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Nature of self-localization of Bose-Einstein condensates in optical lattices
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We analyze the nature of self-localization (SL) of Bose-Einstein condensates in one-dimensional optical lattices
in the presence of weak local dissipation. SL has recently been observed in several studies based on the discrete
nonlinear Schrödinger equation (DNLS); however, its origin is hitherto an open question. We show that SL is
based on a self-trapping crossover in the system. Furthermore, we establish that the origin of the crossover is the
Peierls-Nabarro barrier, an energy threshold describing the stability of self-trapped states. Beyond the mean-field
description the crossover becomes even sharper, which is also reflected by a sudden change of the coherence of
the condensate. While we expect that the crossover can be readily studied in current experiments in deep optical
lattices, our results allow for the preparation of robust and long-time coherent quantum states.
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I. INTRODUCTION

Dissipation is typically known to represent a major obstacle
in the coherent control of quantum systems. However, in recent
years, a strong interest in engineered dissipation has evolved,
where dissipation has been used as a tool for quantum state
preparation [1,2] as well as quantum information processing
and entanglement generation [3] and to induce self-trapping
(ST) [4–7]. Bose-Einstein condensates (BECs) have been
shown to support a variety of different kinds of ST, both in
the continuous case (such as bright and dark solitons [8–13])
and in discrete systems [14–23]. A particularly high level of
control has been achieved in a two-mode BEC [15], where
ST can also be induced by local dissipation which can even
repurify a BEC [24].

An dynamical self-trapping transition coined “self-
localization” has been observed numerically in several studies
based on the DNLS in the presence of weak boundary
dissipation in one-dimensional deep optical lattices [25–28].
In contrast to self-trapping, where a system is either prepared
in a self-trapped state [14,15,29] or driven towards it [4,6,7],
SL is a mechanism where, in the presence of weak local or
boundary dissipation, a very general initially diffusive state
leads to the formation of one or more discrete breathers (DBs,
see Refs. [30,31] for an overview). However, SL was only
found, if the atomic interaction strength exceeds a critical
value [27]. While the phenomenology of SL has been studied,
the mechanisms that lead to this transition have remained
unknown up to now.

In this paper, we propose a mechanism for SL allowing us
to give an explicit formula for an upper bound estimate of the
SL threshold for the DNLS in excellent agreement with the
numerical findings of Ref. [27]. The mechanism is based on a
“crossover” which surprisingly becomes much sharper when
quantum corrections beyond the mean-field description are
included, which is observed, e.g., in the condensate fraction
of the system. Our work also contributes to clarify conditions
for the experimental observation of SL, as discussed at the end
of the article.

To understand the nature of SL it is essential to note that
the fixed point corresponding to the DB state into which
the initial condition collapses does not undergo a bifurcation

itself. On the contrary, using standard methods [32–35] the
bright breather fixed point can easily be numerically found
to exist and to be linearly stable for all positive nonlinearity
strengths. Linear stability analysis therefore does not suffice
to understand the SL transition. The underlying idea of our
approach is that near the SL threshold a single strong, localized
fluctuation of the number of atoms locally brings the system’s
state into the basin of attraction of a DB fixed point in phase
space. The role of dissipation at this point is that DBs are
attractors in dissipative systems [36–38], while Hamiltonian
systems do not have attractors. In the simplest and most likely
event a strong increase in the number of atoms happens on
a single site that will become the center of the DB to be
formed.

We therefore study, first, how a single-site excitation can
lead to the formation of a DB and find that there exists a
distinct nonlinearity strength at which this initial condition
crosses over into a self-trapped state. We show that the origin
of this ST crossover is an energy threshold describing the
stability of self-trapped states (called the Peierls-Nabarro (PN)
energy barrier [22,39,40]). Second, we statistically estimate
the critical nonlinearity at the onset of SL by studying the
probability that a fluctuation in a diffusive state exceeds
this ST crossover and leads to the formation of a breather.
The ST crossover and SL should not only be observable
for BECs but as well, e.g., in coupled nonlinear optical
waveguides [30,41].

