

1√
N

, where m denotes
the number of independent repetitions of the measurement.
This expression tells us that the sensitivity can be improved
by either increasing the number of trials m or the number of
probe particles N . A third way of decreasing �θ is by replacing
the uncorrelated ensemble of atoms with a usefully entangled
state. Nonclassical correlations can be employed to beat the
shot-noise limit (SNL) and ultimately reach the Heisenberg
limit (HL), where �θ ∝ 1√

m

1
N

, which for large N can be a
significant improvement over the SNL [1–3].

A paradigmatic example of an interferometer which ben-
efits from the use of entangled states is a Mach-Zehnder
interferometer (MZI), where the signal coming from two
arms at the input is first split using a beam splitter, then
the phase difference is imprinted between the two arms, and
finally, another beam splitter maps the phase difference into
the intensities in the output ports. When the MZI is fed with a
useful-entangled state [3] and the phase θ is estimated from the
measurement of the population imbalance between these ports,
it is possible to achieve a sub-shot-noise (SSN) sensitivity
�θ < 1√

m

1√
N

.
While originally implemented with photons, in recent years

interferometers fed by atoms have attracted much interest [4]
and will be the subject of the present work. These interfer-
ometers proved promising for the precise determination of

electromagnetic [5–7] and gravitational [8–10] interactions.
Moreover, their performance can be improved with the recently
created nonclassical states of matter [11–16] by squeezing the
atom number fluctuations between two modes while keeping
high mutual coherence. In [13], such a spin-squeezed state
was generated in an external double-well potential, while
in [14–18] internal degrees of freedom were employed. In
the experiments mentioned above, a two-path (or two-mode)
usefully entangled quantum state was prepared. In this work,
we consider instead a multipath atom interferometer, involving
more than two internal or external degrees of freedom.

The idea that the growing number of modes could improve
the performance of an interferometer was first discussed in
the context of optical devices [19,20]. They involve the
multimode version of a beam splitter and allow us, in general,
to measure a vector phase [21]. In the particular case where the
phase difference is the same between each pair of “neighbor-
ing” paths, different methods have been used to derive bounds
for the phase sensitivity. In [20], for an input coherent state,
the error-propagation formula allowed to predict a sensitivity
�θ ∝ M−1, where M is the number of ports. This is a result
of a multiple interference between different paths and does not
violate the HL [22]. The gain is also robust against losses [20],
differently from the improvement due to entanglement present
in the input state. The scaling of the sensitivity with the number
of modes and particles has also been heuristically derived for
the specific case where coherent or number states are used as
input [23]. Recently, the sensitivity of rotation measurements
using a ring interferometer with ultracold atoms inside a lattice
has been studied in [24]. Numerical determination of the
ground state allowed to calculate the quantum Fisher informa-
tion (QFI) for specific states, which, as we will discuss in the
following, provides the ultimate sensitivity bound, indepen-
dently of the measurement and estimation strategy employed.

On the experimental side, multimode atom interferometry
has been applied in the context of gravitometry by imple-
menting multiple-wave quantum levitators [25]. With these
devices, the improvement of the measurement sensitivity due
to multiple-wave interferences has been demonstrated by ap-
plying successive momentum transfer pulses on a free-falling
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Bose-Einstein condensate [26]. Another implementation with
Bose-Einstein condensates has been realized recently in [27]
and involves splitting among internal Zeeman sublevels. In
this case, an increased interferometric signal, with respect to
the two-mode case, was observed, which is the main effect
analyzed in our work. In a stationary-wave optical lattice,
the improvement of the measurement sensitivity using Bloch
oscillations has been demonstrated in [28] by dynamically
delocalizing the atomic wave function over a large number of
lattice sites [29,30]. A first step towards realizing a quantum
multipath interferometer has been recently made by creating
a multimode nonclassical state of ultracold bosons inside an
optical lattice [31].

In this paper, we consider a multipath interferometer
realized with a dilute gas of N ultracold bosons trapped
inside a one-dimensional optical lattice [32–34]. Each of the
M lattice sites plays the role of a possible interferometric
path, whose optical length can be modified by adding a
spatially dependent force which would be then the object of
our precision measurement. More precisely, for a potential
V (x) = g xj , we derive the sensitivity for the estimation of
the parameter g. First, using the quantum Fisher information
(QFI) optimized over all possible input states, we show that the
best possible precision is �g ∝ 1√

mN(Mj −1)
. Then, choosing

a specific class of states which are symmetric with respect
to the exchange of lattice sites, we obtain the sensitivity
�g ∝ 1√

mf (N)Mj for M � 1. Here, f (N ) is the entanglement
measure, which can vary from N for the superfluid state of
the lattice up to N2 for an entangled state. Note that when the
potential V (x) acts on the system, one can naturally define a
phase θ = gx

j

0 t/h̄, which is related to the coupling constant,
the duration of the interaction t and the lattice spacing x0. In
the spirit of the two-mode interferometry, one can thus speak of
the phase estimation, rather than determination of the coupling
constant g. Throughout this work, we use both �g and �θ and
keep in mind they are simply related by �g = (h̄/tx

j

0 )�θ .
We finally consider a specific measurement and estimation

strategy which could be applied in most of the current ultracold
atom experimental setups: after undergoing the action of the
force, the atoms are released from the lattice, form an interfer-
ence pattern, and the parameter is extracted by a least-squares
fit of the average density. Using rigorous results from the esti-
mation theory [35], we derive the sensitivity for this interfero-
metric protocol and show that it scales with M in the same way
as in the case of the optimal measurement. The use of the spa-
tial interference pattern, obtained through the expansion of the
cloud, substitutes for the beam splitter. The in situ implemen-
tation of the latter in an optical lattice, in analogy to the double-
well implementation, seems a much more demanding task.