Consider the Bose-Hubbard Hamiltonian in the mean-field
description [42,43]

H = U

M∑
i=n

|ψn|4 − J

2

M−1∑
n=1

(ψ∗
nψn+1 + c.c.), (1)

with on-site interaction U , tunneling rate J , and lattice index
n = 1 . . . M , where M denotes the number of lattice sites.
Including boundary dissipation, the mean-field equations of
motion are given by the dissipative DNLS (see Refs. [6,7,44]
for a derivation of the loss term),

iψ̇n = L|ψn|2ψn − 1
2 (ψn−1 + ψn+1) − iγψn(δn,1 + δn,M),

(2)
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with h̄ = 1, nonlinearity L = (2U/J )N , dissipation rate γ ,
total number of atomsN , and the normalization

∑
n |ψn|2 = 1.

We introduce a measure of the local nonlinearityLlocal
n =

(2UN /J )Nn, where Nn = |ψn|2 is the relative number of
atoms (also referred to as the norm) at site n.

II. SELF-LOCALIZATION VS SELF-TRAPPING

Though SL is based on ST, it is distinguished by the way
in which a stable (or metastable) and spatially localized state
is reached. There are several ways to obtain self-trapping of
BECs in optical lattices which we classify into three types.

Type I (“static preparation”): The quantum system is
prepared in (or sufficiently close to) a self-trapped state. This
has been realized in various experiments [11,14,15,45]. Using
a variational approach, a phase diagram has been calculated
that describes the transition from diffusion to ST for an initial
Gaussian wave packet [19,20], which, however, does not
account for SL. Note that recent numerics for the DNLS [28]
rather contradicts the phase diagram in Ref. [19].

Type II (“dynamical preparation”): Another route to ST
is to apply a strong local dissipation pulse, which can
depopulate one or more sites and create a stable isolated peak
or vacancy [4,6,7,24] (leading to the formation of a bright
or dark breather). In particular, spatially resolved dissipative
manipulation in an optical lattice using an electron beam with
single-site addressability has been demonstrated [4].

Type III (“self-localization”): A third way to generate
self-trapping is SL, where the system prepared in a random
(generic) state in the presence of boundary or other local
dissipation dynamically forms one or more DBs. Examples
of SL are shown in Figs. 1 and 2. In contrast to Type II, the
positions where DBs form are not determined by the location of
the leak [25–28], see Fig. 1. In the absence of boundary or local
dissipation SL does not take place; see Fig. 2(b) and Ref. [25].
Also, below a threshold �b, self-localization does not occur
[cf. Fig. 2(c)]. This threshold to SL has been observed in detail
in Ref. [27], in particular for lattices with a large number of
wells (M = 128 to M = 4096). A main purpose of this article
is to derive an explicit formula for the SL threshold �b [cf.
Eq. (17)].

III. SELF-TRAPPING CROSSOVER

Let us first consider the dissipationless case (which belongs
to type I) with the following initial condition, where all atoms
are located at site c, given by

ψn(t = 0) = δnc. (3)

In which range of the nonlinearity will the majority of the
atomic population stay self-trapped near site c (resulting in
the formation of a DB)? In Fig. 3 the evolution of the particle
density is shown. For L = 1.6 [Fig. 3(a)] the particle density
initially decays exponentially in time and then populates
the whole lattice evenly. In contrast, a completely different
behavior is observed for L = 2.4 in Fig. 3(b), where the
initial condition relaxes into a ST state which is exponentially
localized in space. A necessary condition for ST is Llocal

n >

Lco, where Lco is the value of the nonlinearity at the crossover
that separates the diffusive from the ST regime. We define

FIG. 1. (Color online) Demonstration of self-localization in a
lattice with (a) M = 128 and (b) M = 32 sites based on the dissipative
DNLS. The color code shows |ψn(t)|2 (normalized to 1 at t = 0). Time
is measured in units of the tunneling rate J. The initial condition is a
homogeneously populated lattice (i.e., constant norms) with random
phases at each site uniformly drawn from [0,2π ]. The boundary
dissipation rate at sites 1 and M is γ = 0.2. (a) The dissipative
dynamics leads to formation of a discrete breather centered at site
107. The effective nonlinearity � = L/M is � = 0.5 just above the
self-localization threshold �b = 0.58 [see Eq. (17)]. (b) A discrete
breather forms centered at site 29. The effective nonlinearity is
� = 1.25. In both panels, � is larger than the self-localization
threshold �b [cf. Eq. (17)]. Note that though the discrete breathers
are more likely to form near the middle of the lattice, they can also
emerge near the boundaries, as shown here.

that ST is encountered, if min |ψc(t > T )|2 > a for large T ,
which is independent of T once a breather has formed. The
value for a can be estimated via the position of a saddle
point (in the so-called Peierls-Nabarro energy landscape of
a local trimer model, see below) that dictates the stability of
the DB [22], which is shown in Fig. 4(a). In the limit L→∞
the saddle point is found analytically at N2 = 1/2 [22]; we
therefore estimate a = 1/2. Starting with initial condition (3)
and choosing T = 1 s, the crossover from diffusion to ST is
numerically found to be at Lnum

co = 2.2463. Integration times
were at least 10T .
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FIG. 2. (Color online) Self-localization can also be observed
in small lattices, shown here for M = 8 wells (similar to the
experimental setup in Ref. [46]) for the DNLS with boundary
dissipation rate γ = 0.2. The color code shows the atomic density
|ψn(t)|2. Initial condition is a homogeneously populated lattice with
random phases as in Fig. 1. Three representative cases with identical
initial condition are shown, SL is observed only in panel (a). Time
is measured in units of J , i.e., for J = 10 Hz, which is a typical
experimental value in Ref. [46], the discrete breather in (a) forms
around time t = 1 s. (a) Self-localization with � = 1.354 = 1.5�b.
(b) Without dissipation (γ = 0) no self-localization takes place.
For times t � 5/J , the plot strongly differs qualitatively from the
dissipative case (a). We carefully checked for different parameter
regimes M and � that even for times several orders of magnitude
longer than depicted here, SL does not occur for γ = 0. (c) For the
dissipative case where � = 0.5 < �b, no self-localization takes place
and the number of atoms in the lattice decays quickly.

In the following, we will examine the observed ST crossover
in detail, for which we make use of a general concept called
the PN energy barrier. It is given by the energy difference
|Eb—Ee|, where Eb is the total energy of a DB centered at
a single lattice site and Ee is the energy of a more extended
breather centered between two lattice sites [39,40]. The PN
barrier is based on the notion that, due to continuity, the process

FIG. 3. (Color online) A ST crossover for a δ-like initial con-
dition, where all atoms are located at a single site c, is found both
beyond and within the mean-field description (depicted here for the
DNLS). The color code shows the normalized atomic density |ψn(t)|2.
(a) Below the crossover, for L = 1.6 < Lco, the localized peak at
t = 0 decays exponentially fast. (b) Above the crossover (shown is
L = 2.4 > Lco) a discrete breather forms. The particle density is
stable and decays exponentially in space away from the center. About
85% of the atoms are located in three sites after time t = 4 s. Other
parameters are M = 101, c = 51, J = 10 Hz, and γ = 0.

of translating a localized object with energy Eb from one
lattice site to the adjacent one involves an intermediate state
with different energy Ee.

We will connect the ST crossover to the stability of a
DB. It has been shown that the stability of a DB can be
well described via a reduced problem of only few degrees
of freedom [30], which reflects the fact that the breather
is highly (exponentially) localized. This “local ansatz” has
been further developed analytically in a local trimer (which
is a subsystem consisting of three sites) on the so-called PN
energy landscape [22], which is defined by HPN = maxδφij

(H ),
with ψn = √

Nn exp(iφn) and δφij = φi − φj [47]. The PN
landscape reads [22]

HPN = L

2

(
N2

1 + N2
2 + N2

3

) + (
√

N1 +
√

N3)
√

N2. (4)

Figure 4(a) shows the PN landscape of the trimer at the
ST crossover. The bright DB, which is linearly stable [48],
is located in the top “eye” of the energy landscape. The two
saddle points just below N2 = 1/2 (related to a migration of
the DB from site 2 to site 1 and 3, respectively) are connected
to the PN barrier and the total energy threshold dictating the
breather stability is given by [22]

EPN(L) = L

4
+ 1

2
+ 1

4L
− 1

4L2
+ 1

4L3
− 9

16L4
+ O

(
1

L5

)
.