This paper is organized as follows. In Sec. II we formulate
the framework for analyzing the performance of the multimode
interferometers. In Sec. III, we employ the notion of the QFI
to provide some ultimate bounds for the multimode interfer-
ometry. First, in Sec. III A we identify the states which allow
us to reach the best possible scaling of �θ with the number of
sites M and linear potentials V (x) = gx. Then in Sec. III B,
using the QFI, we show how �θ scales with M for states
which are symmetric with respect to the interchange of any
two sites. In Sec. III C we generalize these results for nonlinear

potentials V (x) = gxj . Finally, in Sec. IV we show how the
scaling with the number of sites can be achieved for a particular
detection scheme and identify the states usefully entangled for
the multimode interferometry. Some details of the analytical
calculations are presented in the appendices.

II. FORMULATION OF THE MODEL

We begin the analysis of the multimode interferometry by
introducing the quantum state |ψ〉 of N bosons distributed
among M modes. The most general expression for |ψ〉 is

|ψ〉 =
N∑

n1=0

N−n1∑
n2=0

· · ·
N−n1−···−nM−2∑

nM−1=0

Cn1···nM−1

× |n1,n2, . . . ,nM−1,N − n1 − · · · − nM−1〉, (1)

where the sum runs over occupations of M − 1 wells. Since
the total number of atoms is set to be N , the population of the
Mth mode is determined by other M − 1 occupancies. The
coefficient Cn1...nM−1 is the probability amplitude for having
n1 · · · nM−1 atoms in the M − 1 modes and N − (n1 + · · · +
nM−1) in the last one.

For future purposes we introduce a shortened notation,
where the set of M − 1 indices (n1 · · · nM−1) is represented
by a vector �n, and the state (1) is written as

|ψ〉 =
∑

�n
C�n|�n〉. (2)

The complete description of quantum properties of the system
includes the M-mode field operator, which reads

�̂(x) =
M∑

k=1

ψk(x)âk. (3)

Here, âk is a bosonic operator which annihilates an atom
occupying the mode function ψk(x) localized in the kth well.

Let us for now restrict ourselves to the case where a constant
force, corresponding to the linear potential V (x) = gx, is
added to the lattice potential (the more general case will be
consider in Sec. III C). Here g is the coupling constant, the
parameter which we want to estimate.

The Hamiltonian corresponding to the added potential, in
the second quantization, reads

Ĥ = ε

M∑
k=1

kn̂k, (4)

where n̂k = â
†
kâk is the on-site atom number operator and ε =

gx0, where x0 is the lattice spacing. The external force interacts
with the trapped gas for a time t , which transforms the field
operator (3) as follows:

�̂(x|θ ) ≡ eiθĥ�̂(x)e−iθ ĥ =
M∑

k=1

ψk(x)âke
−ikθ , (5)

where θ = εt/h̄ and ĥ is the generator of the phase-shift
transformation,

ĥ =
M∑

k=1

kn̂k. (6)
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Equation (5) shows that the perturbation imprints a phase θ

between two neighboring sites, while the phase between the
two most distant wells is (M − 1)θ .

The interferometric sequence consists thus of a simple
phase shift acting on the input state (2) and could be
implemented as follows. First is the preparation of input
state (2) in an unperturbed optical lattice (g = 0). Then the
perturbing potential is suddenly turned on at a time scale
shorter than the lattice hopping time, but slow enough to avoid
creating higher band excitations. In this way, the state does not
follow the change adiabatically, and the evolution operator is
exp(−iĥθ ). The goal of this work is to derive the sensitivity of
the estimation of θ or, equivalently, of the coupling constant
�g = (h̄/tx0)�θ .

Given the interferometric operation defined by Eqs. (5)
and (6), the sensitivity �θ still depends on (a) the choice
of the input state |ψ〉, (b) the choice of the measurement to
be performed on the final state exp(−iĥθ )|ψ〉, and (c) the
choice of the estimator, that is, how to infer the value of the
parameter given the measurement outputs. In Sec. III, we will
derive the optimal sensitivity, that is, assuming that both the
measurement and the estimator are the best achievable. This
can be done using the notion of the QFI. The latter allows us
to calculate the optimal sensitivity for a given input state. By
further optimizing the QFI over all possible input states, one
can derive the ultimate scaling of the sensitivity.

III. SENSITIVITY FOR THE OPTIMAL MEASUREMENT

A. Ultimate scaling

As anticipated, using the notion of the QFI, denoted here
as FQ, we can calculate the sensitivity for the best possible
measurement and estimator. Once we know FQ, we can indeed
employ the Cramér-Rao lower bound (CRLB) [36]:

�2θ � 1

m

1

FQ

, (7)

where m is the number of independent repetitions of the
measurement used to estimate θ . The right side of Eq. (7)
is the sensitivity optimized over all possible measurements
and estimators.

The QFI yet depends on the interferometric operation and
the input state. For pure states, the value of FQ is given by
four times the variance of the generator of the interferometric
operation ĥ, calculated with the input state,

FQ = 4[〈ψ |ĥ2|ψ〉 − 〈ψ |ĥ|ψ〉2] ≡ 4�2ĥ. (8)

The QFI can be maximized with respect to |ψ〉, and the upper
bound for FQ is provided by a simple relation [1]:

FQ � (λmax − λmin)2, (9)

where λmin,max are the smallest and largest eigenvalues of the
operator ĥ. The two eigenvectors of ĥ with extreme eigenvalues
are

|ψmin〉 = |N,0, . . . ,0〉 → ĥ|ψmin〉 = N |ψmin〉, (10a)

|ψmax〉 = |0,0, . . . ,N〉 → ĥ|ψmax〉 = MN |ψmax〉. (10b)

By combining Eqs. (9) and (10) we get FQ � N2(M − 1)2.
The inequality is saturated for the NOON state

1√
2

(|ψmin〉 + |ψmax〉) for which, according to Eq. (7), the
sensitivity is bounded by

�2θ � 1

m

1

N2

1

(M − 1)2
. (11)

This expression is the first important result: when the pertur-
bation is a linear potential (constant force), the best sensitivity
reachable scales like M−1, a kind of “Heisenberg scaling” with
the number of wells. In Sec. III C, we will derive the equivalent
bound for nonlinear potentials.