(5)

The energy of a bright breather Eb is a maximum of the total
energy E of the trimer. As long as the total energy of the
local trimer EPN < E � Eb is above the threshold, a breather
remains pinned to a lattice site. The total energy for the initial
condition (3) reads E(L) = L/2, which can be seen directly
from Eq. (1) as the energy is measured in units of the tunneling
rate J [cf. Eq. (2)]. Hence, the crossover Lco is reached, when
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FIG. 4. (Color online) (a) The PN energy landscape HPN exhibits
a bright DB (located in the top “eye” on the PN landscape at
N2 = 0.902 and N1 = N3 = 0.049) and two degenerate saddle points
that mark the boundary of stability of the DB. The color code
shows the PN landscape [Eq. (4)] for L = Lco = 2.2469. (b) The
ST crossover is found at the crossing (dashed line) of the total energy
E0 = L/2 (red/gray line) with the PN energy barrier EPN [Eq. (5),
green/lightgray line]. The corresponding energy at the crossing is
the total energy of the saddle points shown in (a). For L→∞, E0

asymptotically approaches the total energy of the bright breather Eb

(thick blue line). [(c) and (d)] Including quantum corrections using the
BBR method (blue line), the ST crossover exhibits a much sharper
transition compared to the mean-field result (thick red line), here
shown for M = 9 sites. We report the minimum number of atoms at
the central site min(N5) and the condensate fraction min[cf (t)]. The
dashed lines in (c) and (d) mark the crossover at Lco for an infinite
lattice. Other parameters are γ = 0.5 Hz, N = 200 atoms, J = 10
Hz. The minima were determined in the interval t ∈ [0.25,0.5] s.

EPN [Eq. (5)] is equal to L/2, and we obtain

L5
co − 2L4

co − L3
co + L2

co − Lco + 9
4 = 0. (6)

We find Lco = 2.2469, in excellent agreement with the
numerical value. This result means that the ST crossover,
which is observed in a one-dimensional optical lattice, can
be described with high degree of accuracy by the PN barrier of
a local trimer. Given that the PN barrier describes the stability
of self-trapped states in a very broad context, we expect that
the three different types to obtain ST (static, dynamical, and
self-localized) in discrete systems eventually are related to the
PN barrier.

The general behavior near the ST crossover is depicted in
Fig. 4(b). The PN barrier bends off the total energy line for
increasing L > Lco, which leads to a growing area of stability
[given by E0(L) > EPN(L)]. In the limit L→∞, the initial
total energy E0 (red line) asymptotically approaches the total
energy Eb of the bright breather (blue thick line) [49]. The
exact breather energy Eb(L), here for M = 101 sites can be
calculated numerically using standard methods (such as the
anticontinuous limit [30,33,50]), while we applied a different
iterative approach [35].

A. Generalized BBR method

To study how the ST crossover manifests beyond the
mean-field description, we use the Bogoliubov back-reaction
(BBR) method [51,52], which includes higher-order corre-
lation functions and allows a consistent calculation of the
condensate fraction of the BEC. The BBR method has recently
been generalized to the dissipative case [6,7], which is crucial
for our study. The generalized BBR method is especially useful
if the many-body state is close to, but not exactly equal to a
pure BEC, in particular it accurately predicts the onset of a
depletion of the condensate mode [6].

We shortly review the main steps of the derivation of
the generalized BBR method and point out its validity. The
coherent dynamics of ultracold atoms in deep optical lattices
is described by the Bose-Hubbard Hamiltonian,

Ĥ = −J
∑

j
(â†

j+1âj + â
†
j âj+1) + U

2

∑
j
â
†
j â

†
j âj âj ,

(7)

where âj and â
†
j are the bosonic annihilation and creation

operators, J denotes the tunneling rate between the wells and
U is the on-site interaction. The BHH is obtained when the
lattice is sufficiently deep, such that the dynamics is restricted
to the lowest Bloch band. We measure energy in frequency
units by setting h̄ = 1.

To consider the quantum dynamics in presence of dissipa-
tion, we use a master equation in Lindblad form [53],

˙̂ρ = −i[Ĥ ,ρ̂] + Lρ̂. (8)

Localized particle loss and phase noise are described by the
Liouvillians [53]:

Llossρ̂ = −1

2

∑
j
γj (â†

j âj ρ̂ + ρ̂â
†
j âj − 2âj ρ̂â

†
j ), (9)

Lphaseρ̂ = −κ

2

∑
j
n̂2

j ρ̂ + ρ̂n̂2
j − 2n̂j ρ̂n̂j , (10)

where γj denotes the particle loss rate at site j and κ is the
strength of the phase noise. In this article, we set κ = 0, thus
considering only particle loss. For the purpose of generality,
the terms resulting from phase noise are included below.