As anticipated in the Introduction, this scaling is a purely
geometrical, and thus not quantum, effect. While the Heisen-
berg scaling with the number of atoms N originates from
a macroscopic quantum superposition present in the NOON
state, the scaling with M is a result of an accumulated phase
shift between two extreme sites, as discussed below Eq. (6).

B. Scaling for symmetric states

Our next step is to remove the optimization of the QFI over
all possible input states |ψ〉 and concentrate on a particular
family of states which is more relevant for current experimental
setups with ultracold atoms. We assume thus that N atoms are
distributed among M sites symmetrically; i.e., the coefficient
C�n is invariant upon the exchange of any two indices. A
prominent member of such a family of states is the superfluid
state [32], where each atom is in a coherent superposition, i.e.,

|ψsf〉 = 1√
N !MN

(â†
1 + · · · + â

†
M )N |0〉. (12)

This state can be written in form (2) with coefficients

C�n = 1√
MN

√
N !√

n1! · · · nM−1!(N − n1 − · · · − nM−1)!
, (13)

which clearly possess the aforementioned symmetry. Another
example is a symmetric Mott insulator state [32], where
each site is occupied by N

M
atoms. Below we calculate the

sensitivity �2θ using a generic symmetric state without taking
any specific value of C�n.

To this end, we calculate the QFI using Eq. (8) and
the phase-transformation generator ĥ for a linear perturbing
potential from Eq. (6). The average is equal to

〈ψ |ĥ|ψ〉 =
M∑

k=1

k〈n̂k〉 = 1

2
(M + 1)N, (14)

where in the last step, due to the imposed symmetry, we
used 〈n̂k〉 = N

M
. Calculating the average of ĥ2 involves a

few intermediate steps, which are presented in detail in
Appendix A. The final result is that, for symmetric states and
a linear perturbing potential, the QFI reads

FQ = 1
3 (M + 1)M2�2n̂, (15)

where �2n̂ = 〈n̂2〉 − 〈n̂〉2 is the on-site variance of the atom
number. The value of �2n̂ can be easily calculated for some
particular states. For instance, the uncorrelated superfluid state
(12) gives �2n̂ = M−1

M2 N , and as a consequence the QFI scales
at the SNL, i.e., FQ = 1

3 (M2 − 1)N . A strongly entangled
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symmetric NOON state [37]

|ψNOON〉= |N,0, . . . ,0〉 + |0,N, . . . ,0〉 + · · · + |0, . . . ,N〉√
M

(16)

gives �2n̂ = M−1
M2 N2, and as a consequence, the Heisenberg

scaling of the QFI FQ = 1
3 (M2 − 1)N2.

These two examples suggest that for all symmetric states
the on-site variance has a particularly simple form �2n̂ =
M−1
M2 f (N ), where f (N ) does not depend on M . Indeed, the

above form of �2n̂ can be explained as follows. When the
“volume” of the system, in this case the number of sites M ,
tends to infinity, the atom number fluctuations in one site tend
to zero. On the other hand, when the whole system consists
of only one site, the fluctuations are zero since the number of
atoms in the system is fixed. The only possible dependence
of the variance on M , which behaves correctly in both these
regimes and also accounts for the scaling of the average value,
〈n̂〉2 = N2

M2 , is thus �2n̂ = M−1
M2 f (N ). Putting this into Eq. (15)

gives FQ = 1
3 (M2 − 1)f (N ) and the sensitivity

�2θ � 1

m

1

f (N )

3

M2 − 1
. (17)

The function f (N ) can be interpreted as a measure of the
entanglement present in the system, related to the increased
on-site atom number fluctuations. In the two-well case M = 2,
such usefully entangled states which give �2n̂ > N are called
“phase squeezed” [38] because the growth of the number
fluctuations is accompanied by a decreased spread of the
conjugate variable, which is the relative phase between the
wells. Most important, the scaling with M of the sensitivity for
symmetric states (17) is only slightly worse than the ultimate
scaling (11) obtained for the best possible state and becomes
the same for large M .

C. Scaling for nonlinear potentials

In this section, we generalize the results of Sec. III A for
nonlinear potentials V (x) = gxj , where j ∈ R. We assume
that the first lattice site is placed at x = x0 and define the
interferometric phase as θ = t gx

j

0 /h̄. Accordingly, the phase
imprinted on the kth site is kj θ . From this, we can easily
construct the generator as in Eq. (6), which is equal to

ĥj =
j∑

k=1

kj n̂k. (18)

The QFI can be again bounded by Eq. (9), giving

�2θ � 1

m

1

(λmax − λmin)2
. (19)

The extreme eigenvalues for j > 0 are equal to λmin = N

for |ψmin〉 and λmax = MjN for |ψmax〉, while for j < 0 the
minimal and maximal eigenvalues are exchanged. The states
|ψmin〉 and |ψmax〉 are still the ones defined in Eq. (10). The
best possible sensitivity is thus

�2θ � 1

m

1

(Mj − 1)2

1

N2
. (20)

2 4 6 8 10 12 14
0

1

2

3

4

m
N

Δ 
θ2

M

2

FIG. 1. (Color online) Ultimate scaling of the sensitivity for
various nonlinear potentials given by Eq. (20). Red squares, blue
circles, black diamonds and green triangles correspond to j = −2,

−1,1,2, respectively. The black dashed line denotes the sensitivity of
a standard j = 1,M = 2 two-mode interferometer.

The behavior with M of the right-hand side of the above
equation for various j is shown in Fig. 1. When j > 0, �2θ

continuously improves with increasing M , and the larger j is,
the quicker the improvement is. This would be the case, for
instance, for the quadratic potential, i.e., j = 2. On the other
hand, when the potential decays with distance j < 0, as is the
case of Casimir-Polder-type interactions, which can exhibit
the j = −3 or j = −4 scaling [39,40], there is no substantial
gain from the multimode structure of the interferometer. This
happens because the phase imprinted on the second well, which
is equal to 2−|j |θ , is already negligible when compared to θ .
In this case �2θ � 1

m
1

N2 , and by increasing M the sensitivity
saturates to the value corresponding to a linear potential and
two wells since, effectively, only the first well experiences the
action of the perturbing potential.