We will first derive the mean-field equations from this (so
far exact) approach. The higher-order correlation functions that
are the building block of the BBR method will then appear
naturally. We start from the single-particle reduced density
matrix (SPDM) σjk = 〈â†

j âk〉 = tr(â†
j âkρ̂) [51,52,54,55]. The

eq’s of motion for σjk are obtained from the master Eq. (8),

i
d

dt
σj,k = tr(â†

j âk[Ĥ ,ρ̂] + iâ
†
j âkLρ̂)

= −J (σj,k+1 + σj,k−1 − σj+1,k − σj−1,k)

+ U (σkkσjk + �kkjk − σjjσjk − �jjjk),

− i
γj + γk

2
σj,k − iκ(1 − δj,k)σj,k, (11)

with the variances �jk�m = 〈â†
j âkâ

†
�âm〉 − 〈â†

j âk〉〈â†
�âm〉. In

the mean-field limit N → ∞ (where UN remains finite), one
can neglect the variances �jk�m in Eq. (11) in order to obtain
a closed set of evolution equations. This is the case for a pure
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BEC, as the variances scale only linearly with the particle
number N , while the products σjkσ�m scale as N2.

To describe many-body effects such as quantum correla-
tions and the depletion of the condensate for large, but finite,
particle numbers, we explicitly take the variances �jk�m into
account. The time evolution of the variances �jk�m includes
six-point correlation functions, 〈â†

j âmâ
†
kânâ

†
r âs〉. The eq’s of

motion for the six-point function then contain even higher
correlation functions and so on.

In order to obtain a closed set of equations of motion, the
higher-order (six-point) correlation functions are truncated as
follows [52]:

〈â†
j âmâ

†
kânâ

†
r âs〉

≈ 〈â†
j âmâ

†
kân〉〈â†

r âs〉 + 〈â†
j âmâ†

r âs〉〈â†
kân〉

+ 〈â†
kânâ

†
r âs〉〈â†

j âm〉 − 2〈â†
j âm〉〈â†

kân〉〈â†
r âs〉. (12)

Within this framework, we see that the mean-field approxima-
tion results from truncating the four-point correlation functions
(and, thus, neglecting the variances �jk�m), while within the
BBR approach the four-point functions are taken explicitly into
account and the six-point functions are truncated. With this
ansatz, we obtain the generalized BBR equations of motion
(see Refs. [6,7] for details). The relative error induced by the
truncation vanishes as 1/N2 with increasing particle number.
Close to a pure condensate, the BBR method thus provides a
much more accurate description of the many-body dynamics
than the simple mean-field approximation.

B. ST crossover beyond mean-field

In Fig. 4(c) the minimum remaining number of atoms
(normalized to 1) at the central site are shown for M = 9 sites
and the initial condition (3) using the generalized BBR method
and compared to the mean-field result. Boundary dissipation
was applied in both cases, reducing reflections from the edges
of the lattice. The condensate fraction cf is the fraction of
the number of condensed atoms and is given by the largest
eigenvalue of the SPDM σj,k , whereas the total number of
atoms is given by the trace of σj,k [51,54,56].

The crossover at Lco [dashed line in Fig. 4(c) and 4(d)],
which we have derived in Eq. (6), is in excellent agreement
with the BBR calculations. By including quantum corrections,
the ST crossover becomes much sharper, which is also
reflected by a jump in the condensate fraction [see the blue
curve in Fig. 4(d)], where we report min[cf (t)] for times
t ∈ [0.25,0.5] s. In contrast, the mean-field dynamics based
on the DNLS per se assumes a pure BEC, i.e., cf = 1 (red
line).

While stable motion above the crossover allows for long-
time coherence, unstable motion below the crossover leads to
depletion of the condensate [57]. A profound understanding
of the ST crossover therefore might be viable for controlled
quantum state preparation using spatially localized initial
conditions, such as Eq. (3).