Apart from the ultimate scaling, it is interesting to derive
an expression for the sensitivity for symmetric states, as was
done in Sec. III B for linear potentials. The derivation does
not change substantially with respect to the line of reasoning
presented in Appendix A, with the only difference being that
the summations over the sites involve kj instead of k. The
resulting sensitivity bound for symmetric states reads

�2θ � 1

m

1

f (N )

M2

4
[
MH

(−2j )
M − (

H
(−j )
M

)2] , (21)

where H (r)
n = ∑n

k=1 k−r is known as the Harmonic number.
For j > 0 and a large number of lattice sites, the sensitivity
bound can be approximated by

�2θ � 1

m

1

f (N )

1

M2j

(1 + j )2(1 + 2j )

(2j )2
, (22)

which shows that the M−j improvement on �θ is preserved
for symmetric states.

We underscore that, via Eq. (20), the multimode inter-
ferometer could serve as a sensitive tool to determine the
spatial dependence of the perturbing potential. This could be
experimentally achieved by estimating the phase with various
numbers of sites and finding the scaling of �θ with M .
This is an important point, for instance, in the context of the
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determination of the Casimir-Polder force or deviations from
Newton’s law of gravity at the micrometer scale.

IV. SENSITIVITY FOR THE FIT TO
THE INTERFERENCE PATTERN

The QFI was used above to set the lower limit for the
sensitivity by optimizing �2θ with respect to the output
measurement and estimator. Below we demonstrate that the
scaling of the sensitivity with M , which is present in Eq. (17),
is preserved even for a particularly simple phase estimation
protocol, although the sensitivity does not saturate the QFI.
Also the scaling with N is preserved for the superfluid and
phase-squeezed states.

We assume that, after the system acquires the phase as in
Eq. (5), the optical lattice is switched off and the wave-packets
ψk(x), which were initially localized at each site, expand and
in the far field form an interference pattern. Positions of atoms
are recorded, and the phase is estimated by fitting the density
ρ(x|θ ) = 〈�̂†(x|θ )�̂(x|θ )〉 to the acquired data. In our past
work [35] we have shown that when this estimation protocol
is employed, the sensitivity is given by

�2θ = 1

m

F1 + C

F 2
1

, (23)

where F1 is the one-body Fisher information, which reads

F1 =
∫

dx
1

ρ(x|θ )

(
∂ρ(x|θ )

∂θ

)2

. (24)

The coefficient C depends on both the one- and two-body
correlations,

C =
∫

dx

∫
dy G(2)(x,y|θ ) ∂θ ln [ρ(x|θ )] ∂θ ln [ρ(y|θ )] ,

(25)

where G(2)(x,y|θ ) = 〈�†(x|θ )�̂†(y|θ )�(y|θ )�̂(x|θ )〉. Our
goal is to analyze how the sensitivity (23) depends on both the
number of sites M and the nonclassical correlations present in
state (2).

In Sec. III B we have seen that the usefully entangled
states for the present interferometer have enhanced number
fluctuations. In particular, the NOON state provides the best
scaling with the number of particles N . This statement,
however, assumes that we are always able to perform the
optimal measurement, which, in general, depends itself on the
input state. In this section, instead, we fix the measurement (as
described above) and study the behavior of the sensitivity for
different states characterized by enhanced number fluctuations
(we will see that such states are still the useful ones for
the particular measurement considered). For two lattice sites
(M = 2), one can easily generate a family of such usefully
entangled states by numerically finding the ground state of the
two-well Bose-Hubbard Hamiltonian,

ĤBH = −EJ Ĵx + UĴ 2
z , (26)

with U < 0. Here, EJ is the Josephson energy, related to the
frequency of the interwell tunneling, and U is the amplitude
of the on-site two-body interactions. This procedure for
generating the input states is also relevant for the setup we
consider since it will correspond to adiabatical preparation

in the lattice. Performing an analogous calculation for higher
M is very demanding since the dimensionality of the Hilbert
space grows rapidly, as indicated by the multiple sums present
in Eq. (1). This difficulty can be overcome by replacing the
true state (1) with

|ψ〉 =
M⊗

k=1

∞∑
nk=0

Cnk
|nk〉. (27)

This is the Gutzwiller approximation of the quantum state of
the bosons (see [32] and references therein). The number of
atoms is not fixed anymore, but in analogy to the fixed-N case
(2), we assume that the average number of atoms per site is
〈n̂k〉 = N

M
, so that the average number of atoms in the whole

system is N .
Note that although such a state does not recover correlations

among the wells, it can be used to mimic nonclassical
correlations by increasing the on-site atom number variance
�2n̂. This is because interferometry employs particle, rather
than the mode, entanglement to improve the precision �θ .
For instance, when the MZI is fed with a twin-Fock state
|N

2 〉 ⊗ |N
2 〉, a product of N

2 particles in two modes, it gives
the sensitivity close to the HL. This is because the particles,
contrary to the modes, are extremely entangled, which can be
seen by using the language of the “first quantization,” where the
state is symmetrized upon the interchange of any two particles.

In order to calculate the sensitivity (23), we express the
field operator �̂(x|θ ) in the far field,

�̂(x|θ ) = ψ̃

(
x

σ̃ 2

) M∑
k=1

e−iφ(x)·kâk. (28)

We assumed that, initially, all the wave packets ψk(x) had
identical shapes but were localized around separated sites of
the optical lattice. The function ψ̃ is the Fourier transform of

ψk(x), which is common for each well, and σ̃ =
√

h̄t
μ

(μ is the
atomic mass, and t is the expansion time). The phase factor is
defined as

φ(x) = 2
x0

σ̃ 2
x + θ, (29)

where x0 is the lattice spacing first introduced below Eq. (4).
The density ρ(x|θ ) obtained using Eqs. (27) and (28) is

ρ(x|θ ) = 〈ψ |�̂†(x|θ )�̂(x|θ )|ψ〉 = N

∣∣∣∣ψ̃
(

x

σ̃ 2

)∣∣∣∣
2

s(x|θ ),

(30)

where |ψ̃ |2 is the envelope of the interference pattern, while
the fringes are contained in

s(x|θ ) = 1 + 〈â〉2

N

(
sin2

(
Mφ(x)

2

)
sin2

(
φ(x)

2

) − M

)
. (31)

Expression (30) is put into Eq. (24), giving

F1 = N

∫
dx

∣∣ψ̃(
x

σ̃ 2

)∣∣∣∣
2 1

s(x|θ )

(
∂s(x|θ )

∂θ

)2

. (32)

When the density of the interference pattern consists of many
fringes, the envelope |ψ̃ |2 varies much slower in x than the
function s(x|θ ). An integral of a slowly varying envelope with a
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quickly oscillating periodic function can be split into a product
of an integral of the envelope alone times the average value of
the quickly changing s(x|θ ). Since the envelope is normalized,
we immediately get

F1 = N

∫ 2π

0

dφ

2π

1

s(φ)

(
∂s(φ)

∂φ

)2

, (33)

where φ was defined in Eq. (29). This integral depends on the
quantum state through the average value 〈â〉, as can be seen
from Eq. (30). Apart from the analytical case M = 2, its value
has to be calculated numerically.

In the next step, we calculate the coefficient C, which
depends on the second-order correlation function. After a
lengthy calculation we obtain (see Appendix B for details)

C =
[
〈â2〉2 −

(
N

M

)2

+ 2
N

M
〈â〉2 − 2〈â2〉〈â〉2

]
I1

+
[

2〈â2〉〈â〉2 − 2
N

M
〈â〉2

]
I2, (34)

where the two integrals are given by

I1 =
∫ π

−π

dφ

2π

∫ π

−π

dφ′

2π
∂θ ln[s(φ)]∂θ [s(φ′)]

× cos[M(φ + φ′)] − 1

cos[φ + φ′] − 1
(35)

and

I2 =
∫ π

−π

dφ

2π

∫ π

−π

dφ′

2π
∂θ ln[s(φ)]∂θ [s(φ′)]

× sin
[

M
2 φ

]
sin

[
M
2 φ′] sin

[
M
2 (φ + φ′)

]
sin

[
φ

2

]
sin

[
φ′
2

]
sin

[
φ+φ′

2

] . (36)

As a first test of Eqs. (33) and (34), in the next section we show
that for M = 2 we recover a known analytical expression for
the sensitivity obtained using a two-mode state with fixed
N [35,41].

A. Fit sensitivity with two lattice sites

To make a direct comparison, we start by recalling the
main result of our previous work [35], where we focused
on phase estimation with a fixed-N two-mode state |ψ〉 =∑N

n=0 Cn|n,N − n〉. In the resulting N -qubit space, every
possible interferometric operation can be mapped into a
rotation, with the angular momentum operators Ĵx = 1

2 (â†b̂ +
âb̂†), Ĵy = 1

2i
(â†b̂ − âb̂†) and Ĵz = 1

2 (â†â − b̂†b̂). We have
shown that when the phase is deduced from the fit of the
one-body density to the interference pattern formed by two
expanding wave packets, the sensitivity (23) can be expressed
in terms of two quantities. One is the spin-squeezing parameter
[38], which is a measure of entanglement related to the

phase squeezing of |ψ〉 and reads ξφ =
√
N

�2Ĵy

〈Ĵx 〉2 . The other

is the visibility of the interference fringes, ν = 2
N

〈Ĵx〉. The
sensitivity

�2θ = 1

mN

[
ξ 2
φ +

√
1 − ν2

ν2

]
(37)

results from the interplay between the growing entanglement
(ξ 2

φ → 0) and the loss of the visibility (ν → 0). Naturally, there
is some optimally squeezed state which gives the minimal
value of �2θ , as discussed in [35].

We now calculate the sensitivity (23) using the Gutzwiller
approximation (27) for two wells and check how it compares
with the exact result (37). As shown in Appendix C, in this case,
both the one-body Fisher information (33) and the coefficient
C [Eq. (34)] can be evaluated analytically, and the outcome is

�2θ = 1

mN

[
ξ̃ 2
φ +

√
1 − ν̃2

ν̃2

]
, (38)

where the tilde sign denotes the phase-squeezing parameter
and the visibility calculated with a product state. Although
Eqs. (37) and (38) have identical forms, we still have to verify
whether the two-well entanglement of the fixed-N state can be
reproduced with a product state by increasing the on-site fluc-
tuations. We model the coefficients of Eq. (27) with a Gaussian,

Cnk
∝ e

− (nk−〈n〉)2
2σ2 , (39)

where 〈n〉 = N
2 for a two-mode state. The on-site atom number

variance is simply �2n̂ = σ 2; thus a coherent superfluid state
can be modeled by setting the fluctuations at the Poissonian
level, i.e., σ = √

N . To check if Eq. (38) will drop below the
SNL when the fluctuations are super-Poissonian, we proceed
as follows. For various values of σ >

√
N we calculate the

phase-squeezing parameter ξ̃ 2
φ and the visibility ν̃ and plot

the sensitivity (38) as a function of ξ̃ 2
φ . To compare with the

fixed-N case, we find the ground state of the Hamiltonian (26)
for various values of the ratio EJ

U
< 0. For every state found in

this way, we calculate the phase-squeezing parameter ξ 2
φ and

the visibility ν and on the same plot draw the sensitivity (37) as
a function of ξ 2

φ . Figure 2 shows that not only do Eqs. (38) and
(37) have identical forms, but also the quantum correlations

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

ξ
φ

2

Δ 
θ2

m
N

FIG. 2. (Color online) The sensitivity mN�2θ of the parameter
estimation from the fit to the density of the interference pattern with
M = 2 and N = 200 calculated using the state with a fixed [open
blue circles; Eq. (37)] and an unfixed number of atoms [solid black
line; Eq. (38)] as a function of the phase-squeezing parameter. The
sensitivities shown are normalized to the SNL. The dashed red line
shows the ultimate precision of the phase estimation given by the QFI
from Eq. (15). The horizontal black dotted line shows the shot-noise
limit.
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giving sub-shot-noise sensitivity can be perfectly mimicked
using a product state [Eq. (27)] with large on-site atom number
fluctuations. In both cases, the sensitivity has an optimal point,
where the entanglement is balanced by the fringe visibility.
Clearly, the Gutzwiller approximation gets worse when the
correlations between different wells increase (that is, going
farther to the left in Fig. 2), but for the states we consider
and this particular measurement, it is precise enough for all
practical purposes. Having proven its usefulness, in the fol-
lowing section we employ the Gutzwiller ansatz (27) plus the
Gaussian approximation on the coefficient of the product state
(39) in order to analyze how the sensitivity (23) behaves for
higher M , where results from a fixed-N model are unavailable.