IV. SELF-LOCALIZATION

We now turn our focus to SL, where the dynamics finds
self-trapped states on its own in the presence of weak boundary

FIG. 5. (Color online) The SL transition at �b (red line) given by
Eq. (17) is the upper bound numerical results. The data (black circles)
wwere extracted for the boundary dissipation rate γ = 0.2 Hz from
Fig. 1 in Ref. [27], where a sharp drop of the “participation ratio”
clearly marks the SL transition. The inset shows the probability for
detecting a norm x [Eq. (15)] for M = 100 (green/lightgray line) and
M = 1000 (black line) which exhibits a sharp transition and becomes
a step function in the limit M → ∞.

dissipation [25–28], resembling a phase transition [27]. To
consistently investigate the dynamics in different lattices sizes
M , we require the initial density ρ = N /M to be constant.
Rescaling L accordingly results in an effective nonlinearity
� = L/M [27]. Starting with a homogeneous initial condition
with equal norm on all lattice sites and random phases, the
transition to SL has been observed at a critical interaction
strength �b for which we will derive an explicit expression in
the following. The condition for self-trapping reads Llocal

n =
LNn = �MNn > Lco. The critical nonlinearity �b for the
dynamical formation of a breather is obtained for Llocal

n = Lco,
hence, we find

�b = Lco

MNm

. (13)

As the only unknown quantity in Eq. (13) is the maximum
single-site norm Nm, calculating �b is reduced to a very
general question: What is the probability of finding a site with
a norm larger than a given value N in the optical lattice? In
the diffusive regime, the probability distribution of norms x in
the lattice is w(x) = M exp(−Mx) [27]. The probability that
the norm at a certain site is smaller than x is

P (N < x) =
∫ x

0
w(x ′)dx ′ = 1 − e−Mx. (14)

Assuming that the populations at the M sites are independent
of each other, the probability that at least one site has a norm
larger than x reads

PM (N > x) = 1 − [1 − e−Mx]M, (15)

which approaches a step function for M → ∞ (see inset of
Fig. 5). Thus, the largest norm that is found in the diffusive
regime is given for large M by PM (N > x) ≈ 1/2 (red dashed
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line in Fig. 5). Insertion into Eq. (15) yields

Nm ≡ x = ln[
1

1 − (1/2)1/M
]/M. (16)

With Eq. (13) the SL transition is found to be, at the critical
nonlinearity,

�b = Lco

ln[ 1
1−(1/2)1/M ]

, (17)

which is shown in Fig. 5 (red line). As in deriving Eq. (16)
it was assumed that the populations at the M sites are
independent, we have effectively calculated an upper bound
to �b, in excellent agreement with the numerical results in
Ref. [27] (shown as black circles in Fig. 5).

V. EXPERIMENTAL REALIZATION

We expect that the ST crossover can be readily studied in the
present experiments [4,58,59]. The initial condition (3) relates
to a BEC cloud at a single lattice site, while the interatomic
interaction can be tuned via a Feshbach resonance. In contrast,
observing SL in optical lattices is more delicate. A prerequisite
to observe SL is dissipation.

While discrete breathers exist as well in Hamiltonian
systems [30,31], they become attractors of the dynamics in
dissipative systems [36–38] which is crucial for SL. Further-
more, local dissipation helps stabilization of once-formed DBs
by damping down phonons in the lattice.

Local dissipation has been realized with single-site reso-
lution using a focused electron beam [4,59], while another
possibility is to apply a microwave field to locally spin flip
atoms inside the BEC [60,61]. The experiment, however, needs
to allow for sufficient propagation time so SL can form, in the

course of which chaotic dynamics and dynamical instabilities
typically lead to depletion of the condensate [45,57,62]. A
remedy could be to reduce the timescale by considering lattices
with a few wells (as in Fig. 2) or to prepare an initial condition
that has a more than exponentially small probability for high
norms.

VI. CONCLUSION

In conclusion, we analyzed the nature of SL in optical
lattices, which previously has been observed phenomenolog-
ically in several studies [25–28], explaining recent numerical
findings [27]. SL represents an alternative way to induce
localization where the preparation of initial wave packets is
not necessary.

Our results show that the SL transition at �b for which
we derived an explicit estimate [Eq. (17)] is based on two
constituent parts. The first part is a ST crossover, which we
studied both within and beyond the mean-field description.
The second part is based on the probability that the dynamics
leads to a local energy above the PN energy barrier.

Given the simplicity of initial condition (3) used to probe
the ST crossover, we expect that the crossover is not only
experimentally readily accessible, but that its understanding
could also be vital in generating long-time coherent states,
without the need to fine-tune the initial state.
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