B. Fit sensitivity with M lattice sites

For M > 2, when the integrals (33), (35), and (36) cannot
be evaluated analytically, we calculate the sensitivity (23)
numerically. We fix the average total number of atoms to be
〈N̂〉 = 5 × 104 and for a given M evaluate the sensitivity (23)
for different values of the on-site atom number fluctuations
using the Gaussian model (39) with 〈n̂〉 = 〈N̂〉

M
. In order

to compare the results for different M , we normalize the
sensitivity by the factor 1

3 (M2 − 1), that is, by the sensitivity
achieved with the best possible measurement, Eq. (17), at the
shot-noise level. In Fig. 3 we plot m〈N̂〉 × 1

3 (M2 − 1)�2θ for
M = 2,4,6,8,10, and 12. The outcome is, with a high level
of accuracy, independent of M . We thus conclude that the
sensitivity of the fit has a form similar to (17), i.e.,

�2θ = 1

m

1

ζ (〈N̂〉)
3

(M2 − 1)
, (40)

where ζ (〈N̂〉) is some function of the average total number of
atoms, which becomes larger for states with increased on-site
atom number fluctuations, ζ > 〈N̂〉.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

ξ
2
φ

Δ 
θ

2
m

N
1 3

(M
 -1

)
2

FIG. 3. (Color online) The sensitivity mN�2θ of the parameter
estimation from the fit to the density of the interference pattern for
M = 2,4,6,8,10, and 12 (different colored solid lines) with a fixed
average number of atoms equal to 〈N̂〉 = 5 × 104. The sensitivities
shown are normalized to the SNL and multiplied by the factor
1
3 (M2 − 1). The dashed red line shows the ultimate precision of the
phase estimation given by the QFI from Eq. (15). The horizontal
black dotted line shows the shot-noise limit.

In Fig. 3, as the phase-squeezing parameter drops, the dis-
crepancy between the curves calculated for different M grows.
This is a spurious result of the Gutzwiller approximation (27)
for the state |ψ〉. When the average number of atoms in the
system is fixed and M is changed, the average on-site occupa-
tion varies. This is not a problem as long as the width σ of the
Gaussian (39) is small compared to 〈n̂〉. However, we increase
σ to mimic the growing entanglement in the system. Once
σ is comparable to 〈n̂〉, the change in the on-site population
for different M becomes relevant. Therefore, by changing M

we are actually changing the nature of the quantum state, and
in particular, we cannot assume that the squeezing parameter
remains fixed. One could avoid this problem by, rather than
fixing 〈N̂〉, fixing the on-site population 〈n̂〉 and increasing the
number of wells so that 〈N̂〉 = M〈n̂〉.

V. CONCLUSIONS

We have analyzed the performance of ultracold bosons
trapped inside an optical lattice as an interferometric device for
the measurement of spatially dependent forces. For potentials
V (x) = gxj we showed that, optimizing over all possible
output measurements, the coupling constant g can be measured
with an uncertainty �g scaling like M−j for a large number
of lattice sites M and independent of the quantum state
employed. We then showed that this scaling with the number
of lattice sites can still be reached with a particular output
measurement which is commonly employed with ultracold
atoms: a least-squares fit to the interference pattern resulting
from the overlap of freely expanding atoms released from
the confining potential. In order to achieve the M−j scaling,
no quantum correlations are needed, and thus the superfluid
state of the atoms in the lattice would allow us to test the
improvement of the sensitivity with an increasing number of
sites. This state is commonly prepared using ultracold atoms in
optical lattices [32]. We also derived the improvements coming
from entangling the quantum state. In particular, we consider
the SSN scaling with the number of particles N achieved
with phase-squeezed states. Such states could, for instance,
be prepared as the ground states of the ultracold atoms in the
optical lattice in the presence of a negative contact interaction.

The device here studied is an example of a matter-wave
multipath interferometer. While the sensitivity bounds for a
general two-path interferometer have already largely been
studied, the same analysis based on rigorous estimation theory
results has not yet been performed for multipath devices.
Moreover, the potential of the implementation of these devices
with atoms seems very promising due to the growing control
and tunability of the available trapping and probing tools,
especially for ultracold atoms.

Finally, we underscore that the precision of the time-of-
flight interferometer, where the phase is estimated from the fit
of the averaged density to the measured interference pattern,
cannot be surpassed by adding a hopping term to the generating
Hamiltonian (4). The presence of the hopping, which induces
the Bloch oscillations, is an extra complication, which changes
the optimal states depending on the ratio between the tunneling
energy to the phase related energy ε but does not introduce any
further benefit. Some of these conclusions can be found in [40]
and will be discussed in detail elsewhere.
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APPENDIX A: CALCULATION OF THE QFI

In order to calculate the FQ, we need to derive an expression
for the variance of the operator ĥ. Using definition (6), we get

〈ĥ2〉 =
∑
k1,k2

k1k2
〈
n̂k1 n̂k2

〉 =
∑

k

k2
〈
n̂2

k

〉 + ∑
k1 �=k2

k1k2
〈
n̂k1 n̂k2

〉
.

(A1)

We now make use of the symmetry between the wells. The
average value 〈n̂2

k〉 does not depend on index k and thus can
be denoted as 〈n̂2〉. The same argument concerns the interwell
correlation 〈n̂k1 n̂k2〉, which will be denoted as 〈n̂i n̂j 〉, where
i,j are indices of any two sites. The above expression thus
boils down to

〈ĥ2〉 = 〈n2〉
∑

k

k2 + 〈n̂i n̂j 〉
∑
k1 �=k2

k1k2

= M

6
(M + 1)(2M + 1)〈n̂2〉

+ 〈n̂i n̂j 〉M
12

(M2 − 1)(3M + 2). (A2)

Our next step is to show that 〈n̂i n̂j 〉 can be written as a function
of 〈n̂2〉 only. To this end, since the state is symmetric, we can
take i = 1 and j = M and obtain

〈n̂1n̂M〉 =
∑

�n
C2

�n n1(N − n1 − · · · − nM−1) (A3)

= N2

M
−

∑
�n

C2
�n n1(n1 + · · · + nM−1). (A4)

Now, since it does not matter which two wells we correlate,
in the sum, instead of n1, we can use an average over M − 1
wells as follows:

〈n̂1n̂2〉= N2

M
−

∑
�n

C2
�n

n1 + · · · + nM−1

M − 1
(n1 + · · · + nM−1).

(A5)

Finally, we exploit the fact that the total number of atoms is
fixed and thus n1 + · · · + nM−1 = N − nM and obtain

〈n̂1n̂M〉 = N2

M
−

∑
�n

C2
�n

(N − nM )2

M − 1
(A6)

= N2

M
− 〈n2〉 − 2N2/M + N2

M − 1
. (A7)

Using the result for the average value of ĥ, we finally obtain

FQ = 4�2ĥ = 1
3 (M + 1)M2�2n̂, (A8)

where �2n̂ = 〈n̂2〉 − 〈n̂〉2 is the on-site variance.

APPENDIX B: CALCULATION OF THE SENSITIVITY

In this appendix we give details of the derivation of
coefficient C from Eq. (34), which is used to evaluate the
sensitivity (23) using the product state (27). In order to
calculate C, one first has to find the second-order correlation
function,

G(2)(x,y|θ ) = 〈�̂†(x|θ )�̂†(y|θ )�̂(y|θ )�̂(x|θ )〉. (B1)

When the field operator, which is introduced in Eq. (28), is put
into this definition, we obtain

G(2)(x,y|θ ) =
∣∣∣∣ψ̃

(
x

σ̃ 2

)∣∣∣∣
2∣∣∣∣ψ̃

(
y

σ̃ 2

)∣∣∣∣
2 M∑

k1,k2,k3,k4=1

eiφ(x)(k1−k4)

× eiφ(y)(k2−k3)
〈
â
†
k1

â
†
k2

âk3 âk4

〉
, (B2)

where φ(x) = 2 x0
σ̃ 2 x + θ . The above sum cannot be performed

in a straightforward manner since special care has to be taken
to distinguish cases when the indices k1 · · · k4 in the average
value 〈â†

k1
â
†
k2

âk3 âk4〉 are equal to or different from each other.
A careful classification of all the possible terms gives

G(2)(x,y|θ ) =
∣∣∣∣ψ̃

(
x

σ̃ 2

)∣∣∣∣
2∣∣∣∣ψ̃

(
y

σ̃ 2

)∣∣∣∣
2

× {M〈â†â†ââ〉 + (s(x + y) − M)〈â†â†〉2 + 〈n̂〉2(s(x − y) + M2)

+ 2[s(x) + s(y) − 2M]〈â†â†â〉〈â〉 + 〈n̂〉〈â〉2[8M − 2M2 + (M − 4)(s(x) + s(y)) − 2s(x − y) + 2g(x, − y)]

+〈â〉2〈â2〉[4M − 2s(x) − 2s(y) − 2s(x + y) + 2g(x,y)] + 〈â〉4[s(x)s(y) − (M − 4)(s(x) + s(y)) + s(x + y)

+ s(x − y) − 2g(x,y) − 2g(x, − y) + M2 − 6M]}. (B3)

The function s(x) is defined as

s(x) = cos [Mφ(x)] − 1

cos [φ(x)] − 1
, (B4)

while the g(x,y) function is

g(x,y) = sin
[

Mφ(x)
2

]
sin

[
Mφ(y)

2

]
sin

[
M(φ(x)+φ(y))

2

]
sin

[
φ(x)

2

]
sin

[
φ(y)

2

]
sin

[
φ(x)+φ(y)

2

] . (B5)

033607-8



MULTIPATH INTERFEROMETER WITH ULTRACOLD ATOMS . . . PHYSICAL REVIEW A 87, 033607 (2013)

The coefficient C is defined as a double integral of the
above second-order correlation function with the one-body
probabilities calculated at positions x and y, namely,

C =
∫

dx

∫
dy G(2)(x,y|θ )∂θ ln[ρ(x|θ )] ∂θ ln[ρ(y|θ )].

(B6)

The one-body density is defined in Eq. (30). We use the fact
that the interference pattern consists of many fringes, so that
the envelope |ψ̃ |2 varies slowly compared to the oscillatory
functions present in s, g, and the density ρ. Therefore, the
integral (B6) can be rewritten as

C =
∫ π

−π

dφ

2π

∫ π

−π

dφ′

2π
G(2)(φ,φ′|θ )

× ∂θ ln [ρ(φ|θ )] ∂θ ln[ρ(φ′|θ )], (B7)

where we changed the variables x → φ and y → φ′. It can be
demonstrated that∫ π

−π

dφ

2π
∂θ ln [ρ(φ|θ )] = 0; (B8)

therefore all the terms from Eq. (B3) which do not depend on
both φ and φ′ are zero. Using a property of the functions f

and g,∫ π

−π

dφ

2π

∫ π

−π

dφ′

2π
s(φ + φ′)∂θ ln [ρ(φ|θ )] ∂θ ln[ρ(φ′|θ )]

= −
∫ π

−π

dφ

2π

∫ π

−π

dφ′

2π
s(φ − φ′)∂θ

× ln [ρ(φ|θ )] ∂θ ln[ρ(φ′|θ )],

and the same with g(φ,φ′) and g(φ, − φ′), we finally get

C = [〈â2〉2 − 〈n̂〉2 + 2〈n̂〉〈â〉2 − 2〈â2〉〈â〉2]

×
∫ π

−π

dφ

2π

∫ π

−π

dφ′

2π
∂θ ln[s(φ)]∂θ [s(φ′)]s(φ + φ′)

+ [2〈â2〉〈â〉2 − N〈â〉2]

×
∫ π

−π

dφ

2π

∫ π

−π

dφ′

2π
∂θ ln[s(φ)]∂θ [s(φ′)]g(φ,φ′),

which coincides with Eq. (34).

APPENDIX C: SENSITIVITY FOR TWO WELLS

First, we calculate the one-body Fisher information defined
in Eq. (33). For M = 2 the s function from Eq. (31) reads

s(φ) = 1 + ν̃ cos φ, (C1)

where ν̃ is the fringe visibility calculated with a product state,

ν̃ = 2

N
〈Ĵx〉 = 2

N

〈â†〉〈b̂〉 + 〈â〉〈b̂†〉
2

= 2

N
〈â〉2, (C2)

where we used the symmetry between the two wells and the
last step was possible because the coefficients Cn are taken
to be real. We insert (C1) into (33) and obtain an analytical
outcome:

F1 = 1 −
√

1 − ν̃2. (C3)

The integrals I1 from Eq. (35) and I2 from Eq. (36) can be
calculated in a similar way, giving

I1 = I2 = 2

ν̃2
(−2 + ν̃2 + 2

√
1 − ν̃2). (C4)

As a result coefficient C from Eq. (34) for M = 2 reads

C = 2

ν̃2
(−2 + ν̃2 + 2

√
1 − ν̃2)

[
〈â2〉2 − N2

4

]
. (C5)

Finally, we note that for a symmetric state 〈Ĵy〉 = 0; thus the
variance of the Ĵy operator calculated using a product state
reads

�2Ĵy = 1

2

[
N2

4
+ N

2
− 〈â2〉2

]
, (C6)

which allows us to rewrite Eq. (C5) in a following way:

C = 4

ν̃2
(−2 + ν̃2 + 2

√
1 − ν̃2)

[
N

4
− �̃2Ĵy

]
. (C7)

Combining (C3) and (C7) as in Eq. (23), we obtain

�2θ = 1

mN

[
ξ̃ 2
φ +

√
1 − ν̃2

ν̃2

]
, (C8)

where ξ̃ 2
φ is the phase-squeezing parameter calculated with a

product state.
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[16] B. Lücke et al., Science 11, 773 (2011).
[17] J. Appel et al., Proc. Natl. Acad. Sci. USA 106, 10960

(2009).
[18] Z. Chen, J. G. Bohnet, S. R. Sankar, J. Dai, and J. K. Thompson,

Phys. Rev. Lett. 106, 133601 (2011).
[19] F. Zernike, J. Opt. Soc. Am. 40, 326 (1950).
[20] G. M. D’Ariano and M. G. A. Paris, Phys. Rev. A 55, 2267

(1997).
[21] B. C. Sanders et al., J. Phys. A 32, 7791 (1999).
[22] J. Soderholm, G. Bjork, B. Hessmo, S. Inoue, J. Soderholm,

G. Bjork, B. Hessmo, and S. Inoue, Phys. Rev. A 67, 053803
(2003).

[23] A. Vourdas and J. A. Dunningham, Phys. Rev. A 71, 013809
(2005).

[24] S. Yu and C. H. Oh, Phys. Rev. Lett. 108, 030402 (2012).
[25] F. Impens, F. Pereira dos Santos, and C. J. Bordé, New. J. Phys
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[40] J. Chwedeńczuk, L. Pezzé, F. Piazza, and A. Smerzi, Phys. Rev.
A 82, 032104 (2010).

[41] C. Lee, Phys. Rev. Lett. 97, 150402 (2006).

033607-10

http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1126/science.1208798
http://dx.doi.org/10.1073/pnas.0901550106
http://dx.doi.org/10.1073/pnas.0901550106
http://dx.doi.org/10.1103/PhysRevLett.106.133601
http://dx.doi.org/10.1364/JOSA.40.000326
http://dx.doi.org/10.1103/PhysRevA.55.2267
http://dx.doi.org/10.1103/PhysRevA.55.2267
http://dx.doi.org/10.1088/0305-4470/32/44/314
http://dx.doi.org/10.1103/PhysRevA.67.053803
http://dx.doi.org/10.1103/PhysRevA.67.053803
http://dx.doi.org/10.1103/PhysRevA.71.013809
http://dx.doi.org/10.1103/PhysRevA.71.013809
http://dx.doi.org/10.1103/PhysRevLett.108.030402
http://dx.doi.org/10.1088/1367-2630/13/6/065024
http://dx.doi.org/10.1088/1367-2630/13/6/065024
http://dx.doi.org/10.1103/PhysRevA.80.031602
http://dx.doi.org/10.1103/PhysRevA.80.031602
http://arXiv.org/abs/1111.4321
http://dx.doi.org/10.1103/PhysRevLett.106.038501
http://dx.doi.org/10.1103/PhysRevA.86.033615
http://arXiv.org/abs/1210.6829
http://dx.doi.org/10.1103/PhysRevA.84.011609
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/nature03500
http://dx.doi.org/10.1088/1367-2630/14/9/093001
http://dx.doi.org/10.1088/1367-2630/14/9/093001
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1103/PhysRevLett.72.3439
http://dx.doi.org/10.1080/00268976.2012.681309
http://dx.doi.org/10.1080/00268976.2012.681309
http://dx.doi.org/10.1088/1367-2630/12/6/065036
http://dx.doi.org/10.1088/1367-2630/12/6/065036
http://dx.doi.org/10.1103/PhysRevA.70.053619
http://dx.doi.org/10.1103/PhysRevA.70.053619
http://dx.doi.org/10.1103/PhysRevA.82.032104
http://dx.doi.org/10.1103/PhysRevA.82.032104
http://dx.doi.org/10.1103/PhysRevLett.97.150402



